
Power-Aware Routing for Well-Nested Communications On The Circuit
Switched Tree

Hatem M. El-Boghdadi
Computer Engineering Department

Cairo University, Giza, EGYPT
helboghdadi@eng.cu.edu.eg

Abstract

Although algorithms that employ dynamic reconfigura-
tion are extremely fast, they need the underlying architecture
to change structure very rapidly, possibly at each step of the
computation. This increases the power requirement of such
algorithms which is not acceptable in nowadays devices that
strive to reduce the power requirements. This paper deals
with the circuit switched tree (CST), an interconnect used to
implement dynamically reconfigurable architectures.

In this paper, we introduce a new technique called Power
Aware Dynamic Reconfiguration (PADR). Under this tech-
nique, we propose a power-aware algorithm for configuring
the CST and scheduling a class of communications, called
the well-nested communications on the CST. We show that
the algorithm is power optimal. The algorithm requires only
local information at processing elements (PEs), yet it cor-
rectly establishes paths between communicating PEs. We
also show that the algorithm is optimal and efficient.

1 Introduction

Dynamic Reconfiguration has been proven to be a very
powerful computing technique. Models such as the recon-
figurable mesh (R-Mesh) [5] provide very fast solutions to
many problems. This is due to the ability of these mod-
els to change the interconnection between processors very
fast, possibly at each step of the computation. Changing the
interconnection between processors is usually done through
altering configuration of the switches. This in turn translates
to increasing the power requirements for the algorithms be-
ing considered.

Nowadays, the speed of the algorithms is not the only
issue the algorithm designer should care about. Energy-
efficiency is another important issue in most architectures

1-4244-0910-1/07/$20.00 c©2007 IEEE.

of portable devices. Energy-efficiency is one of the biggest
hurdles against deploying dynamically reconfigurable struc-
tures in portable devices. Algorithms for such devices
should be designed with an eye on the power consumption
and not only the speed.

In this paper we are interested in algorithms that get the
advantage of dynamic reconfiguration (speed) with reduced
power requirements. We call the new technique Power
Aware Dynamic Reconfiguration (PADR). We achieve this
by designing algorithms that dont require the switches to al-
ter its configuration at each step. A switch is configured by
setting a one-to-one connections between its inputs and its
outputs. This configuration is required by the algorithm to
satisfy certain communications requirements. An algorithm
designed under the PADR umbrella, sets each switch into
certain configuration in a certain step and then tries to satisfy
all communications requirements that need this configura-
tion in the following steps before altering the switchs’ con-
figurations to satisfy other communications requirements.
This indeed reduces the power requirements of the algo-
rithm.

One way to implement dynamically reconfigurable archi-
tectures is through self reconfiguration where the architec-
ture can generate the configuration information from within
and does not need configuration to be loaded from outside.
This technique reduced the gap between theoretical mod-
els [5] and practical platforms such as conventional Field
Programmable Gate Arrays (FPGAs) and its variations [2].

Sidhu et al. [7] introduced the Self-Reconfigurable Gate
Array (SRGA) architecture which is an array of PEs and has
self-reconfiguration ability. Each row/column is connected
using a circuit switched tree (CST). The CST basic structure
is a binary tree whose leaves are processing elements (PEs)
and whose internal nodes are 3-sided switches. Edges of the
tree are full duplex links. Figure 1 shows how communica-
tions could be established on the CST.

Two PEs can communicate by setting a path from one
PE (the source) to the the other PE (the destination.); the
pairing between a source PE and a destination PE is called a

Switch

PE
0 1 2 3 4 5 6 7

Figure 1. Communications over the CST.

communication. This requires configuring all the switches
in the path from the source PE to the destination PE to estab-
lish the required path. A set of communications can be per-
formed simultaneously if no two communications use the
same edge in the same direction [3]. Such communication
set is called a compatible set. However, if some commu-
nications need to use the same edges in the same direction,
then performing this set of communications requires multi-
ple rounds of scheduling. Each round may require the same
switch to have a different configuration. Alternating be-
tween configurations is a major source of power consump-
tion which we strive to decrease.

Also the CST was shown to schedule some important
classes of communications optimally [3]. One of these
classes is the well-nested sets [3] which is a superset of the
communications required by the segmentable bus; a funda-
mental reconfigurable architecture. Also the CST can be
used as an interconnect in Infiniband networks [4] and net-
work on Chips [1].

Figure 2 shows an example for well-nested sets. In the
figure, all communications are in the same direction; i.e.
the communication set is oriented to the right. Perform-
ing the communication set in a number of rounds is called
scheduling. Each round of the schedule performs some of
the communications in the set that are compatible. If at most
w communications require to use the same link in the same
direction, the communication set is of width w.

Figure 2. Well-Nested communication set.

This paper presents a PADR-based algorithm for con-
figuring the CST and scheduling a set of communications.
Here, we consider scheduling oriented well-nested sets.

Sidhu et al. [7] presented an algorithm to configure the
switches for only one communication; This algorithm was
extended to support multiple communications if they are
disjoint communications [3]; two disjoint communication

dont use the same tree edges even in different directions.
Recently, Roy et al. [6] presented an algorithm for con-

figuring and scheduling communications sets over the CST.
The algorithm first assign an ID to each communication and
use this ID to configure the switches and set the path be-
tween the communicating PEs. Although the algorithm was
shown to be optimal and efficient for well-nested communi-
cations, it could alter the configuration of the same switch at
each round of the schedule. In other words, for a well-nested
communication set of width w, the schedule requires Θ(w)
rounds and a switch needs O(w) configuration changes. Our
algorithm shows that setting the path between correspond-
ing PEs does not need assigning an ID for each communica-
tion. Our algorithm is optimal, efficient, and guarantees that
for a well-nested communication set of width w, the sched-
ule requires Θ(w) rounds and a switch needs O(1) config-
uration changes; i.e. a switch makes a constant number of
configuration changes which makes the algorithm power op-
timal.

The main idea of making the algorithm power aware is
that each switch, u, select the most outer communication,
Oc(u), possible to schedule at each round. This forces the
switch to satisfy all sources (resp. destinations) from its left
(resp. right) subtree then change its configuration to satisfy
sources (resp. destinations) from its right (resp. left) sub-
tree. This reduces the number of configuration changes and
consequently reducing the power requirement of the sched-
ule.

In the next section we describe the CST interconnect and
and introduce some definitions. Section 3 gives the configu-
ration and scheduling algorithm. Section 3.1 shows that the
algorithm indeed establish the required communications. In
Section 4 we show that our method is time optimal. section
5 proves that the proposed algorithm is power optimal. In
Section 6 we summarize our results and make some con-
cluding remarks.

2 CST Structure and Configuration

In this section, we first describe the structure of the CST
in a little more detail. We then show the general idea of
configuring the CST using local data to establish dedicated
paths between source PEs and their corresponding destina-
tion PEs.

The three sided switch used in the CST and shown in
Figure 3(a) has three data inputs, {li, ri, pi}, coming from
the left child, right child and the parent respectively. Also
it has three data outputs, {lo, ro, po}, going to the left child,
right child and the parent respectively. An input at a certain
side can be connected to any output of the other two sides.
It cannot be connected to the output of the same side. This
guarantees that a path from a source PE to a destination PE
cannot traverse more than O(log N) switches. This trans-

2

lates to a single clock cycle transfer of information [3, 7]
between PEs. The CST is reconfigurable in the sense that
its switches can be reconfigured to connect different PEs at
different rounds of the schedule.

2.1 Well Nested Communication Sets

In this paper we consider a special class of communi-
cation sets called well nested sets. Moreover, we consider
right oriented sets in which each communication has its
source to the left of its destination. Any set can be de-
composed into two sets each of them is oriented. Dealing
with right oriented sets can be adjusted easily to left ori-
ented sets. In a well-nested communication set, the commu-
nications corresponds to a balanced well-nested parenthesis
expression. Figure 2 shows an example of a well-nested set.

Definition 1 Let T (u) be a subtree rooted at u and let
SM (u) = {(s1, d1), (s2, d2), .., (sM , dM)} be a right ori-
ented well-nested set of M communications matched at
switch u. The outer most communication at switch u,
Oc(u) = (si, di) ∈ SM (u) is the one such that si ≤ sj ,
0 ≤ j ≤ M and di ≥ dj , 0 ≤ j ≤ M .

Figure 3(b) shows two communications c3 and c4 matched
at switch u. Here Oc(u) = c4 since its source s4 is to the
left of s3 and its destination d4 is to the right of d3. Note
that the source of Oc(u) need not be the most left source in
T (u) (see Figure 3(b)). Similarly, the destination of Oc(u)
need not be the most right destination in T (u).

Definition 2 Let S(u) = {s1, s2, .., sn} (resp. D(u) =
{d1, d2, .., dn}) be a set of n sources (resp. destinations)
in T (u) matched at u or upper level switch. The xth left
(resp. right) most source Su(x) (resp. destination Du(x)) is
the one that has x sources (resp. destinations) in S(u) (resp.
D(u)) to its left (resp. right).

In Figure 3(b), S(u) = {s1, s3, s4, s6, s7}. Su(2) is s4 be-
cause it has two sources,s6, s7, in S(u) to its left. Also,
D(u) = {d3, d4}. Du(0)=d4 and Du(1)=d3 because it has
one destination, d4 to its right.

In the algorithm presented in Section 3, if switch u is
to schedule a matched communication at u, then it selects
Oc(u) = c4 for scheduling. This corresponds to connecting
Su(2) to Du(0).

2.2 CST Configuration

Configuration of the CST boils down to configuring its
switches; the part of the CST that is reconfigurable. Two
PEs can communicate by setting a path from one PE (the
source) to the the other PE (the destination.) This requires
configuring all the switches in the path from the source PE

CU- L CU-R

CUCD

C D- L CD- R

switch u

C (u)
S

Control
Unit

Data Unit

l o

li
ro

ri

po pi

(a)

u

s1s
2

s
3

s
4

c
1

c2c
3c

4

s
5

s
6

c5

s
7

c6c7

d
2

d
3

d
4

d
5

(b)

Figure 3. (a) Switch Structure. (b) Illustration
of Definitions 1, 2.

to the destination PE to establish the required path. The
switch (see Figure 3(a)) contains a data unit and a control
unit. Configuring the switches is done through sending con-
trol information up the tree starting from the leaves. Each
PE knows whether it is a source, a destination, or neither; a
local information at each PE. This information flows up the
tree. The switches (control unit) at internal nodes receives
control information,CU−L and CU−R, from both children,
perform some computation, store control information CS

and send up other control information, CU to its parent; the
details of received, stored, and sent control information will
be detailed in Section 3. When the root receives the con-
trol information, it sends down the tree some new control
information, CD−L (resp. CD−R), down to its left (resp.
right) child. This information is used at switches along with
the stored control information CS to configure its internal
paths.

The control unit use CS and CD−L or CD−R to configure
the data unit to establish the paths required by the algorithm.

Lemma 1 For right oriented well-nested communication
set, if a switch u receives control information, Cs, from a
source PE, s, from its left child and receives control infor-

3

mation, Cd, from a destination PE, d, from its right child,
then s and d represent a matching source-destination pair.

Proof: Let Cs and Cd be received at u from its leftchild
and right child respectively. Assume that they dont represent
a matching source-destination pair, then s has its destination
to the right of d (the set is right oriened) and d has its source
to the left of s which contradicts the assumption of well
nested communication.

2.3 Power Modeling

The three sided switch used in the CST has three inputs
and three outputs. In this work, if the switch connects an
input to an output, then it consumes one unit of power. This
means that, in a step, if the switch changes configuration,
it will need at most three units of power since it has three
connections it can set.

In this work we consider scheduling a set of oriented
well-nested communication set on the CST. If the set is of
width w, then w rounds will be needed for the schedule to
finish. At each round a number of communications that are
compatible are selected, the switches are configured, and
the data is transferred. The selection of the communications
at each round is done in such a way that the switches dont
change configuration until all communication requirements
from that configuration is satisfied. In Section 5 we show
that each switch requires only a constant number of switch
changes for all the communications to be performed.

3 The Configuration and Scheduling Algo-
rithm (CSA)

In this section we present our algorithm for power-aware
scheduling and performing a set of oriented well-nested
communication set of width w. The algorithm is composed
of two phases, each with a number of steps. The first phase
is executed only once. The second phase repeats w rounds
to ensure all communications in the set are performed.

The main idea of making the algorithm power aware is
that each switch, u, select the most outer communication,
Oc(u) possible to schedule at each round. This forces the
switch to satisfy all sources (resp. destinations) from its left
(resp. right) subtree then change its configuration to satisfy
sources (resp. destinations) from its right (resp. left) sub-
tree. This reduces the number of configuration changes and
consequently reducing the power requirement of the sched-
ule. The switch configures the outer most communication in
each round based on the control information received at the
switch while going up the tree, CS , and while going down
the tree, CD−L or CD−R depending on whether the switch
is left child or right child respectively. All the switches con-
tribute to configuring the most outer communication which
is done by selecting the source and destination of Oc(u).

• Phase 1: Distributing Control Information

• Step 1.1: Each PE sends to its parent whether it is a
source [1, 0], a destination [0, 1], or neither [0, 0].

• Step 1.2: Each internal switch, u, receives from its
left child y (resp., right child z) control information
CU−L = [SL, DL] (resp., CU−R = [SR, DR]). SL

(resp., DL) is number of communications that require
to use the link from y to u (resp. from u to y). SR

(resp., DR) is number of communications that require
to use the link from z to u (resp. from u to z).

• Step 1.3: Each switch u matches sources from
left subtree and destinations from right subtree and
stores CS = [M, SL − min(SL, M), DL, SR, DR −
min(DR, M)] where M is the number of matched
source-destination pairs at u. Then, each switch u
sends CU = [SL − min(SL, M) + SR, DL + DR −
min(DR, M)] to its parent. The information flows up
the tree until it reaches the root.

• Phase 2: Configuration & Scheduling

• Step 2.1: Starting from the root, each switch u sends
control information CD−L = [CD−L1 , xsl

, xdl
] (resp.

CD−R = [CD−R1 , xsr , xdr]) to its left child y (resp.
right child z). CD−L1 and CD−R1 could be either
[s, null], [d, null], [s, d], or [null, null]. The informa-
tion CD−L (resp., CD−R) from u to y (resp., z) tells
y (resp., z) which link(s) from u to y (resp., z) will
be used in the current round. The argument xsl

(resp.
xsr) tells y (resp. z) to connect to xsl

th (resp. xsr
th)

source, Sy(xsl
) (resp. Sz(xsr)).

Similarly, xdl
(resp. xdr) tells y (resp. z) to con-

nect to xdl
th (resp. xdr

th) destination, Dy(xdl
) (resp.

Dz(xdr)). Consequently y (resp., z) uses CD−R

(resp. CD−L) along with the information obtained
from Phase 1 to set its path such that the outer most
possible communication is established. After configur-
ing themselves, switches y and z update the stored in-
formation at each of them, CS(y) and CS(z). All PEs
that receive either [s, null] or [d, null] will participate
in the current round of scheduling.

• Step 2.2: PEs received [s, null] write their data to their
destinations.

• Step 2.3: Repeat Phase 2 till all the communications
are scheduled in some round.

Now we explain the steps of the algorithm in detail. The
algorithm consists of two phases. The first phase is the dis-
tributing control information phase in which the local data
at the PEs is distributed to switches of the CST. Phase 1 ex-
ecutes only once. At the end of this phase, each switch u
has all the information about the communications that use u
in order to be established.

4

type 1

type 5type 3

type 2type 4

(a)

u

v

I

(b)

Figure 4. (a) Classification of communica-
tions. (b) Illustration of the proof of The-
orem 5.

In Step 1.1 each PE sends to its parent whether it is a
source, a destination or neither. This information is repre-
sented as [1, 0], [0, 1], or [0, 0] respectively.

In Step 1.2, each switch u receives from y (resp. z),
CU−L (resp. CUR), where CUL = [SL, DL] (resp.CUR =
[SR, DR]). SL (resp. SR) is the number of sources that are
in the subtree rooted at y (resp. z) and require to use the
switch u to connect with their corresponding destinations.
Similarily, DL (resp. DR) is the number of destinations that
are in the subtree rooted at y (resp. z) and require to use the
switch u to connect with their corresponding sources. This
matches with data in Step 1.1 where [1, 0] means one source
and no destination and [0, 1] means one destination and no
source. While [0, 0] means no sources and no destinations.

In Step 1.3, each switch u classifies the communications
that pass through it into five types (see Figure 4(a)). It
checks if there are matching source-destination pairs at u
(type 1). By Lemma 1, for well-nested sets, if SL = X
and DR = Y then there are M = min(X, Y) match-
ing pairs at u. Switch u stores this information, M , along
with the following information: SR (type 2), DL (type 3),
SL − min(SL, M): the unmatched sources from the left
child (type 4), and DR−min(DR, M): the unmatched des-
tinations from the right child (type 5).

It should be pointed out that a switch u knows only how
many matching pairs M of type 1 at u since all type 1 re-
quire the same configuration li → ro. It is not important
to know which source matches which destination. This also
applies to other types of communications as well.

By the end of Phase 1, switches can configure itself with
the proper configuration if it knows which type of communi-
cation is being configured. This information becomes avail-
able in the second phase of the algorithm.

The second phase is responsible of configuring the CST
and scheduling the communication set in some rounds. In
other words the phase is repeated w rounds. Each round se-
lects some communications to be configured and performed.
The selection procedure as will be described is the main fac-
tor in making the algorithm power aware. Also, the configu-
ration process takes advantage of the well-nested sets prop-
erties to guarantee that correct paths are established.

The main idea of the selection procedure is the following.
Assume that the root switch, r, has M matching source-
destination pairs. All these communications are of type 1
and require the same configuration, li → ro. The algo-
rithm selects Oc(r) to be scheduled first. Control informa-
tion is sent to the children carrying the communication re-
quirements from each child. In other words, each switch
u configures itself to establish the path for the outer most
communications defined by upper level switches along with
outer most communication matched at u, Oc(u), (if any)
if possible. Because the communications are well-nested,
the outer most communication translates to connecting the
source of Oc(u) to the destination of Oc(u). These are de-
fined as the xsl

th or xsr
th left source and the xdl

th or xdr
th

most right destination (see Definition 1.)
In Step 2.1, each switch u sends to its children y and z

the communication requirement at this round of scheduling.
In other words, u tells y (same for z) which links (upward
or downward or both) from u to y will be used in the cur-
rent round. This triggers y to set the proper internal path. If
upward link is to be used (represented by [s, null]) then y
should configure either li → po or ri → po paths based on
the availability of sources from left or right. For Oc(u), the
priority of the selection is for li → po (if any). Similarly, if
downward link is to be used (represented by [d, null]) then
y should configure either pi → ro or pi → lo paths based on
the availability of destinations from right or left. For Oc(u),
the priority of the selection is for pi → ro (if any). If both
links are to be used represented by [s, d], then y should con-
figure itself to connect the xsl

th most left source along with
the xdl

th most right destination. After the switch configures
its internal path, it updates the values in CS . For example, if
switch u schedules a matching communication at u, then the
value of M in CS(u) is decremented by 1. A pseudocode for
Step 2.1 is shown in Figure 5 for the cases [null, null] and
[s, null]. The cases for [d, null] and [s, d] are similar and
omitted here for shortage of space. By the end of Step 2.1,
each PE receives either [s, null], or [d, null], or [null, null].

In Step 2.2 each source PE chosen in the current round
writes its data to its corresponding destination. Step 2.3
guarantees that all communications are performed.

5

Procedure CONFIGURE(u, CS(u), CD(u), CD−L(u), CD−R(u))

/* The procedure configures the switch u with a correct configuration

where CS(u) is control information stored at u in Phase 1, CD(u)

is the information received in Step 2.1, CD−L(u) (resp. CD−R(u))

is the information generated to the left (resp. right) child */

Begin

If CD(u) = [null, null,] then /* [null,null] received*/

if M �= 0 then /* in Step 2.1 */

connect li → ro

M = M − 1

if SL − min(SL, M) �= 0

xsl = SL − min(SL, M)

endif

if DR − min(DR, M) �= 0

xdr = DR − min(DR, M)

endif

CD−L(u) = [s, null, xsl , 0]

CD−R(u) = [d, null,0, xdr]

endif

else if CD(u) = [s, null] then /* [s,null] received */

if SL − min(SL, M) > xs then /* in Step 2.1 */

connect li → po

SL − min(SL, M) = SL − min(SL, M) − 1

CD−L(u) = [s, null, xs, 0]

CD−R(u) = [null, null,0, 0]

else

connect ri → po

SR = SR − 1

xsr = xs − (SL − min(SL, M))

CD−L(u) = [null, null, 0, 0]

CD−R(u) = [s, null, xs, 0]

if M �= 0 then

connect li → ro

M = M − 1

x − sl = SL − min(SL, M)

CD−L(u) = [s, null, xsl , 0]

CD−R(u) = [s, d, xsr , 0]

endif

endif

endif

End

Figure 5. Pseudocode for Step 2.1 in Phase 2
of the algorithm.

3.1 Correctness of The Algorithm

In this section, we show that the algorithm establishes a
path between each source and its corresponding destinations
in some round.

Lemma 2 For right oriented well-nested communication
set, if a switch receives control information [s, d] in Phase
2 of the algorithm, that corresponds to two communications
matched at switches u and v, then, the algorithm establish
the connections for source and the destination of the most
outer communications matched at v and u respectively.

Proof: Since the communication set are right oriented
well-nested set, then the source of one communication is to
the right of the second communication. If [s, d] is received
at a switch, then the algorithm connects the xs

th most left
source (source of Oc(u)) and the xd

th most right destination
(destination of Oc(v)). This connects the required source
and the required destination since the source is to the right
of the destination. Moreover, by Definition 1 the source for
Oc(v) is the xs

th most left source in T (v). Similarly, the
destination for Oc(u) is the xd

th most right source in T (u).
Thus the algorithm establishes the connections for source
and the destination for Oc(v) and Oc(u) respectively.

Lemma 3 If at some round of the algorithm, switch u
schedules a matching communication at u, then the algo-
rithm correctly, establishes the outer most communication,
Oc(u), matched at u.

Proof: Assume that switch u has M matching communi-
cations. At some round of the algorithm, u schedules a
matched communication at u. Here, we show that the al-
gorithm selects to establish the outer most communication,
Oc(u), at u. First, switch u connect li → ro and sends con-
trol information to its children. All the switches at lower
levels than u (if involved in the required path) select to con-
nect the xs

th most left source matched at u, S(Oc(u)) and
the xd

th most right destination matched at u, D(Oc(u)). By
Definition 1 this establishes the path for Oc(u).

In Step 2.1, switch u sends to its children y and z the
communication requirement at this round. In other words,
u tells y (same for z) which links from u to y will be used
in this round. This triggers y to set the proper internal path.
Let h be a lower level switch and let C be the control infor-
mation received by h from its parent. Four cases exist;

• Case 1: If CD−L1 = [null, null], then h is not in-
volved in establishing Oc(u).

• Case 2: If CD−L1 = [s, null], then h configures either
li → po or ri → po paths based on the availability of
sources from left or right (This information is known
priori from Phase 1.) For Oc(u), the priority of the
selection is for li → po (if any).

6

• Case 3: If CD−L1 = [d, null], then h configures either
pi → ro or ii → lo paths based on the availability
of destinations from right or left (This information is
known priori from Phase 1.) For Oc(u), the priority of
the selection is for pi → ro (if any).

• Case 4: If CD−L1 = [s, d], then by Lemma 2, h con-
figures to connect the xs

th most left source along with
the xd

th most right destination. By Definition 1 this
corresponds to the most outer communications that are
represented by [s, d].

All the cases establish a connection for S(Oc(u)) and
D(Oc(u)) thus establishing the communication Oc(u).

Since in each round of the algorithm, the algorithm se-
lects to establish at least one communication, then in a num-
ber of rounds the algorithm correctly performs all the com-
munications in the set. We have the following theorem.

Theorem 4 The algorithm correctly establishes dedicated
paths between each source and its corresponding destina-
tion in some round.

Proof: Since each communication in the set is matched at
some switch. Then when the algorithm schedules a commu-
nication, by Lemma 3, it correcly establishes this commu-
nication. Since each communication is scheduled at some
round, then the algorithm correctly establishes all the com-
munications in the set at some rounds.

Theorem 4 shows that the algorithm correctly establishes
the paths for some communications in some round. Repeat-
ing the process for a number of rounds establishes all the
communications. For the oriented well-nested sets the num-
ber of rounds is optimal. We prove that in the next section.

4 Proof of Optimality

Here, we show that for width-w oriented well nested sets,
the algorithm in Section 3 routes all communications in ex-
actly w rounds. A width-w communication set translates to
having sets of w sources (or destinations) that use the same
link in the same direction. Such sets are called maximum
incompatibles. To prove that the algorithm is optimal, it is
sufficient to show that it schedules one source and destina-
tion from each maximum incompatible in each round.

Assume that a set of w communications, I , uses the link
from a switch u to an upper level switch v. In Phase 2, if v
received from its parent [null, null], then v schedules Oc(v)
(see Figure 4(b)) thus reducing the size of I .

If v received [s, null] from its parent then v schedules the
communication corresponding to the xdl

th or xdr
th source.

If this source is in the left subtree of v then I is reduced by
1. If this source is in the right subtree of v then, v schedules
also a matching communication at v reducing I by 1.

If v received [s, d] from its parent then v schedules the
communication corresponding to xdl

th or xdr
th source. If

this source is in the left subtree of v then I is reduced by 1.
If this source is in the right subtree of v and the destination
is in the left subtree of v then v schedules also a matching
communication at v reducing I by 1. If this source is in the
right subtree of v and the destination is in the right subtree
of v then I is not a maximal incompatible.

Similar argument holds for destination incompatibles
and thus proving the optimality of the algorithm. It is clear
that the algorithm is efficient. Each switch stores a constant
number of words in Phase 1. Also it passes to its parent a
constant number of words. In Phase 2, each switch passes to
its children a constant number of words and performs con-
stant time computations. Thus we have the following result.

Theorem 5 The algorithm routes well-nested communica-
tions optimally on the CST. Also, each switch stores a con-
stant number of words, passes to its neighbors a constant
number of words, and performs a constant-time computa-
tions.

5 Proof of Power-Awareness

In this section we show that our algorithm is power opti-
mal. We show that each switch requires O(1) configuration
changes during all the w rounds of the algorithms. Conse-
quently, a constant number of power units is needed for each
switch. This is in contrast to the algorithm given in [6] in
which each switch requires O(w) configuration changes.

In this proof we deal with the control information in
Phase 2 that requires certain switch settings. Without loss
of generality, the proof handles the information sent to the
left child (right child can be handled in the same way). As-
sume that, in Phase 2, a switch u sends to its left child,
y, CD−L = [CD−L1 , xsl

, xdl
]. CD−L1 could be either

[null, null], [s, null], [d, null], [s, d]. Here also we deal
with values of CD−L1 that contain s or null ([null, null],
[s, null]). Dealing with values that contain d is similar.

We first show that if a switch y receives either
[null, null] or [s, null] then, these values can alternate at
most only twice. In other words, y could receive a sub-
sequence of [null, null] in subsequent rounds then a sub-
sequence of [s, null] in some following rounds then other
subsequence of [null, null]. Or, y could receive a subse-
quence of [s, null] in subsequent rounds then a subsequence
of [null, null] in some following rounds then other subse-
quence of [s, null]. Call the first (resp. second) sequence
Q1 (resp. Q2). Note that CD−L1 only alternate twice in Q1

and Q2. We show that if this happens, switch y needs only
a constant number of switch changes. Then we show that in
Phase 2 of the algorithm, each switch only generates to its
children the first or the second sequence.

7

Lemma 6 Let Q1 be a sequence composed of a subse-
quence of [null, null] followed by a subsequence of [s, null]
followed by a subsequence of [null, null]. Let Q2 be a se-
quence composed of a subsequence of [s, null] followed by
a subsequence of [null, null] followed by a subsequence of
[s, null]. In Phase 2, if switch y receives Q1 or Q2, then y
makes only a constant number of switch changes.

Proof: Assume y receives Q1, then, because of the sub-
sequence [null, null], y connects li → ro to the end of
the subsequence [null, null] (if ∃ any matching communi-
cations at y). When [s, null] is received, then y connects
li → po or ri → po whatever is available till the end of
subsequent [s, null]. When [null, null] is received, then y
connects li → ro to the end of the subsequence [null, null].
Thus Q1 requires only a constant number of switch changes.
A similar argument can be said about Q2.

Lemma 7 In Phase 2, of the algorithm, and for the source
requirements, each switch only generates either Q1 or Q2

till the end of the algorithm.

Proof: Assume only source requirement (CD−L1 =
[s, null] or [null, null]). Assume the leaves of the tree is
at level 0 and the root of the tree is at level �og n. We pro-
ceed by the induction on the switch level. The root switch,
r, represents the base case. The root schedules all the M
communications passing though it in the first M rounds; i.e.
it sends to its left child [s, null] in the first M rounds. Then
r sends [null, null] to its left child through the rest of the
algorithm. In other words the sequence alternate only once.
Assume the lemma to hold for a switch u at level k and con-
sider its left child y (right child z is similar) at level k − 1.

Assume that switch u receives Q1(u). Because of the
[null, null], u connects li → ro and generates [s, null]
to its left child to the end of the received subsequence
[null, null]. When [s, null] is received at u, then u connects
li → po and generates [s, null] to its left child or connects
ri → po and generates [null, null] to its left child till the
end of subsequence [s, null]. When [null, null] is received,
then u connects li → po (for any matching communication
still to be scheduled) and generates [s, null] to its left child
or disconnect and and generates [null, null] to its left child.
It is clear that u, at most, generates either subsequence of
[null, null] followed by subsequence of [s, null] followed
by a subsequence of [null, null]; i.e. generating Q1(u).
Similar argument holds if u receives Q2(u). This proves
that each switch generates a sequence of control informa-
tion that can alternate at most twice proving the lemma.

Similar argument holds for the existence of destination
requirement, d, in the value of CD−L1 . The existence of
s and d in CD−L1 does not pose a problem since they use
different links. Thus we have the following result.

Theorem 8 The algorithm requires each switch to change
configuration O(1) times and thus requires a constant num-
ber of power units.

6 Concluding Remarks

In this paper, we have introduced a new technique called
Power-Aware Dynamic Reconfiguration (PADR). We have
used the idea behind this technique to develop a configura-
tion and scheduling algorithm for a set of well-nested com-
munications on the CST. We have shown that each switch
requires only O(1) power units to schedule all the commu-
nications in the set. This is far lower than the O(w) power
units required by each switch in previous algorithms. The
algorithm is optimal; a width-w communication set requires
w rounds for scheduling. We have shown that the algorithm
also is efficient; a constant number of words is stored at
each switch and a constant number of words is transferred
between neighboring switches.

One obvious extension to this work is the study of other
communication patterns on the CST and on other recon-
figurable interconnect. Other extensions include using the
PADR technique to develop computational algorithms for
reconfigurable models and architectures.

References

[1] L. Benini and G.De Micheli, “Networks on Chips: A New
SoC Paradigm,” IEEE Computer, Jan. 2002, pp. 70-78.

[2] K. Bondalapati and V. K. Prasanna, “Hardware Object Selec-
tion for Mapping Loops onto Reconfigurable Architectures,”
Proc. Int’l. Conf. Par.& Distr. Proc. Tech. and App., 1999.

[3] H. M. El-Boghdadi, R. Vaidyanathan, J. L. Trahan and S. Rai,
“On the Communication Capability of the Self-Reconfigurable
Gate Array Architecture,” Procs. 9th Reconfigurable Architec-
tures Workshop (RAW 2002), included in Procs. 16th Int. Paral-
lel & Distributed Proc. Symp., Florida, April 15, 2002.

[4] X.Y.Lin, Y.C.Chung, and T.Y. Haung, “A Multiple LID Rout-
ing Scheme for Fat-Tree Based Infiniband Networks,” Proc. Int.
Parallel and Distrib. Proc. Symp., 2004.

[5] K. Nakano, “A Bibliography of Published Papers on Dynam-
ically Reconfigurable Architectures,” Parallel Proc. Letters,
vol. 5, 1995, pp. 111–124.

[6] K. Roy, R. Vaidyanathan and J. L. Trahan, “Routing Multiple
Width Communications on the Circuit Switched Tree,” Inter-
national Journal of Foundations of Computer Science, vol. 17,
No. 2, April 2006, pp. 271-285.

[7] R. Sidhu, S. Wadhwa, A. Mei, and V. K. Prasanna, “A Self-
Reconfigurable Gate Array Architecture,” Int. Conf. on Field
Programmable Logic and Applications, 2000, Springer Verlag
Lecture Notes in Computer Sc., vol. 1896, pp. 106–120.

8

