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ABSTRACT 

Hardware accelerators are increasingly used to extend the 

computational capabilities of baseline scalar processors to 

meet the growing performance and power requirements of 
embedded applications. The challenge to the designer is 

the extensive human effort required to identify the 

appropriate kernels to be mapped to gates, and to 

implement a network of accelerators to execute the 

kernels. In this paper, we present a methodology to 

automate the selection of streaming kernels in a 

reconfigurable platform based on the characteristics of the 

application. The methodology is based on a flow graph 

that describes the streaming computations and 

communications. The flow graph is used to efficiently 

identify the most profitable subset of streaming kernels 
that optimize performance without exceeding the available 

area of the reconfigurable fabric.  

1. INTRODUCTION 

The levels of integration of modern FPGAs have advanced 

to the point where complex SoCs with processors, 

accelerator IP, peripherals, and system software can be 

built and deployed very fast. Tool vendors have offered a 

plethora of predefined IP cores for frequently used kernels 
in multimedia, communications, networking, etc. What is 

missing is a methodology for an application developer to 

extract computationally complex kernels from the 

application and map them to gates in an automated way. 

The availability of a tool flow that abstracts out the 

hardware details of a module or a set of modules and 

presents a familiar software-only programming model will 

be crucial for the acceptance of FPGAs from a large pool 

of software engineers and algorithm developers. 

Central to the design of such a tool is the automated 

selection of an optimal subset of kernels under area 
constraints. Reconfigurable logic is customized post-

fabrication, and has only finite number of logic cells to 

implement an application. It is often the case that the 

hardware designers have to iterate multiple times and 

perform manual software hardware partition of an 

application before a successful generation of the FPGA 

bitstream. This paper describes a methodology for  

automatic selection of kernels in a streaming application 

and their mapping into an network of accelerators. The 

selection is accomplished using intelligent analysis of the 

computational complexity of the kernels and the flow of the 

streaming data between the kernels. Kernels are selected to 
be mapped in gates based not only on their execution time, 

but also on their data communication profile, and their 

inherent parallelism and speed-up potential. The most 

important aspects of the selection process is the efficient 

representation of the streaming domain and the exploration 

of the design space without artificially limiting the potential 

solutions.  

Our methodology is using a holistic approach by considering 

the performance of the whole streaming application. Similar 

work has focused recently on expanding the processor ISA 

by identifying application hotspots [1][2]. The main 
contributions of the papers are the following: first, we 

describe how a streaming application is represented using an 

annotated stream flow graph (SFG) and we outline the 

metrics used for the annotation. Second, we detail the 

algorithms used to select a near optimal set of kernels to be 

mapped into gates based on the annotated SFG. Although the 

focus of the paper are FPGAs, the techniques described can 

be naturally extended for ASICs.  

The rest of the paper is organized as follows: Section 2 gives 

background information on the streaming programming 

paradigm, explains the structure and attributes of the SFG, 

and describes the algorithms used to select the kernels to be 
mapped in gates under area constraints. Section 3 presents 

results for a set of streaming applications, and section 4 

concludes the paper.  

2. STREAMING KERNEL SELECTION  

2.1. Streaming programming model 

Programs that follow the streaming paradigm are expressed 

as an interconnect of filters that communicate using streams. 

The streaming programming model separates 

communication from computation, and favors data intensive 

applications with a regular memory access patterns [3]. 

Properties of streaming model of computation include [4]:  

• Computation kernels are independent and self-

contained 

Computation kernels are localized such that there are no data 

dependencies between other kernels. A programmer can 
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annotate portions of a program that exhibit this behavior 

for mapping onto a stream processor or accelerator.  

• Computation groups are relatively static 

The processing performed in each computation group is 

regular or repetitive, which often come in the form of a 

loop structure. There are opportunities for compiler 
optimization to organize the computation as well as the 

regular access patterns to memory. 

• Explicit definition of communication 

Computation kernels produce output streams from one or 

more input streams. The stream and other scalar values 

which hold persistent application state are identified 

explicitly as variables in a communication stream or signal 

between kernels.  

• Limited lifetime of the stream data 

There is a small amount of reuse for each stream element. 

Each stream is usually consumed by one or more kernels, 
which perform little processing on each stream. 

In this work, the location and shape of streams in the 

memory is defined using stream descriptors [5]. The tuple

(Type, Start_Address, Stride, Span, Skip, Size) can 

describe a stream with elements of Type stored as a 2D 

array starting at location Start_Address, so that: 

• Stride is the spacing, in number of elements, between 

two consecutive stream elements. 

• Span is the number of elements that are gathered 

before applying the skip offset  

• Skip is the offset is applied between groups of span 
elements, after the stride has been applied  

• Size is the number of elements in the stream  

Multidimensional and even non-rectangular stream shapes 

can be described by extending the tuple definition of the 

streams. An example of 2D stream is shown in Figure 1. 

2.2. Method Overview 

The objective of an automated method for streaming 

kernel selection is to be used as part of a high level tool 
that drives the system level architecture of the network of 

accelerators. The algorithm for kernel selection is shown 

in Figure 2. 

The application is expressed using explicit streaming 

constructs that identify the computational kernels and the 

streaming channels used to transfer data. We are using a 

programming model, that expresses streaming kernels 

using Data Flow Graphs (DFGs), and streams using stream 

descriptors [6]. The programmer or a high level compiler 

analyze the program and identify critical computational 

kernels in the code that will be executed by a streaming 
accelerator. The kernels are translated to a machine 

independent DFG, in which all the data dependencies are 

explicitly stated in order to facilitate parallel execution.  

System level constraints such as maximum available area 

in number of CLBs or equivalent gates, and available 

memory and bus bandwidth are given as input to constrain 

the problem. Finally, profiling data of the execution time of 

each kernel, and its bandwidth can be optionally used if 

available. Due to the static and regular nature of computation 

and communication in the streaming domain, prior runs of 

the applications may be unnecessary for some applications. 

The first step of the kernel selection is to build the SFG data 

structure, based on the streaming data flow and the available 

hardware resources that participate in the application. Then, 

the nodes and edges of the SFG are annotated with metrics 

that summarize the execution profile of the application, and 

form the basis for the solution space exploration in the next 
step. In this work, we describe two strategies to select 

kernels. The first strategy is to iteratively select streaming 

kernels based simply on their annotation in the SFG. The 

second strategy adapts to the current selections that have 

already been made and continuously changes the annotation 

of the unselected kernels to better capture the dynamic nature 

of the selection process. For example, the second strategy 

favor neighboring kernel nodes of already selected kernels  

in order to improve the data locality of the communication 

and avoid costly transfer to the main memory.  

A list of kernels sorted with respect to their selection order is 
produced at the end. One of the strength of the method is that 

no assumptions is made on the number and type of 

accelerators used for the low level implementation. For 

instance, all the selected kernels of the application can be 

mapped into a single accelerator, or each kernel to a 
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dedicated accelerator, or any hybrid implementation 

between these two extremes.  

2.3. Annotated stream flow graph (SFG) 

The stream flow graph of an application program Pin a 

system S is a directed graph G(P,S) =(V,E) in which: 

• a vertex Vu ∈ can be one of the following types: 

kernel node that expresses streaming 

computation, buffer node that expresses 

temporary buffers, main memory node that 

expresses off-chip main memory, and peripheral

node that expresses peripherals that source or 

sink streams (e.g. image sensors or LCD 

displays).  

• an edge Evue ∈= ),( connects two nodes if there 

is a stream produced by u and consumed by v.

The SFG depends on the application and the 

architecture of the system. The application determines the 

structure of the SFG, while the system determines the 

type of nodes that are available and how they can be used.  

The SFG expresses static, as opposed to dynamic, 

stream flow. There is an edge between two nodes u and v

if there is a stream flow between them, and also a thread 

of control in the code in which first u and then v is 

executed (or accessed), even if that thread is not executed 

in the dynamic program. For instance, in case of a 

conditional if-then-else or case statement, there will be 

edges between all potential paths between kernels.  

The SFG is built as a preprocessing step during 

compilation time. If the programmer or an optimizing 

compiler uses loop tiling to partition the kernel execution 

across data tiles and to place the communicating streams 

in tile buffers, the SFG preprocessor instantiates buffer 

nodes. Otherwise, it instantiates main memory nodes. The 

preprocessing step of Figure 2 can be used after a source-

level optimizing compiler that performs tiling but it does 

not perform any source code optimizations by itself.  

Figure 3 shows the SFG for a tiled implementation of 

an image processing chain used for processing Bayer 

color data produced by an image sensor. Tiled frame data 

are processed by computation kernels one tile at a time. If 

the programmer did not use tiling, the SFG would contain 

main memory nodes in between the kernels.  

The annotation of SFG nodes is used to capture 

dynamic execution activity, when the application is driven 

by a set of input data. Each kernel node Vu ∈  is assigned 

a value using the guide function )(uf , and a cost )(uc .

The purpose of the SFG annotation is to intelligently rank 

the kernel nodes so that the best candidates are used for 

hardware implementation. The guide function is a 

weighted sum of three metrics that are used to grade the 

computational complexity, the bandwidth, and the potential 

for parallelism of the kernel: 

)(*))()((*)(*)( 321 upwutbwubwwunwuf ouin +++=
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The metrics are determined by profiling data or, in some 

cases, by static analysis of the application code. Different 

weights wi will affect the types of candidates selected. The 

rest of this section details how the parameters of the guide 

functions are evaluated and what are the trade-offs.  

The computational metric )(un is the execution time of 

kernel u as a percentage of the sum of execution times of all 

kernel nodes in V. The metric assumes a perfect memory 

system, and it represents only the percentage of computation 

time, and not of memory accesses overhead. For instance, 

the Low Pass Filter kernel accounts for 21% of the 

execution time of all streaming kernels  in Figure 3.  

The bandwidth metric )(eb  of edge e equals the number 

of bytes that were transferred via edge e as a percentage of 

all bytes transferred between all edges in SFG. For a node u, 
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Figure 3 The Stream Flow Graph for the tiled version of 

the Image Processing Chain benchmark. Each node u is 

annotated with the computational metric n(u), the 

parallelism metric p(u) (not shown in the Figure), and the 

area cost a(u). Each edge is annotated with the bandwidth 

metric b(u).



Low Pass Filter kernel bwin(u) = 0.7*3 = 0.21 and 

bwout(u) = 0.06 

The purpose of this metric is to include kernels that 

process large amount of streaming data. By selecting 

them, the algorithm can form clusters of high 

bandwidth kernels so that the data are not transferred 

back and forth between the accelerators and the 

memory. We will come back to this observation in the 

following section. 

The metric )(up considers the complexity of the 

memory access pattern of node u to evaluate the 

potential for speed up when u is mapped to gates. The 

largest performance gains are possible when the 

streams in and out of the kernel have regular access 

patterns similar in shape to the order with which data 

are stored in the main memory (e.g. row-wise). 

Memory-bound kernels are restricted by the memory 

access inefficiencies even if a large number of 

functional units are used to implement the computations. 

For our methodology: 
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in which S is the set of all the streams consumed and 

produced by u, and SAE(s), or stream access efficiency, is 

the number of stream elements of stream s fetched in 

every bus cycle, on average. Kernels with a large number 

of I/O streams, and low stream access efficiency, are less 

likely to be selected. When a kernel is used in multiple 

locations in the application (potentially with different 

stream descriptors), the algorithm uses a weighted 

average value of the SAE values.  

As an example, consider the simple vector add DFG 

kernel of Figure 4. Assuming that the system bus can 

fetch 8 bytes per cycle, the SAE values are: 
 SAE(v1) = 4/8 = 0.5,

 SAE(v2) = 1/8 = 0.125, 

 SAE(v0) = 8/8 = 1 

28.04/)1125.05.0()( =++=up

The cost of selecting a node u is equal to the area 

complexity of the node a(u). Since the area of the 

accelerator implementation is unknown before scheduling 

and binding is performed, the algorithm uses an area 

estimation metric that is proportional to the number, type, 

and bitwidth of the nodes of the DFG of node u. To that 

effect, a predefined hardware table is used that stores the 

area cost of each node type of the DFG. The hardware 

table was estimated using implementations of functional 

units in a Xilinx Virtex-4 FPGA. This cost is scaled to 

match the bitwidth of the specific node. The hardware 

table considers the area complexity of computational 

nodes, and of stream push and pop nodes. These nodes 

create streaming units that are separate from the data path 

but contribute substantially to the final area. 

Although the area of the accelerator that will finally 

implement the node u is probably different than what this 

method computes, what is important in this step is the 

consistency of the area estimation. In other words, a more 

complex kernel with a higher cost a(u) should also be 

implemented in a larger accelerator. More details on the 

methodology of pre-synthesis area estimation can be found 

in [5].  

The weights wi are user defined. The weight w2 is equal to 

zero for SFG edges that correspond to a transfer of 

streaming data between a kernel and the main memory. In 

that case, selecting neighboring kernels does not offer any 

advantages because the streams will be stored to main 

memory, and temporary storage is not possible.  

2.4. SFG space exploration and kernel selection 

Based on the SFG formulation, the next step is the selection 

of an optimal set of kernels that maximizes the value V

under an area constraint A. The selection is similar to the 0/1 

knapsack problem, which is NP-complete. Given a set of 

resources (the kernel nodes), with each resource having a 

value f(u) and cost a(u), the objective is to maximize the 

value of selected resources for given maximum area A. The 

problem can be solved optimally in pseudo-polynomial time 

using dynamic algorithms. As the experiments show, a 

simple greedy algorithm works almost as well as the 

dynamic algorithm shown in Figure 5. In the greedy 

algorithm, the next kernel u with the highest 
)(

)(

ua

uf
is 

selected. In dynamic algorithm of Figure 5, the 

DYN_COST_1 procedure is called first to compute the 

value array, in which the entry C[i][a] contains the 

maximum value when only i kernels are present, and the 
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maximum area is a. Then, DYN_SEL_1 traverses the 

array C to select the set of kernels. Our approach is 

extended to adapt to the dynamic flow by favoring kernel 

nodes that are adjacent to already selected nodes. Once a 

kernel node u is selected, the value f(v) of all nodes v that 

are connected with u via a buffer node is scaled up by a 

user defined factor wrel. This dynamic  update facilitates 

the clustering of nodes so that streaming data do not need 

to be accessed from memory unnecessarily. The dynamic 

programming heuristic generally does better than greedy 

approaches but the difference is small especially if the 

problem size is small, i.e. there is a small number of 

kernels in the application. 

3. EXPERIMENTAL EVALUATION 

The proposed system was built as part of a streaming 

compiler infrastructure [7]. The kernel selection 

algorithms were implemented as a separate module from 

the main compiler, simulator and profiler. We used 

several streaming applications written for the RSVP™ 

accelerator to evaluate the kernel selection methodology. 

The benchmarks were an image processing application 
(impchain) used to perform a sequence of color 

processing and color conversion filters on a image sensor 

input frame (Figure 3), a license plate recognition 

application used to identify vehicles based on their license 

DYN_COST_1 

Input: f[0..N-1], a[0..A-1], N, A;  

Output: C[0..N-1];

 { 

 C[0, 0..A] = 0;  

 C[0..N, 0] = 0; 

 for (i = 0; i ≤  N; i++) {

   for (a = 1; a ≤  A; a++) { 

       if (ai > a)

           C[i, a] = C[i-1, a] 

       else  

           C[i, a] = max{C[i-1, a], f(ui) + C[i-1, a- ai]} 

      } 

   } 

   return C; 

}

DYN_SEL_1  

Input: C[0..N][0..A], a[0..A-1], v[0..N-1], N, A

Output: ranked nodes R 

 { 

i = N; j = A; 

  R={}; 

   while (i > 0 && j > 0) { 

       tmp = a[i-1]; 

       if (C[i-1][j] ≥ f[i-1] + C[i-1][j-tmp])  

           i = i-1 

       else { 

          if (i > 0 && j > tmp) { 

            R = R ∪ ui

            j = j – tmp;  

          } 

          i = i-1; 

       } 

   } 

   return R;

 } 

Figure 5 Dynamic algorithm for kernel selection
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plates, a JPEG2000 image compression/decompression 

program, and an automotive lane departure warning 

application used to detect road lanes for driver 

assistance. We are selecting applications with multiple 

streaming kernels with a complex streaming flow to 

better illustrate the feasibility of the approach. We used 
profiling and static analysis on each of the applications 

to determine the value and cost of each streaming 

kernel. The area cost estimates in the hardware library 

were calculated by implementing and synthesizing 

every DFG node, as explained in section 2.3. The area 

cost of a kernel is approximated as the sum of the costs 

of all the nodes of that kernel.  

 The baseline machine for the experiments is an 

ARM946 RISC processor, and the speedup ratios of 

Figure 6 are expressed with respect to the baseline 

performance as the area cost varies. Each line in an 

application represents the speedup of the application 
compared to the baseline machine for a specific set of 

selection criteria (values of weights wi). We experimented 

with various combinations of weight values to determine 

if there were combinations that consistently resulted in 

higher speed up at each area cost point. The experimental 

analysis showed that the weight combinations were 

slightly different for each benchmark. However, the 

)(un metric was consistently weighed more for higher 

speed ups, as shown in the results of Figure 6.  

One of the interesting observations is that the speedup 

varies a lot across benchmarks. The impchain and ldw
benefit a lot from hardware acceleration because almost 

all of their computation is a series of kernel filters. The 

other benchmarks have a large portion of the program 

being spent on branches and pointer operations that hinder 

mapping on streaming computations.  

The dynamic update of kernel values was used only in 

the impchain and ldw benchmarks because these 

application are using tiling  (w2 > 0). The three curves in 
each benchmark correspond to different values of the 

weights:  

a) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 1,  

b) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 2 and, 

c) w1 = 0.5, w2 = 0, w3 = 0.3, wrel = 1. 

When  wrel  > 1, the dynamic kernel update props up the 

value of all the neighbours of a selected kernel by a factor 

of  wrel .

For the lpr and the JPEG2000, we set w2 = 0, wrel = 1, 

because all the streams in between kernels are spilled to 

the main memory, and there are no buffer nodes between 
kernels (NOBFR). The dynamic update of the node values 

does not always result in a better solution for a given area 

limit, because it may favor kernels that contribute less in 

the total execution time even if they are neighbors of 

already selected nodes.  

In the experimental evaluation of Figure 6, every kernel 

selection includes all appearances of the kernel in the 

application. There are cases where the kernel hardware 

can be generalized to execute more than one kernel with 

little or no extra area cost. For example, an accelerator that 

computes the dot product of two complex vectors can be 

used to compute the sum of two integer vectors. The 

continuous lines of Figure 7 show the speedup when no 

generalization is supported, and the dashed lines show the 

speedup when the hardware is extended to support the 

execution of a similar but no larger kernel that has not yet 

been selected.  

The experiment shows that hardware generalization is a 

very useful mechanism in some cases. For example, almost 

all the DFGs of the JPEG2000 benchmark are similar, and 
can be mapped to the same hardware without any extra area 

penalty. The impchain and ldw benchmarks, on the other 

hand, consist of large kernels with limited commonality. 

Using graph generalization is particularly important in cases 

of limited area budget.  

4. CONCLUSION 

Hardware accelerators customized for a particular task 
and implemented in hardware are an efficient way to 

enhance system performance and meet application 

requirements. This paper presents a methodology to 

automate the selection of streaming kernels that are mapped 

in hardware accelerators in a reconfigurable fabric. The 

methodology is flexible and can be tuned by the user to 

match the application and the targeted device characteristics. 

It exploits the parallelism inherent in a lot of applications 

and has demonstrated that a small amount of extra fabric 

area can result into significant performance gains. In the 

future, we plan to integrate this tool to a larger architectural 

synthesis program that automates the generation of 
hardware given a high level representation of an application. 
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