
MODEL AND METHODOLOGY FOR THE SYNTHESIS OF HETEROGENEOUS

AND PARTIALLY RECONFIGURABLE SYSTEMS

Florian Dittmann, Marcelo Götz

Heinz Nixdorf Institute

University Paderborn

Fürstenallee 11, 33102 Paderborn, Germany

email: {roichen,mgoetz}@upb.de

Achim Rettberg

C-LAB

University Paderborn

Fürstenallee 11, 33102 Paderborn

email: achim@c-lab.de

ABSTRACT

When reconfigurable devices are used in modern embed-

ded systems and their capability to adapt to changing appli-

cation requirements becomes an issue, comprehensive mod-

eling and design methods are required. Such methods must

respect the whole range of functionality of the reconfig-

urable fabrics. In particular, the heterogeneity and reconfig-

uration delay of modern FPGAs are important details. Com-

prehensive methods to exploit these characteristics within

the integrated design of embedded systems are still not avail-

able. In this paper, we introduce a synthesis methodology

for reconfigurable systems that respects the specific require-

ments of run-time reconfiguration. The methodology bases

on profound concepts, and expands known notations and

model techniques.

1. INTRODUCTION

Modern embedded systems increasingly are multi-function-

al: They have a fixed core functionality and some applica-

tion dependent behavior. For example, mobile phones basi-

cally serve as communication unit and therefore can connect

to multiple networks (GSM, WLAN, etc.), which require

different algorithms for transmission/reception that further-

more depend on the currently active application. Addition-

ally, mobile phones offer organizer functionality, entertain-

ment, navigation, etc.

The computational hardware of such systems consists of

a variety of processing units, including CPUs, DSPs, ASICs,

and increasingly reconfigurable fabrics. The run-time recon-

figurability of the fabrics thereby allows to react for multi-

ple purposes, including applications which demand for high

computing performance. Additionally to the adaptation to

the different behaviors mentioned above, new updates can

be loaded into the system (post-fabric reconfiguration). In

order to consolidate reconfigurable logic as core parts within

This work was partially funded by SPP 1148 Reconfigurable Comput-

ing of the German Research Foundation (DFG).

such systems, synthesis and design space exploration meth-

ods are required that base on substantiated models.

In this contribution, we shape and improve approaches

and methods of embedded system design for the design of

partially and run-time reconfigurable fabrics that themselves

can be part of a complex systems. As an example, we con-

sider modern FPGAs, which are characterized by partial re-

configurability, heterogeneity, a single reconfiguration port

and notable reconfiguration time. Although being powerful

extensions, the reconfiguration and the diversity of the FP-

GAs may become the bottleneck of the system if not prop-

erly considered during the design phase. Due to the hetero-

geneity (additional hard cores like multipliers, DSP units,

distributed RAM, or even whole processors within the re-

configurable fabric), placement becomes complex, increas-

ing fragmentation. Dynamic reconfiguration on one hand

can adapt the system, on the other hand, however, consumes

time and reconfiguration resources.

In the area of embedded systems, the so-called platform-

based design methodology [12] focuses on optimizing the

system towards a specific application, while also offering

freedom for extensions. We follow this concept and base our

work on a run-time environment implemented on an FPGA.

Such an environment offers flexibly combinable slots and

an appropriate communication infrastructure. Moreover, we

improve the concept of equally sized slots towards hetero-

geneity.

Based on the platform-based design concept, we propose

a model and methodology to explore the design of heteroge-

neous and partially reconfigurable systems. Therefore, we

expand known notations and model techniques from system

synthesis in order to include the characteristics of reconfig-

urable systems. Among these are the reconfiguration time,

dedicated computation resources, heterogeneity, communi-

cation requirements, I/Os, etc. We also discuss a technique

how to transparently include the reconfiguration latency into

the scheduling. Furthermore, we allow multiple reconfigu-

ration fabrics—thus having more than one reconfiguration

port/controller in the overall system.

1-4244-0910-1/07/$20.00 ©2007 IEEE

The rest is organized as follows: In the next section, we

review related work. Then, we introduce the problem ab-

stractly, including the characteristics of execution environ-

ments and the application areas. Section 4 reports on the

proposed approach of extending known models and method-

ologies. We apply the concept on an example, before we

finally conclude and give an outlook.

2. RELATED WORK

Two approaches have influenced our work. We present them

first, before giving a broader overview of further literature.

The first approach bases on Blickle et al. [2]. Blickle

et al. propose system design based on a specification graph,

which consists of a problem graph and an architecture graph.

The combination of all phases of the system synthesis is an

important means: the specification graph GS , the allocation

α, the binding β and the scheduling γ. Having all these

four elements in a valid combination results in a valid over-

all system. The fundamental characteristic of the work is

the inclusion of communication into the design as discrete

nodes.

Haubelt improves this concept significantly in [7, 8, 9].

He introduces hierarchy for raising the level of abstraction

and for exploring reconfigurable hardware. The aim is archi-

tecture design for multiple purposes. Furthermore, he pro-

poses the concept of hierarchical mapping edges, which sig-

nificantly improves the specification graph model. However,

Haubelt does not consider partial run-time reconfiguration in

his approach.

The second approach [1] shows a physically aware hard-

ware-software partitioning scheme for minimizing applica-

tion execution time. The target architectures are reconfig-

urable devices with partial dynamic reconfiguration capa-

bility. The authors consider the exclusiveness of the re-

configuration port and the need for adjacent free columns

to place tasks. Similar to the Blickle/Haubelt approach,

they start with task dependence graph. On basis of the

Kernighan-Lin/Fiduccia-Matheyes (KLFM) approach they

have developed a heuristic for synthesizing such task depen-

dence graph on partially reconfigurable architectures.

Results of the second approach form the basis for our

work. However, we consider communication as an integral

part and therefore integrate it into the synthesis and design

space exploration. Furthermore, our approach also supports

environments composed of multiple reconfigurable fabrics.

Finally, we improve the concept of heterogeneity and allow

differently shaped slots.

Additionally, there exist further works in the field, of

which we mention the most meaningful ones.

Despite little consideration on nowadays heterogeneous

FPGAs, [6] presents a sophisticated concept of modeling

and optimizing run-time reconfiguration using evolutionary

computation. The approach focuses on optimally reducing

the run-time reconfiguration overhead during the HW-SW

partitioning stage, which is done by detecting functional

commonality.

In [15], the authors describe a hardware-software parti-

tioning and scheduling approach for dynamically reconfig-

urable systems. A method is presented, based on genetic

and list scheduling algorithms, which can tackle multi-rate,

real-time, periodic systems.

The authors of [10] present HW/SW co-synthesis for

run-time reconfigurable systems, relying on an exact algo-

rithm (ILP) and a KLFM-based approach. Their ILP consid-

ers the single reconfiguration controller bottleneck and re-

configuration time hiding. However, while scheduling, they

do not consider physical task placement constraints.

Finally, SPARCS (Synthesis and Partitioning for Adap-

tive Reconfigurable Computing Systems) [16] is an inte-

grated design system for automatically partitioning and syn-

thesizing designs for reconfigurable boards with multiple

field-programmable devices. Run-time reconfiguration is

considered only rudimentarily.

To summarize, our work extends the presented ap-

proaches, e. g., by the possibility of exploring a system with

multiple partially reconfigurable fabrics. In general, we fo-

cus on the comprehensive mapping of problems to partially

reconfigurable environments and include all necessary con-

straints, so far not combined in the approaches presented

above.

3. PROBLEM DESCRIPTION

The behavior of the targeted embedded systems is composed

of some core functionality (e. g., determined by the applica-

tion environment) and additional dynamically selected func-

tionalities (e. g., triggered by user interaction). Dynamically

arriving applications occupy the left over or temporarily un-

used resources. On CPUs, the free processor utilization can

be used. On reconfigurable devices, we can load new con-

figurations, e. g. bitstreams. Thereby, the run-time environ-

ment must be designed open-minded in order to allow new

tasks to enter the reconfigurable fabric.

The problem to be mapped on our system is given by a

universal directed task dependence graph G(V,E). The ex-

ecution is similar to a homogeneous dataflow graph, where

processes are only activated for execution if all their prede-

cessors have finished their execution.

The system under design is a combination of compu-

tation resources such as processors, ASICs, and reconfig-

urable devices (ref. to Figure 1). Without loss of generality,

we focus on the latter only relying on an execution environ-

ment that abstracts the challenging details of dynamic re-

source allocation on such FPGAs. Several groups have pro-

posed such run-time environments for task execution on FP-

CPU

FPGA

ASIC

...

S
lo

t
1

Slot 0

CPU

R
A

M

FPGA

IO

I

O

Slot

6

Slot

5

M
A

C

I

O

S
lo

t
3

S
lo

t
4

S
lo

t
2

M
A

C

R
A

M
R

A
M

S
lo

t
7 M

A
C

Fig. 1. Schematic draft of an exemplary system focusing on

the execution environment based on FPGAs.

GAs. Some examples of such reconfiguration environments

are the Erlangen Slot Machine [3] or similar approaches

[4, 11, 20].

Modern reconfigurable devices, like the Virtex 4 FPGA,

are increasingly heterogeneous. They are no longer com-

pletely fine-grained devices, and offer more and more addi-

tional cores, e. g., DSP cores, etc. Usage of such resources

can lead to more area-efficient and faster implementations.

Moreover, the FPGA is divided in areas of specific size, sim-

ilar to a tile-structure. According to Xilinx, the reconfig-

urable parts of the FPGA are similar to the division of the

clock network.

Thus, we will have a number of heterogeneous slots ar-

ranged on the FPGA. The slots can be reconfigured individ-

ually, however using the single and mutually exclusive re-

configuration port. The intermodule communication of the

slots is defined by the environment and can range from di-

rect wiring to a common bus for all slots. For example, [3]

allows several different modes of communication. Concern-

ing the arrangement of the slots, modern devices, like Xilinx

Virtex 4 FPGA, free us from the limitation of only whole

column based reconfigurable areas.

Based upon theses characteristics, in our model of a run-

time environment, the reconfigurable device will be tiled.

The tile size and functionality is not homogeneous. Addi-

tionally, we rely on a static communication structure (see

also Figure 1).

As a consequence, application mapping becomes more

complex, since new tasks to be executed on slots could

require specific resources within these slots that are not

available. Generally, the diversity, in particular dedicated

resources are welcome concerning performance, however,

they must be treated appropriately.

Furthermore, FPGAs suffer a long reconfiguration time.

Heterogeneous FPGAs might decrease the reconfiguration

time, as more functionality is realized by fewer reconfigura-

tion bits (with the drawback of limited flexibility). Still, the

reconfiguration overhead, i. e., the time needed for carrying

out reconfigurations, can be considered as proportional to

the area under reconfiguration. Partial reconfiguration al-

lows us to hide reconfiguration time, however an additional

limiting factor is the single reconfiguration port that must

be used mutually exclusive. If our system hosts more than

one FPGA, we can also reconfigure two areas at the same

time if those areas are not present on the same FPGA, using,

therefore, two different reconfiguration ports.

To summarize, by using our run-time environment

model we are taking into consideration scenarios, where

heterogeneous resources compose the execution platform of

modern embedded systems. The usage of an execution envi-

ronment is close to platform-based design, i. e., we optimize

the platform for a set of behaviors.

Thus, we can formulate our design using two graphs: the

problem graph and the architecture graph. Together, both

are the specification of the system as introduced by [2]. Ad-

ditionally, there exist mapping edges between the problem

graph and the architecture graph, which describe feasible

bindings of processes to resources. We annotated the edges

with weights such as the time or power needed. Altogether,

specification graphs and, in particular, the mapping edges

are the underlying model for the design space exploration.

As a consequence, proper mapping edges are crucial for rea-

sonable results.

4. PROPOSED APPROACH

In our work, we start from a high level of abstraction com-

prising of the system architecture and the problem descrip-

tion both given as graphs.

4.1. Objective

The aim is to derive a binding that is optimal in a multi-

dimension design space. Such Pareto-optimal points are

computed by a design space exploration. In particular, our

methodology bases on a reconfigurable execution environ-

ment and the problem given as a task dependence graph.

For example, with our approach we are able to improve the

response time and to reduce the power consumption.

4.2. Outline

In order to accurately map the above introduced task de-

pendence graph onto an execution environment, we extend

methods from the literature in this section. Those methods

are in the domain of system synthesis. We define synthesis

as creating implementation details which are left out of the

specification. However, we do not decide on the kind and

number of system components (allocation), which is part of

the system-level synthesis.

Synthesis is a complex task and most often is divided

into the sub-steps allocation, binding, and scheduling [5, 2].

The sequence of the steps is not fixed, combination of steps

T1

T2

T3

RT1

RT3

RT2

C1

C2

C3

C0

T1

T2

T3

task

graph

problem

graph
GP

G

T1

T2

T3 G*

RT1

RT1

RT1

Fig. 2. Task dependence graph G, extended by RT nodes to

G∗, and corresponding problem graph GP with communi-

cation nodes and reconfiguration phases.

can be of additional benefit. Fundamental to the steps is a

system specification. Only the combination of all phases of

the system synthesis, i. e., the system specification, the allo-

cation α, the binding β and the scheduling γ (cf. [2]), will

result in a valid overall system and lead to an implementa-

tion.

4.3. Formal Model

The reconfigurability (reconfiguration duration and mutu-

ally exclusive reconfiguration port), which affects space and

time, demands for a model that allows comprehensive ex-

ploration. In order to be able to respect the specific needs of

(partially) reconfigurable devices, we extend our initial task

dependence graph G via several steps into a problem graph

GP (VP , EP).

Every initial node of G gets an additional input from its

reconfiguration phase RT. Thus, we can derive an extended

graph consisting of execution and reconfiguration nodes (T

and RT). We call this graph G∗, with V ∗ = VT ∪ VRT . As

this fundamental step is new to the domain of system synthe-

sis, it requires special care in the mapping phase. However,

by adding the reconfiguration phases as integrated vertices

of the task graph, we do not extend the modeling set of the

synthesis and can basically rely on already existing methods.

Furthermore, the specific RT nodes for each task node T im-

plicitly introduce reconfiguration prefetching to the model,

as the RT nodes can be scheduled independently.

As proposed by Blickle et al. [2], we add the communi-

cation vertices and derive the problem graph GP (VP , EP)
from G∗ in order to respect the communication. Figure 2

displays the result. Having explicit nodes for communi-

cation forms the basis for comprehensive synthesis of par-

T1RT1

RT2

RT3

RT4

Slot 1

Slot 2

Slot 3

T1

T2 T3

T4

T2

time

T3

Fig. 3. Left the task dependence graph, right a Gantt chart

of a possible schedule: Conflict as Task 4 was reconfigured

before Task 2 was executed.

tially reconfigurable hardware, as communication require-

ments are now part of the system specification. Thus, we

introduce communication needs of reconfigurable devices to

the design process.

If we directly schedule this problem graph, we might get

into a conflict. As Figure 3 shows, tasks could be reconfig-

ured, i. e., loaded on an FPGAs, without being executed. In

particular, scheduling algorithms dispatching tasks in the or-

der of ASAP (as soon as possible) scheduling would sched-

ule the reconfiguration phases subsequently without respect-

ing whether the corresponding tasks have been executed.

The scenario depicted in Figure 3 must be prevented.

To avoid this conflict, we define intervals during which

the area of a task must be preserver on an FPGA, i. e., the

slot that has just been reconfigured must stay in this con-

figuration until the execution of the corresponding task has

been taken place. We apply so-called life periods as dis-

played in Figure 4. Life periods or intervals are often used

in the domain of register allocation and initially help to re-

duce the amount of registers needed. Such intervals are re-

spected during the scheduling phase and are often solved us-

ing graph coloring, e. g., by the left-edge algorithm or simi-

lar approaches [13, 17, 19].

T1

T2

T3

RT1

RT3

RT2

In
te
rv
a
l

In
te
rv
a
l

C1

C2

C3

C2

In
te
rv
a
l

Fig. 4. Problem graph with intervals/regions.

RT Port

Slot_type

B

Slot_type

A

GP I/OBus

GA

Fig. 5. Exemplary architecture graph with two slots, recon-

figuration port, bus, and I/O.

Note that by attaching life periods, there is no fundamen-

tal change in the formal model or a reduction to a specific

subset necessary. Thus, we can still apply known concepts

from system synthesis. The information of the life periods

can be easily used by the scheduling algorithm to prevent

the conflict described above.

In order to achieve separation of behavior and structure,

as proposed in the Y-chart approach by Gajski and Kuhn

[5], we add a separate graph for the architecture similar to

Blickle et al. [2]. Thus, the second part of our formal model

is this architecture graph GA(VA, EA). The architecture

of our system (run-time execution environment) consist of

the slots, the communication and the reconfiguration port.

Nowadays, FPGAs have one reconfiguration port only that

must be accessed mutually exclusive. The reconfiguration

port usually does not have connections to the other resources

of the FPGA (ICAP and special architecture being the ex-

ception). Figure 5 shows an example.

To finally combine the two graphs, we derive a com-

bination of the problem graph GP and the architecture

graph GA into the specification graph GS = GS(VS , ES)
(cf. [2]). The vertices of the specification graph consists

of the vertices of the problem and the architecture graph

VS = VP ∪VA, while the edges are the edges of the problem

and the architecture graph, as well as mapping edges EM :

ES = EP ∪ EA ∪ EM .

4.4. Mapping

For completing the specification graph, we map nodes of

GP to nodes of GA by mapping edges EM . Therefore, the

three elements of the problem graph must be investigated in

more detail.

The computational vertices VT are assigned to slots, on

which they can be executed. The tasks might fit into dif-

ferent slots, resulting in multiple mapping edges. We attach

the mapping edges with related information when execut-

ing this task in the selected slot. In particular, we annotate

the execution time, which is essential to derive a reasonable

schedule. Furthermore, additional weights like power con-

sumption are possible and can be used to improve the results

of the binding phase.

Similar, the communication nodes are mapped to com-

munication resources. Again, we attach specific characteris-

tics to the edges, like duration of the communication or the

T1

RT1 RT Port

Slot_type_

A

reconfig. time

execution time

Fig. 6. Specification graph with mapping edges of task and

reconfiguration phase to slot and slot + reconfiguration port,

respectively.

load of a bus. This information again constrains the schedul-

ing and binding.

Finally, the reconfiguration vertices VRT must be

mapped to the architecture graph. Basically, a reconfigura-

tion phase can only take place if two constraints are fulfilled:

First, the reconfiguration port must be free; second, the slot

to be reconfigured must be available. A mapping edge must

respect this requirement. We use the concept of hierarchical

edges proposed by Haubelt [7] to denote the need of both

reconfiguration port and slot. Figure 6 shows the concept.

In general, a mapping edge for a reconfiguration phase

is an edge EM that has one vertex of VP as source and at

least two vertices of VA as sink. One of the sink vertices is

always the reconfiguration port. We map the reconfiguration

phases on the basis of the already placed mapping edges,

i. e., considering allocated slots for the associated tasks only.

Thereby, we attach the specific reconfiguration time to the

edges. Depending on the slot we chose, we get the specific

reconfiguration time of the slot based on the area consumed

by this slot. This time will always stay the same, as always

the whole slot has to be reconfigured.

Furthermore, a task might require more than one slot

for execution. We can model this need of more than one

resource by applying the concept of hierarchical graphs in

the specification graph. Figure 7 displays a scenario. Obvi-

ously, the mapping edge of the reconfiguration phase must

be adapted as well, including the addition of the reconfigu-

ration times of the two slots.

T1

RT1

RT Port

Slot_type_B

Slot_type_A

reconfig. time

execution time

Fig. 7. Part of a specification graph with task that requires

two slots for execution.

T2

T4

RT2

RT4

RT Port

Slot_D

Slot_A

C4
FIFO

RT Port

Slot_B

Slot_C
FPGA1

FPGA2

Gigabit

Gigabit

T1

T3

RT1

RT3
C3C2

C1

C5
GA1

GA2

+

further

edges

GP

Fig. 8. Specification graph with three graphs: one problem

graph GP and two architecture graphs. The system consist

of two FPGAs with two individual reconfiguration ports.

Finally, our target system must not be limited to one sin-

gle reconfigurable device. Such architectures with multiple

reconfigurable fabrics—especially in the case of FPGAS—

each usually provide an own reconfiguration port, resulting

in the possibility to perform reconfiguration on different de-

vices in parallel. Such an improvement of the flexibility

of the architecture can result in an increased overall per-

formance of the system. However, architecture graphs for

two or more FPGAs can quickly become complex or even

unmanageable. Blickle et al. [2] propose a concept of hier-

archy concerning the architecture graph. We can apply this

concept in order to abstract the architecture and introduce

simplicity to the specification graph. Figure 8 shows a fic-

tional scenario with two FPGAs. The first architecture graph

GA1 (in the middle of the specification graph of Figure 8)

shows the fine-grain architecture, while the second one GA2

abstracts the architecture on a higher level only consisting

of the two FPGAs. Mapping edges between GA1 and GA2

build the membership of the slots and reconfiguration ports

to the specific FPGAs.

In the particular example of Figure 8, we have displayed

a scenario where two reconfiguration ports—thanks to two

FPGAs—can be of benefit. If we select the emphasized

mapping edges of Figure 8, we can increase the overall re-

sponse time, as the parallel executable task T2 and T3 are

placed on different FPGAs and their reconfiguration phase

can take place simultaneously.

To summarize the mapping, we take into account the het-

erogeneity, the reconfiguration overhead (phase and time),

and the mutual exclusiveness of the reconfiguration port.

Thus, we approach a realistic model for a run-time execu-

tion environment within modern embedded systems. In or-

Result Linux

(PPC)

USB

1st image

Rate

thumbnails

thumbnail

characteristics

Shrink to

thumbnail

size

n>1 image

VGA camera

Rate

Compare

iteratively

Map to

thumbnail

> threshold
< threshold

Update

threshold

Fig. 9. Photomosaic outline. The thumbnails are stored in

memory and accessed by several steps of the algorithm.

der to derive a valid implementation of this model (binding

and scheduling), we may apply well known heuristics like

evolutionary algorithms [18].

5. EXPERIMENT

When such critical new instances as the reconfiguration RT

phases are added to a method, the practicability of the so-

lution exploration must be quantified. We therefore sketch

an example application, which we map to different execu-

tion environments. Based on this specification, we generate

solutions and explore them. Due to complexity reasons, we

rely on fictitious environments, which however base on ex-

periments concerning the feasibility.

The exemplary problem we map on our execution envi-

ronment is an online photomosaic. Photomosaic is a tech-

nique which transforms an input image into a rectangular

grid of thumbnail images preserving the overall appearance.

Our online version takes the picture from an attached

web-cam and transforms this image sequentially into the

rectangular grid of thumbnail images by using the subse-

quent images shot by the web-cam. The overall idea of the

example can be found in Figure 9.

The mapping is simply done by first estimating (e. g., us-

ing algorithmic synthesis) the resource requirements of the

tasks and communication nodes. Then, the mapping edges

can be drawn by also attaching the execution time estimation

of the first step. Next, we have to derive a Pareto-optimal

binding and scheduling out of this specification graph based

on the mapping and the annotated weights of the edges. This

step is done by using evolutionary algorithms, similar to [2].

The individuals of the algorithm are randomly generated so-

lutions that are generated by referring to some mapping con-

ditions as explained further on.

Rate 1st

thumbnail

shrink

RT1

K2

K1

C0

RT Port

Slot 1

Slot 2

FIFO2

Slot 3

VGA

out

Camera

in

FIFO1

RAM

Rate 2nd

thumbnail

C1

RT5

RT2 RT3

rate

K3

shrinkK4

C2

RT6

RT4

rate

K5

...

...

...

...

GP

GA

Fig. 10. Specification graph GS of the photomosaic prob-

lem. The problem graph GP is derived from Figure 9, while

the architecture graph GA is an exemplary execution envi-

ronment. Edge weights as well as additional vertices are

omitted for legibility reasons.

We use a genetic algorithm (GA) to explore the solu-

tions. However, randomly generated individuals of the GA

would also resemble infeasible solutions. In order to find

only feasible solutions, we use a simple method to define

the input alphabet. We define the mapping by using an adja-

cency matrix, which holds the information on which vertex

of the problem graph can be connected to which resource

of the architecture graph. Furthermore, every entry of the

matrix holds which other resources must be occupied addi-

tionally. Thus, when selecting a resource for this vertex of

the problem graph, we can look up this list and derive a valid

binding for this vertex.

Furthermore, the scheduling must be realized. The input

for the scheduling is twofold. First, the binding as generated

in the first step. Second, we rely on a adjacency matrix of

the architecture graph GA. The scheduling is done by a list

scheduler. This scheduler takes vertex vi out of the list. If vi

has a direct connection to a predecessor vj that has already

been scheduled, we can only schedule vi correctly, if the en-

try ai,j for vi and vj of GA is set (1). If not, we degrade

the quality of this individual by a specific factor and keep on

scheduling with this error. Additionally, during scheduling,

we rely on the information of the life periods that was spec-

ified during the problem graph generation. The life periods

ensure the execution of a task before reconfiguring the asso-

ciated slot(s) of this task. Depending on the current condi-

tion of the reconfigurable device, the scheduler might have

to delay the RT phase of a task ready to schedule. Thus,

Rate 1st

thumbnail

RT1

C0

Rate 2nd

thumbnail

K1

RT2

C1

shrink

RT port

Slot 1
RT1

Camera in

Slot 3
RT2

RT3

RT3

FIFO 1

...

...

...

...

...

Fig. 11. Exemplary Gantt chart of the online photomosaic

using the specification graph of Figure 10.

both the conditions of the slots and the availability of the

tasks are evaluated by the scheduling algorithm to derive a

feasible schedule. As the RT phases are treated as ordinary

nodes, the scheduler intrinsic includes the reconfiguration

including the latency.

We derive fundamentals (slot placement, size of the bit

streams, reconfiguration time, intermodule connection) of

our environment from the Xilinx EarlyAccess reconfigura-

tion design flow. This flow allows to place slots on nearly

arbitrary positions having flexible heights. Furthermore, the

implemented bus macros origin from the flow [14].

If we map this problem onto an architecture, Figure 10

shows the specification graph of the problem. We have ex-

tended the graph by our notations introduced in this work.

In order to distinguish the different communication needs,

we denote external communication nodes by C and internal

ones by K. Due to complexity reasons, we only display a

selected number of mapping edges. Similarly, the original

problem graph is much larger. Finally, a valid implemen-

tation can be derived. Figure 11 shows the corresponding

Gantt-chart of the online photomosaic.

6. CONCLUSION

In this paper, we have presented the integration of partially

reconfigurable resources (FPGAs) into system synthesis, re-

specting the specific requirements of the reconfigurable de-

vices, such as reconfiguration port, intermodule communi-

cation, etc. Therefore, we combine and expand two promis-

ing approaches that have been published recently, which

allows us to easily include partial reconfiguration and the

corresponding reconfiguration times to our system. In gen-

eral, the proposed approach targets the mapping of problems

onto run-time execution environments. Relying on already

proven concept of system modeling, known solutions for

system implementation or exploration can be applied. We

extend the known methods in order to handle specific re-

quirements of reconfigurable systems, in particular hetero-

geneity and reconfiguration time. Furthermore, our work

can handle multiple FPGAs having multiple reconfiguration

ports. Such systems bear more parallelism. The final im-

plementation is derived by a genetic algorithm referring to a

problem specific alphabet.

With our work, we hope to contribute to open reconfig-

urable systems as stand-alone systems, or as parts of bigger

systems, to a broader number of engineers or system de-

signers. Therefore, we abstract from the difficulties of re-

configuration by providing a transparent way to explore the

resources of reconfigurable devices. A drawback of the exe-

cution environments might be the fixed size of the tiles that

will remain the same during the whole device life-time.

In the future, we will focus more detailed on the inter-

action of the various components of heterogeneous systems.

Additionally, our methodology has to be verified concerning

cyclic graphs. Cyclic behavior allows the reuse of resources,

which can reduce the need of reconfiguration by means of

caching.

7. REFERENCES

[1] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Physically-aware

HW-SW partitioning for reconfigurable architectures with

partial dynamic reconfiguration. In DAC ’05: Proceedings

of the 42nd annual conference on Design automation, pages

335–340, San Diego, California, USA, 2005. ACM Press.

[2] T. Blickle, J. Teich, and L. Thiele. System-level synthesis

using Evolutionary Algorithms. J. Design Automation for

Embedded Systems, 3(1):23–58, January 1998.

[3] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth,

J. Teich, and J. van der Veen. The Erlangen Slot Machine:

A Highly Flexible FPGA-Based Reconfigurable Platform. In

Proceedings of the 13th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, pages 319–

320, 2005.

[4] W. F. Fu and K. Compton. An execution environment for re-

configurable computing (abstract only). In 13th Annual IEEE

Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM’05), pages 149–158. IEEE, 2005.

[5] D. D. Gajski and R. H. Kuhn. Guest Editor’s Introduction:

New VLSI Tools. IEEE Computer, Dec. 1983.

[6] J. Harkin, T. M. McGinnity, and L. P. Maguire. Modeling

and optimizing run-time reconfiguration using evolutionary

computation. ACM Transactions on Embedded Computing

Systems, 3(4):661–685, Nov. 2004.

[7] C. Haubelt. Automatic Model-Based Design Space Explo-

ration for Embedded Systems – A System Level Approach.

PhD thesis, University of Erlangen-Nuremberg, Germany,

July 2005.

[8] C. Haubelt, S. Otto, C. Grabbe, and J. Teich. A System-Level

Approach to Hardware Reconfigurable Systems. In Proceed-

ings of Asia and South Pacific Design Automation Confer-

ence, pages 298–301, Shanghai, China, Jan. 2005. IEEE.

[9] C. Haubelt, J. Teich, K. Richter, and R. Ernst. Model-

lierung rekonfigurierbarer Systemarchitekturen. In J. Ruf, ed-

itor, GIITGGMM-Workshop 2002 - Methoden und Beschrei-

bungssprachen zur Modellierung und Verifikation von Schal-

tungen und Systemen, pages 163–171, Tübingen, Germany,

Feb. 2002. Shaker Verlag.

[10] B. Jeong, S. Yoo, S. Lee, and K. Choi. Hardware-software

cosynthesis for run-time incrementally reconfigurable FP-

GAs. In ASP-DAC ’00: Proceedings of the 2000 confer-

ence on Asia South Pacific design automation, pages 169–

174, New York, NY, USA, 2000. ACM Press.

[11] H. Kalte, M. Porrmann, and U. Rückert. A Prototyping Plat-

form for Dynamically Reconfigurable System on Chip De-

signs. In Proceedings of the IEEE Workshop Heterogeneous

reconfigurable Systems on Chip (SoC), Hamburg, Germany,

2002.

[12] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and

A. Sangiovanni-Vincentelli. System level design: Orthog-

onalization of concerns and platform-based design. In IEEE

Trans on Computer-Aided Design, 19(12):1523–1543, 2000.

[13] F. J. Kurdahi and A. C. Parker. Real: a program for reg-

ister allocation. In DAC ’87: Proceedings of the 24th

ACM/IEEE conference on Design automation, pages 210–

215, New York, NY, USA, 1987. ACM Press.

[14] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridge-

ford. Enhanced architectures, design methodologies and

CAD tools for dynamic reconfiguration on XILINX FPGAS.

In Proceedings of the FPL 2006, Madrid, Spain, 2006.

[15] B. Mei, P. Schaumont, and S. Vernalde. A Hardware-

Software Partitioning and Scheduling Algorithm for Dynam-

ically Reconfigurable Embedded Systems. In ProRISC work-

shop on Circuits, Systems and Signal Processing, November

2000.

[16] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Ve-

muri. An Integrated Partitioning and Synthesis System for

Dynamically Reconfigurable Multi-FPGA Architectures. In

IPPS/SPDP Workshops, pages 31–36, 1998.

[17] P. G. Paulin, J. P. Knight, and E. F. Gircycy. HAL: A Mulit-

Paradigm Apporach to Automatic Data Path Synthesis. In

Proceedings of the 23rd ACM/IEEE Design Automation Con-

ference, pages 263–270, Piscataway, NJ, USA, 1986. IEEE

Press.

[18] J. Teich. Digitale Hardware/Software Systeme. Springer,

Berlin, 1997.

[19] R. Vemuri, S. Katkoori, M. Kaul, and J. Roy. An efficient

register optimization algorithm for high-level synthesis from

hierarchical behavioral specifications. ACM Trans. Des. Au-

tom. Electron. Syst., 7(1):189–216, 2002.

[20] H. Walder and M. Platzner. A Runtime Environment for Re-

configurable Hardware Operating Systems. In Proceedings

of the 14th International Conference on Field Programmable

Logic and Application (FPL’04), pages 831–835. Springer,

August 2004.

