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Abstract

This paper is about the implementation of a MIMO V-
BLAST (Vertical Bell Laboratories Layered Space-Time)
square root decoder in a FPGA using dynamic partial re-
configuration. The decoder architecture is based on four
CORDIC (COordinate Rotation DIgital Computer) Units.
Among these CORDIC units, three are used in rotation
mode and the fourth one is used in vectoring mode. The
design implementation aims power saving and area effi-
ciency allowing dynamically changing the interconnections
between the fixed modules in the reconfigurable modules.
This MIMO square root design method shows the configu-
ration time improvement, area efficiency and flexibility of
the decoder by using the dynamic partial reconfiguration
method.

1 Introduction

Dynamically reconfigurable FPGAs offer new design
space with a variety of benefits: flexibility and reusability
at run time. The dynamic reconfiguration is closely related
to partial reconfigurability of FPGA. Indeed, the partial re-
configurability allows to selectively change segments of the
FPGA functionality without suspending operations of the
remaining parts. There are several benefits of partial re-
configuration. It reduces the configuration time and saves
memory as the partial reconfiguration files (bitstreams) are
smaller than full ones.

Reconfigurable computing [3] and [6] has been pro-
posed in a large range of signal processing applications in
order to improve high performance, flexibility and adapt-
ability. The development of wireless communication sys-
tems has indicated the need to dynamically adapt systems
architectures at the hardware level, as in Software Radio

system [8].
One of the most promising technologies to enhance the

wireless communications performances is Multiple-Input
Multiple-Output (MIMO). MIMO is an attractive technol-
ogy for future wireless systems because of their huge band-
width capacity. It is well known that an extraordinary spec-
tral efficiency can be achieved in MIMO system [5]. In var-
ious MIMO detection algorithms, square root decoder is an
interesting tradeoff to obtain a high performance with rea-
sonable complexity.

In our previous work [9], we have implemented a re-
configurable architecture MIMO decoder with various num-
ber of CORDIC. It adapts to different number of antennas,
different signal constellations and different throughputs for
wireless communications.

We introduce in this paper the dynamic reconfiguration
into the MIMO V-BLAST decoder architecture. We espe-
cially detail our design experiments to integrate the control
of configuration into the processing algorithm during the
MIMO decoding. Dynamic partial reconfiguration is used
to change the interconnection between the processing mod-
ules.

The rest of the paper is organized as follows. The square
root algorithm and block diagram are briefly described in
section 2, details further in [9]. The reconfigurable archi-
tecture for square root decoder is detailed in section 3. Sec-
tion 4 deals with the configuration management. Section 5
presents the design methodology. The experimental results
are provided in section 6. The conclusions and a look at
future research will be stated in section 7.

2 Decoding algorithm

The V-BLAST square root algorithm is proposed in
[4], which successfully avoids the repeated pseudo inverse
and matrix inverse computations by using unitary trans-
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formations. The computational cost is reduced effectively
from O(M4) to O(M3) without degradation in BER perfor-
mance, where M is the number of transmit antennas. The
whole algorithm is described in the following steps:

A) Compute P 1/2 and Qa : for i= 1, 2,. . . ,N:

⎡
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In this relation, P 1/2
0 = βI , Q0= 0N×M , ei is the i-th unit

vector of dimension N, Θi is any unitary transformation
that block lower triangularizes the pre-array and × are the
results ignored. After N steps, we obtain: P 1/2= P

1/2
N and

Qα= QN .

B) Determine the optimal ordering and nulling vectors:
for i=M, M-1,. . . ,1:

B1)Find the minimum length row of P 1/2 and permute
it to be the last (Mth) row. Permute s accordingly.

B2) Find a unitary Σ to block upper triangularize P 1/2:

Pi
1/2Σi =

[
Pi−1

1/2 ×i−1×1

0 pi

]
(2)

B3)Update Qa to QaΣi, the nulling vector for the i-th
signal is given by

wi = piq∗
α,i (3)

where q∗α,i is the i-th column of Qa
∗.

B4)Compute yi= wir, and then the i-th transmitted signal
in s is detected as the closest point in the signal constella-
tion.

B5) Cancel the interferences of the detected signal in the
remaining received signal s:

r = r − si(H )i (4)

B6) Go back to the step B1, but now with P
1/2
i−1 and

Qα,i−1 (the first i-1 columns of Qa).

The Block diagram of the MIMO square root decoder
is illustrated in figure 2. It consists of 6 processing mod-
ules. The values of matrix channel H and messages r
are assumed to have been pre-calculated. The three first
modules(M1,M2,M3) use unitary transformations to com-
pute P 1/2(Step A), Qa(Step A), pi(Step B2) and q∗a,i(Step
B3) by employing various numbers of CORDIC. The fol-
lowing module(M4) calculates the optimal ordering and
nulling vectors wi. Module M5 compute the transmitted
symbol vector. The last module (M6) performs interfer-
ences cancellation.

The three unitary transformation modules have a simi-
lar architecture. In these modules, unitary transformations
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Figure 1. Block diagram of square root de-
coder

are used instead of the conventional QR triangular array
which employs a too high number of processors [6]. Unitary
transformations are performed by a sequence of numerically
stable complex Givens rotations which are suitable for im-
plementation because the hardware elementary is based on
CORDIC in which only shifters and adders are involved [1].
It reduces the computational complexity significantly.

In the module M1, the elements of equation (1) are
passed by column to operator CORDIC which performs
Givens rotations. Then the products are stored in the buffer
waiting to be passed to operator CORDIC again. This com-
pletes an iteration. After N iterations, the module output
becomes P 1/2 and Qa. The modules M2, M3 perform the
same calculation but with the elements of equation (2) and
(3). Because there is no room here to explain the internal de-
tails of CORDIC, the reader can see the reference [1]. The
last three modules (M4, M5, M6) are based on PE (Proces-
sor Elementary). Every PE unit consists of a multiplier-
accumulation unit, a adder-substractor and a buffer. The
module can improve the throughput by paralleling several
modules.

3 Dynamically reconfigurable architecture

3.1 Dynamic Reconfiguration

The dynamic reconfiguration is used to share a group of
configurable elements between several processing contexts.
This is a resource multiplexing. We can distinguish two
types of dynamic reconfiguration which are illustrated in
figure 2.

The figure 2.1 shows the case of the dynamic reconfig-
uration with data dependency between both functions T2 ,
T3 that share the same configurable resources. In this case,
it is necessary to ensure the data temporary storage. The
figure 2.2 shows the use of dynamic reconfiguration with-
out data dependency between two functions. The second
case could occur in applications when the transmission en-
vironment changes [7], (for example, signal-to-noise ratio,
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Figure 2. Different types of dynamic reconfig-
uration

available power, etc.), or when a more efficient function or
a less power consuming one is required.

The tasks scheduling of both type of dynamic reconfig-
uration are illustrated in figure 3. These simple examples
show that in the first case, figure 3.1, the reconfiguration
task should be controlled by the processing to avoid data
loss. In the first case, T2 should wait for the end of process-
ing of T1 and the reconfiguration. Whereas in the second
case, the dynamic reconfiguration could be performed at
any time except when the reconfigurable block is under data
processing.

Figure 3. Temporal representation of dy-
namic reconfiguration

The first case occurs during the processing when
processing blocks of a large function are multiplexed. This
could be useful to reduce the area of the function. We fo-
cus in this paper on this first type of dynamic reconfigura-
tion. Particularly, we tackle this issue to reconfigure point-
to-point interconnections, to change the datapath between
processing elements of a MIMO decoder.

In the dynamic reconfigurable architecture, shown in fig-
ure 4, the configuration manager is an embedded processor
(like Xilinx MicroBlaze) and the configuration interface is

Figure 4. Dynamic reconfigurable architec-
ture

the Internal Configuration Access Port (ICAP) of the Xil-
inx Virtex-II FPGA. The logic resources are divided into
two parts: the fixed area and the dynamically reconfigurable
area. Each of these two areas can contain several modules.
For example, there are two modules FM1 and FM2 in the
fixed area and one module RM in the reconfigurable area.
The processing elements T1 and T4 will be performed in
two fixed modules FM1 and FM2. The context of recon-
figurable module RM can be changed between T2 and T3.

Figure 5. Datapath of first type of dynamic re-
configuration

The datapath of first type of dynamic reconfiguration is
shown in figure 5. There is data dependency between two
configurations T2 and T3. The processing time depends on
the reconfiguration time of two context (T2 and T3) of re-
configurable module RM . On the contrary, the processing
is not interrupted by the reconfiguration for every data in
the second type (figure 2.2). In this paper, the first type of
dynamic reconfiguration is used in the MIMO decoder and
the reconfiguration is executed as one part of the decoding
process. The partial reconfiguration allows to reduce the re-
configuration time and saves the storage memory as the size
of partial reconfiguration files are smaller than the full ones.

3.2 Square Root Decoder Overview

In our previous work, we have implemented an reconfig-
urable architecture MIMO decoder with various numbers
of CORDIC [9]. It adapts to a different number of antennas
and different throughputs for wireless communication.
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Figure 6. Calculation of P
1/2
1 and Qa in the

module M1 in total parallel structure

The calculation of P
1/2
1 and Qa in module M1 is shown

in figure 6. This example illustrates the design of the com-
putatitional architecture of M1. This calculation requires
29 CORDIC in rotation mode and its sequence is shown
in figure 6. They use different angles (θ1, θ2, φ1, φ2, θ3,
θ4, φ3, φ4) that are pre-calculated by a CORDIC in vector-
ing mode (not shown in figure 6). This total parallel struc-
ture may lead to a waste of computational capabilities, since
the channel data changes slower than the received symbol
data. Therefore the iterative use of several CORDIC oper-
ators can optimize the resources. So we have implemented
a decoder with a iterative structure that uses three parallel
CORDIC operators to replace 29 CORDIC operators in the
total parallel structure.

Figure 7. Temporal representaion of calcula-
tion of P

1/2
1 and Qa in the module M1

In the iterative architecture of module M1, we have used
only 3 CORDIC operators in parallel (see figures 7 and 8).
In the first cycle, we use 2 CORDIC operators to perform
2 Givens rotations with angles θ1 and θ2. Then in the next
cycle, 3 rotations with the different angles (shown in figure
8) are performed by 3 CORDIC operators. The operators
are the same as in the first cycle and are re-used in the sec-
ond cycle, and so on for the following cycles. After each
iteration, the producted datas are used in a different way.
So the interconnections between operations should change
every cycle. The whole of the processing is performed by 3
CORDIC operators in 10 cycles.

Figure 8. Calculation of P
1/2
1 and Qa in the

module M1 in iterative structure

All iterations of CORDIC algorithm are performed in
parallel, using a 20 steps pipelined structure. The input data
of the CORDIC periodically changes and static implemen-
tation of the interconnections frameworks uses a great num-
ber of multiplexers to switch from one interconnection con-
text to the next one. They take a lot of surface of FPGA and
lead to waste of power consumption. Nevertheless, these
multiplexers remain in the same state during 20 steps of
CORDIC operations. The only difference between every 20
steps are the interconnections. This fact lets inspire the im-
plementation on reconfigurable hardware, as shown in fig-
ure 9.

Our approach splits the processing into a static hard-
ware skeleton which is composed of decoding processing
elements and a reconfigurable part that evolves at run-time
depending on the step of processing to perform. In this cal-
culation the processing elements, three CORDIC operators,
are implemented in the fixed part and the interconnections
between processing elements are implemented in the recon-
figurable module (shown in figure 9). Thus the multiplexers
are changed by certain number of reconfigurations which
are determined by decoding processing. Every reconfigura-
tion represents one state of multiplexer. It is suitable that
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Figure 9. Calculation of P
1/2
1 and Qa with re-

configuration

the reconfigurations are used in the decoder, because the
main processing is preformed in the CORDIC operator and
only the interconnnetions between them are changed at cer-
tain regulary moment. Moreover, it is possible to reduce
power consumption because in the reconfigurable module
only wire resources are used.

3.3 Interconnection Multiplexing

Concerning reconfigurable multiplexer hardware, some
researches have been focused on reconfiguration of the I-
Mux (Input Multiplexers) or the LUT (look-up table). For
example, a reconfigurable crossbar switch by reconfiguring
I-Mux is presented in [11]. The switch is implemented on
an FPGA using partial configuration to modify routing re-
sources during operation. The reconfigurable 3×1 LUT,
shown in figure 10.2, in each logic cell of the FPGA is used
to perform a multiplexer in [4].

Both of these approaches use RTL description level. We
use here a system level description to make the reconfig-
urable interconnection switch, showing in figure 10.3. The
interconnections of processing elements are defined as a
module which is implemented in the reconfigurable part.
The input and output of interconnection module is con-

Figure 10. Different multiplexer. static ver-
sion (1), LUT-based dynamic version (2) ver-
sus module level dynamic version (3)

nected to the output and input of fixed part processing el-
ements. The granularity of reconfiguration is taken up from
the LUT and I-Mux level to module level.

3.4 Dynamically Reconfigurable Decoder

Figure 11. Placement of fixed modules and
reconfigurable module (interconnections and
registers)

Our architecture contains two parts (see figure 11). The
first one is a fixed part that contains four CORDIC units (3
CRU: CORDIC Rotation Unit and 1 CVU: CORDIC Vec-
toring Unit), a multiplier and a adder or substractor. In the
CORDIC unit, our design makes use of an iterative bit-
parallel CORDIC architecture. The second one is the re-
configurable one, allowing the implementation of intercon-
nections between fixed part modules. In the reconfigurable
part, only routing and registers are implemented. The same
register is placed and routed in the same place of FPGA
in order to retain the information stored in the register af-
ter a reconfiguration. It makes possible to share internal
data between two configurations. The reconfigurable part is
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connected to the modules of fixed part through LUT-based
Bus Macro provided by Xilinx to ensure the right place and
routing crossing over partial reconfigurable area.

4 Configuration Management

The first stage of the FPGA configurations is its ini-
tialization. The full bitstreams and the partial bitstreams
are stored in the Host memory (see in figure 12). The
initial configuration, a full bitstream, is downloaded by
the Host controller. This FPGA configuration contains
the MicroBlaze and the MIMO decoder (fixed part and
initial context of the reconfigurable part), which is shown
in figure 12. Next, the reconfigurations are only partial
and are performed during the processing to change the
interconnections between the fixed processing elements.
Even if a reset occurs, we call it a soft reset and it implies
that a partial bitstream composed of the basic CORDIC
units, multiplier is automatically loaded by reconfiguration
controller into the FPGA.

Figure 12. System architecture

Reconfiguration during decoding processing: During
the partial reconfiguration process all the modules can con-
tinue working except for the reconfigured module. Thus in
our design, the reconfiguration tasks are considered as one
part of the decoding process. The reconfiguration sequence
is predefined by the decoding proceeding (as shown in fig-
ure 13).

The reconfiguration tasks are inserted in the decoding
processing when a change of interconnection is required.
Each reconfiguration, during decoding, is requested by the
fixed part of the decoding. The fixed part sends the re-
quest for reconfiguration by the signal reconf req (figure
12) to configuration controller. After the negotiation with
the Host, the MicroBlaze retrieves the partial bitstream from

Figure 13. Partial configurations Sequence

the Host memory. Then the MicroBlaze downloads the bit-
stream through the ICAP interface [2]. ICAP is a primitive
which allows the Virtex-II FPGAs to access to its configu-
ration memory.

The fixed module should wait for the reconfiguration
acknowlege signal reconf ack sent from the configuration
Controller. This signal confirms the end of configuration
and enables the data availability for the next step of decod-
ing proceeding. The program run by the reconfiguration
controller for the run-time reconfiguration management is
shown in figure 14.

Figure 14. Partial reconfiguration bitstream
manager structure
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5 Design Methodology

The partial bitstreams for the IP modules are generated
following the methodology developed by Xilinx. The de-
sign flow is based on Early Access Partial Reconfiguration
(EAPR) [10] with the use of the new design tool, PlanA-
head. It provides a hierarchical floorplanning, block-based,
modular, and incremental design methodology. It allows
changing only part of the design and leaving placement of
the remaining intact. The PlanAhead floorplanner allows to
handle LUT-based Bus Macro and placed during the floor-
planning phase. All of these shorten design iterations, even
while making frequent changes.

PlanAhead does not require the user to perform all the
operations in ISE. The designer only needs to synthesize
top level and module in ISE. All other operations (floorplan-
ning, P&R, bitstreams generation) are directly performed in
PlanAhead which launches automatically ISE tools.

Figure 15. PAR map of square root decoder

Table 1. Synthesis results of MIMO square
root decoder

Target FPGA Reconf
Xilinx Virtex slices Flip Flops time

Without Reconf 4505 (40%) 5927 (27%) 16ms
Fixed part 2857 (26%) 4766 (22%) 12ms
Reconf part 1 85 148 0.40ms
Reconf part 2 85 148 0.40ms

6 Experimental results

The MIMO decoder for 2 antennas system with QPSK
signal constellation is designed in VHDL, simulated with
Modelsim. The decoder is implemented and tested on a
Virtex-II xc2v-2000 from Xilinx. Figure 15 shows a post-
PAR (placement and routing) diagram of dynamically re-
configurable decoder. The reconfigurable modules are de-
signed in whole column rectangular to minimize the size
of Bitstream, as the reconfiguration on Virtex-II is done by
entire column of CLB.

Table 1 shows some synthesis results of fixed part and re-
configurable part. In this table, the transmission time from
Host to FPGA is not counted. The implemented MIMO de-
coder uses the dynamic reconfiguration to change the inter-
connections between the processing elements. It can save
about 36% slice compared to the multiplexer based itera-
tive decoder. In table I, the reconfiguration times are calcu-
lated by the size of Bitstreams and ICAP frequency. In this
design, the time of the application was not precisely pre-
calculated in order to ensure that the timing requirements
are met with partial reconfiguration. This is because the
Host-to-device transmission time is much longer than the
decoder processing.

7 Conclusion and Future work

In this paper, we present a reconfigurable MIMO square
root decoder design using dynamic partial reconfiguration,
which has area efficiency, flexibility and configuration time
advantage. The proposed method produces a reduction in
hardware cost and allows performing partial reconfigura-
tion, where only the interconnection of the modules are re-
configured. It is attractive for the future wireless applica-
tions, supporting different antenna sizes, different modula-
tion and throughputs.

Currently the performance of the reconfigurable decoder
is reduced due to the reconfiguration time and Host-to-
device transmission time. However, these are mainly tech-
nological issues. This paper proves the management of re-
configurable decoder during data processing. The time of
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reconfiguration is limited by the throughput of the serial
UART interface. This time could be reduced by implement-
ing in the FPGA a mechanism of direct access (DMA trans-
fert) to transport the partial reconfiguration bitstreams from
an internal or external memory to ICAP primitive. More-
over, the performance of reconfigurable decoder will be im-
proved by using Xilinx FPGA Virtex-4. This is the next step
of our design work. The reconfiguration of Virtex-4 is in-
deed more efficient than the Virtex-II (The Bitstream could
be smaller due to a new structure of the Virtex-4 configura-
tion memory based on block of configuration frames rather
than whole column frames of the Virtex-II). The reconfigu-
ration time can be speeded-up, as the bandwidth of Virtex-4
ICAP is also 8 times greater than the ICAP bandwidth of
Virtex-II.
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