
AN ARCHITECTURAL FRAMEWORK FOR AUTOMATED STREAMING

KERNEL SELECTION

Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan Linzmeier

Embedded System Research Lab

 Motorola, Inc.

 {nikos.bellas@motorola.com}

ABSTRACT

Hardware accelerators are increasingly used to extend the

computational capabilities of baseline scalar processors to

meet the growing performance and power requirements of
embedded applications. The challenge to the designer is

the extensive human effort required to identify the

appropriate kernels to be mapped to gates, and to

implement a network of accelerators to execute the

kernels. In this paper, we present a methodology to

automate the selection of streaming kernels in a

reconfigurable platform based on the characteristics of the

application. The methodology is based on a flow graph

that describes the streaming computations and

communications. The flow graph is used to efficiently

identify the most profitable subset of streaming kernels
that optimize performance without exceeding the available

area of the reconfigurable fabric.

1. INTRODUCTION

The levels of integration of modern FPGAs have advanced

to the point where complex SoCs with processors,

accelerator IP, peripherals, and system software can be

built and deployed very fast. Tool vendors have offered a

plethora of predefined IP cores for frequently used kernels
in multimedia, communications, networking, etc. What is

missing is a methodology for an application developer to

extract computationally complex kernels from the

application and map them to gates in an automated way.

The availability of a tool flow that abstracts out the

hardware details of a module or a set of modules and

presents a familiar software-only programming model will

be crucial for the acceptance of FPGAs from a large pool

of software engineers and algorithm developers.

Central to the design of such a tool is the automated

selection of an optimal subset of kernels under area
constraints. Reconfigurable logic is customized post-

fabrication, and has only finite number of logic cells to

implement an application. It is often the case that the

hardware designers have to iterate multiple times and

perform manual software hardware partition of an

application before a successful generation of the FPGA

bitstream. This paper describes a methodology for

automatic selection of kernels in a streaming application

and their mapping into an network of accelerators. The

selection is accomplished using intelligent analysis of the

computational complexity of the kernels and the flow of the

streaming data between the kernels. Kernels are selected to
be mapped in gates based not only on their execution time,

but also on their data communication profile, and their

inherent parallelism and speed-up potential. The most

important aspects of the selection process is the efficient

representation of the streaming domain and the exploration

of the design space without artificially limiting the potential

solutions.

Our methodology is using a holistic approach by considering

the performance of the whole streaming application. Similar

work has focused recently on expanding the processor ISA

by identifying application hotspots [1][2]. The main
contributions of the papers are the following: first, we

describe how a streaming application is represented using an

annotated stream flow graph (SFG) and we outline the

metrics used for the annotation. Second, we detail the

algorithms used to select a near optimal set of kernels to be

mapped into gates based on the annotated SFG. Although the

focus of the paper are FPGAs, the techniques described can

be naturally extended for ASICs.

The rest of the paper is organized as follows: Section 2 gives

background information on the streaming programming

paradigm, explains the structure and attributes of the SFG,

and describes the algorithms used to select the kernels to be
mapped in gates under area constraints. Section 3 presents

results for a set of streaming applications, and section 4

concludes the paper.

2. STREAMING KERNEL SELECTION

2.1. Streaming programming model

Programs that follow the streaming paradigm are expressed

as an interconnect of filters that communicate using streams.

The streaming programming model separates

communication from computation, and favors data intensive

applications with a regular memory access patterns [3].

Properties of streaming model of computation include [4]:

• Computation kernels are independent and self-

contained

Computation kernels are localized such that there are no data

dependencies between other kernels. A programmer can

1-4244-0910-1/07/$20.00 ©2007 IEEE

annotate portions of a program that exhibit this behavior

for mapping onto a stream processor or accelerator.

• Computation groups are relatively static

The processing performed in each computation group is

regular or repetitive, which often come in the form of a

loop structure. There are opportunities for compiler
optimization to organize the computation as well as the

regular access patterns to memory.

• Explicit definition of communication

Computation kernels produce output streams from one or

more input streams. The stream and other scalar values

which hold persistent application state are identified

explicitly as variables in a communication stream or signal

between kernels.

• Limited lifetime of the stream data

There is a small amount of reuse for each stream element.

Each stream is usually consumed by one or more kernels,
which perform little processing on each stream.

In this work, the location and shape of streams in the

memory is defined using stream descriptors [5]. The tuple

(Type, Start_Address, Stride, Span, Skip, Size) can

describe a stream with elements of Type stored as a 2D

array starting at location Start_Address, so that:

• Stride is the spacing, in number of elements, between

two consecutive stream elements.

• Span is the number of elements that are gathered

before applying the skip offset

• Skip is the offset is applied between groups of span
elements, after the stride has been applied

• Size is the number of elements in the stream

Multidimensional and even non-rectangular stream shapes

can be described by extending the tuple definition of the

streams. An example of 2D stream is shown in Figure 1.

2.2. Method Overview

The objective of an automated method for streaming

kernel selection is to be used as part of a high level tool
that drives the system level architecture of the network of

accelerators. The algorithm for kernel selection is shown

in Figure 2.

The application is expressed using explicit streaming

constructs that identify the computational kernels and the

streaming channels used to transfer data. We are using a

programming model, that expresses streaming kernels

using Data Flow Graphs (DFGs), and streams using stream

descriptors [6]. The programmer or a high level compiler

analyze the program and identify critical computational

kernels in the code that will be executed by a streaming
accelerator. The kernels are translated to a machine

independent DFG, in which all the data dependencies are

explicitly stated in order to facilitate parallel execution.

System level constraints such as maximum available area

in number of CLBs or equivalent gates, and available

memory and bus bandwidth are given as input to constrain

the problem. Finally, profiling data of the execution time of

each kernel, and its bandwidth can be optionally used if

available. Due to the static and regular nature of computation

and communication in the streaming domain, prior runs of

the applications may be unnecessary for some applications.

The first step of the kernel selection is to build the SFG data

structure, based on the streaming data flow and the available

hardware resources that participate in the application. Then,

the nodes and edges of the SFG are annotated with metrics

that summarize the execution profile of the application, and

form the basis for the solution space exploration in the next
step. In this work, we describe two strategies to select

kernels. The first strategy is to iteratively select streaming

kernels based simply on their annotation in the SFG. The

second strategy adapts to the current selections that have

already been made and continuously changes the annotation

of the unselected kernels to better capture the dynamic nature

of the selection process. For example, the second strategy

favor neighboring kernel nodes of already selected kernels

in order to improve the data locality of the communication

and avoid costly transfer to the main memory.

A list of kernels sorted with respect to their selection order is
produced at the end. One of the strength of the method is that

no assumptions is made on the number and type of

accelerators used for the low level implementation. For

instance, all the selected kernels of the application can be

mapped into a single accelerator, or each kernel to a

0

7

14

21

1 2

8 9

15 16

22 23

3 4

10 11

17 18

24 25

5 6

12 13

19 20

26 27

3
90

2-D Subarray with row-wise access

(Type, SA, Stride, Span, Skip, Size) =

(0, 3, 1, 7, 93, 28)

Figure 1 Stream descriptors for a row-wise

memory access pattern

Streaming code

(e.g. C+RSVP DFG)

Constraints:

Maximum area,

data throughput, etc

Constraints:

Maximum area,

data throughput, etc

Profile Data

(Optional)

SFG space explorer

and kernel selection

SFG

annotation

Build the Stream Flow

Graph (SFG)

Ranked List of

Kernels

Figure 2 High level kernel selection diagram

dedicated accelerator, or any hybrid implementation

between these two extremes.

2.3. Annotated stream flow graph (SFG)

The stream flow graph of an application program Pin a

system S is a directed graph G(P,S) =(V,E) in which:

• a vertex Vu ∈ can be one of the following types:

kernel node that expresses streaming

computation, buffer node that expresses

temporary buffers, main memory node that

expresses off-chip main memory, and peripheral

node that expresses peripherals that source or

sink streams (e.g. image sensors or LCD

displays).

• an edge Evue ∈=),(connects two nodes if there

is a stream produced by u and consumed by v.

The SFG depends on the application and the

architecture of the system. The application determines the

structure of the SFG, while the system determines the

type of nodes that are available and how they can be used.

The SFG expresses static, as opposed to dynamic,

stream flow. There is an edge between two nodes u and v

if there is a stream flow between them, and also a thread

of control in the code in which first u and then v is

executed (or accessed), even if that thread is not executed

in the dynamic program. For instance, in case of a

conditional if-then-else or case statement, there will be

edges between all potential paths between kernels.

The SFG is built as a preprocessing step during

compilation time. If the programmer or an optimizing

compiler uses loop tiling to partition the kernel execution

across data tiles and to place the communicating streams

in tile buffers, the SFG preprocessor instantiates buffer

nodes. Otherwise, it instantiates main memory nodes. The

preprocessing step of Figure 2 can be used after a source-

level optimizing compiler that performs tiling but it does

not perform any source code optimizations by itself.

Figure 3 shows the SFG for a tiled implementation of

an image processing chain used for processing Bayer

color data produced by an image sensor. Tiled frame data

are processed by computation kernels one tile at a time. If

the programmer did not use tiling, the SFG would contain

main memory nodes in between the kernels.

The annotation of SFG nodes is used to capture

dynamic execution activity, when the application is driven

by a set of input data. Each kernel node Vu ∈ is assigned

a value using the guide function)(uf , and a cost)(uc .

The purpose of the SFG annotation is to intelligently rank

the kernel nodes so that the best candidates are used for

hardware implementation. The guide function is a

weighted sum of three metrics that are used to grade the

computational complexity, the bandwidth, and the potential

for parallelism of the kernel:

)(*))()((*)(*)(321 upwutbwubwwunwuf ouin +++=
so that: 1321 =++ www

The metrics are determined by profiling data or, in some

cases, by static analysis of the application code. Different

weights wi will affect the types of candidates selected. The

rest of this section details how the parameters of the guide

functions are evaluated and what are the trade-offs.

The computational metric)(un is the execution time of

kernel u as a percentage of the sum of execution times of all

kernel nodes in V. The metric assumes a perfect memory

system, and it represents only the percentage of computation

time, and not of memory accesses overhead. For instance,

the Low Pass Filter kernel accounts for 21% of the

execution time of all streaming kernels in Figure 3.

The bandwidth metric)(eb of edge e equals the number

of bytes that were transferred via edge e as a percentage of

all bytes transferred between all edges in SFG. For a node u,

=
inedges

in ebubw)()(, and =
outedges

out ebubw)()(. For the

Mean Values of

GRGB pixels

White balance-Color

interpolation

Low Pass Filter

Gamma Correction

RGB to YCC

conversion

High pass Filter

Peripheral

MM

MM

n2=0.14

a2=1789

n3=0.21

a3=1280

n4=0.24

a4=489

n5=0.12

a5=750

n6=0.19

a6=1124

n7=0.08

a7=514

n1=0.005

a1=226

Buffer

Color correction

bw1(v1) = 0.01

bw1(v2) = 0.01bw2(v1) = 0.02 bw2(v2) = 0.02

bw2(v0) = 0.07

 0.07

0.06

 0.06

 0.06

bw5(v1) = 0.06

bw5(v0) = 0.06

0.06

bw6(v0) = 0.06

bw7(v1) = 0.09

bw7(v0) = 0.03

 0.07

 0.07

0.06
0.06

Figure 3 The Stream Flow Graph for the tiled version of

the Image Processing Chain benchmark. Each node u is

annotated with the computational metric n(u), the

parallelism metric p(u) (not shown in the Figure), and the

area cost a(u). Each edge is annotated with the bandwidth

metric b(u).

Low Pass Filter kernel bwin(u) = 0.7*3 = 0.21 and

bwout(u) = 0.06

The purpose of this metric is to include kernels that

process large amount of streaming data. By selecting

them, the algorithm can form clusters of high

bandwidth kernels so that the data are not transferred

back and forth between the accelerators and the

memory. We will come back to this observation in the

following section.

The metric)(up considers the complexity of the

memory access pattern of node u to evaluate the

potential for speed up when u is mapped to gates. The

largest performance gains are possible when the

streams in and out of the kernel have regular access

patterns similar in shape to the order with which data

are stored in the main memory (e.g. row-wise).

Memory-bound kernels are restricted by the memory

access inefficiencies even if a large number of

functional units are used to implement the computations.

For our methodology:

1||
)(Ss

+
= ∈∀

S

SAE(S)

up

in which S is the set of all the streams consumed and

produced by u, and SAE(s), or stream access efficiency, is

the number of stream elements of stream s fetched in

every bus cycle, on average. Kernels with a large number

of I/O streams, and low stream access efficiency, are less

likely to be selected. When a kernel is used in multiple

locations in the application (potentially with different

stream descriptors), the algorithm uses a weighted

average value of the SAE values.

As an example, consider the simple vector add DFG

kernel of Figure 4. Assuming that the system bus can

fetch 8 bytes per cycle, the SAE values are:
 SAE(v1) = 4/8 = 0.5,

 SAE(v2) = 1/8 = 0.125,

 SAE(v0) = 8/8 = 1

28.04/)1125.05.0()(=++=up

The cost of selecting a node u is equal to the area

complexity of the node a(u). Since the area of the

accelerator implementation is unknown before scheduling

and binding is performed, the algorithm uses an area

estimation metric that is proportional to the number, type,

and bitwidth of the nodes of the DFG of node u. To that

effect, a predefined hardware table is used that stores the

area cost of each node type of the DFG. The hardware

table was estimated using implementations of functional

units in a Xilinx Virtex-4 FPGA. This cost is scaled to

match the bitwidth of the specific node. The hardware

table considers the area complexity of computational

nodes, and of stream push and pop nodes. These nodes

create streaming units that are separate from the data path

but contribute substantially to the final area.

Although the area of the accelerator that will finally

implement the node u is probably different than what this

method computes, what is important in this step is the

consistency of the area estimation. In other words, a more

complex kernel with a higher cost a(u) should also be

implemented in a larger accelerator. More details on the

methodology of pre-synthesis area estimation can be found

in [5].

The weights wi are user defined. The weight w2 is equal to

zero for SFG edges that correspond to a transfer of

streaming data between a kernel and the main memory. In

that case, selecting neighboring kernels does not offer any

advantages because the streams will be stored to main

memory, and temporary storage is not possible.

2.4. SFG space exploration and kernel selection

Based on the SFG formulation, the next step is the selection

of an optimal set of kernels that maximizes the value V

under an area constraint A. The selection is similar to the 0/1

knapsack problem, which is NP-complete. Given a set of

resources (the kernel nodes), with each resource having a

value f(u) and cost a(u), the objective is to maximize the

value of selected resources for given maximum area A. The

problem can be solved optimally in pseudo-polynomial time

using dynamic algorithms. As the experiments show, a

simple greedy algorithm works almost as well as the

dynamic algorithm shown in Figure 5. In the greedy

algorithm, the next kernel u with the highest
)(

)(

ua

uf
is

selected. In dynamic algorithm of Figure 5, the

DYN_COST_1 procedure is called first to compute the

value array, in which the entry C[i][a] contains the

maximum value when only i kernels are present, and the

vadd

vst (v0)

Stream V0

vld (v1) vld (v2)

0 1 2 30 1 2 3 0 1 2 34 5 6 7 0 1 28 9 10 211 212 213 214 215

Stream V1

92

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4
92

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4
92

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

4
92

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

4

Stream V2

Figure 4 A simple vector add DFG

maximum area is a. Then, DYN_SEL_1 traverses the

array C to select the set of kernels. Our approach is

extended to adapt to the dynamic flow by favoring kernel

nodes that are adjacent to already selected nodes. Once a

kernel node u is selected, the value f(v) of all nodes v that

are connected with u via a buffer node is scaled up by a

user defined factor wrel. This dynamic update facilitates

the clustering of nodes so that streaming data do not need

to be accessed from memory unnecessarily. The dynamic

programming heuristic generally does better than greedy

approaches but the difference is small especially if the

problem size is small, i.e. there is a small number of

kernels in the application.

3. EXPERIMENTAL EVALUATION

The proposed system was built as part of a streaming

compiler infrastructure [7]. The kernel selection

algorithms were implemented as a separate module from

the main compiler, simulator and profiler. We used

several streaming applications written for the RSVP™

accelerator to evaluate the kernel selection methodology.

The benchmarks were an image processing application
(impchain) used to perform a sequence of color

processing and color conversion filters on a image sensor

input frame (Figure 3), a license plate recognition

application used to identify vehicles based on their license

DYN_COST_1

Input: f[0..N-1], a[0..A-1], N, A;

Output: C[0..N-1];

 {

 C[0, 0..A] = 0;

 C[0..N, 0] = 0;

 for (i = 0; i ≤ N; i++) {

 for (a = 1; a ≤ A; a++) {

 if (ai > a)

 C[i, a] = C[i-1, a]

 else

 C[i, a] = max{C[i-1, a], f(ui) + C[i-1, a- ai]}

 }

 }

 return C;

}

DYN_SEL_1

Input: C[0..N][0..A], a[0..A-1], v[0..N-1], N, A

Output: ranked nodes R

 {

i = N; j = A;

 R={};

 while (i > 0 && j > 0) {

 tmp = a[i-1];

 if (C[i-1][j] ≥ f[i-1] + C[i-1][j-tmp])

 i = i-1

 else {

 if (i > 0 && j > tmp) {

 R = R ∪ ui

 j = j – tmp;

 }

 i = i-1;

 }

 }

 return R;

 }

Figure 5 Dynamic algorithm for kernel selection

S
p

e
e

d
u

p

lpr

Area Cost

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

NOBFR

0

1

2

3

4

5

6

7

8

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

Wrel=1, BFR

Wrel=2, BFR

NOBFR

S
p

e
e

d
u

p

Area Cost

S
p

e
e

d
u

p

jpeg2000

Area Cost

1

1.05

1.1

1.15

1.2

1.25

NOBFR

lpr

impchain

w1=0.5, w2=0.2, w3=0.3

w1=0.67, w2=0, w3=0.33

w1=0.67, w2=0, w3=0.33

0

1

2

3

4

5

6

7

8

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

Wrel=1, BFR

Wrel=2, BFR

NOBFR

S
p

e
e

d
u

p

Area Cost

ldw

w1=0.5, w2=0.2, w3=0.3

Figure 6 Speedup for various benchmarks. The NOBFR

legend means that the streaming application was written

without temporary storage fo streams between kernels

(i.e. the streams are always read and written from/to the

main memory. The rest of the curves assume intermediate

buffering of at least one of the streams.

plates, a JPEG2000 image compression/decompression

program, and an automotive lane departure warning

application used to detect road lanes for driver

assistance. We are selecting applications with multiple

streaming kernels with a complex streaming flow to

better illustrate the feasibility of the approach. We used
profiling and static analysis on each of the applications

to determine the value and cost of each streaming

kernel. The area cost estimates in the hardware library

were calculated by implementing and synthesizing

every DFG node, as explained in section 2.3. The area

cost of a kernel is approximated as the sum of the costs

of all the nodes of that kernel.

 The baseline machine for the experiments is an

ARM946 RISC processor, and the speedup ratios of

Figure 6 are expressed with respect to the baseline

performance as the area cost varies. Each line in an

application represents the speedup of the application
compared to the baseline machine for a specific set of

selection criteria (values of weights wi). We experimented

with various combinations of weight values to determine

if there were combinations that consistently resulted in

higher speed up at each area cost point. The experimental

analysis showed that the weight combinations were

slightly different for each benchmark. However, the

)(un metric was consistently weighed more for higher

speed ups, as shown in the results of Figure 6.

One of the interesting observations is that the speedup

varies a lot across benchmarks. The impchain and ldw
benefit a lot from hardware acceleration because almost

all of their computation is a series of kernel filters. The

other benchmarks have a large portion of the program

being spent on branches and pointer operations that hinder

mapping on streaming computations.

The dynamic update of kernel values was used only in

the impchain and ldw benchmarks because these

application are using tiling (w2 > 0). The three curves in
each benchmark correspond to different values of the

weights:

a) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 1,

b) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 2 and,

c) w1 = 0.5, w2 = 0, w3 = 0.3, wrel = 1.

When wrel > 1, the dynamic kernel update props up the

value of all the neighbours of a selected kernel by a factor

of wrel .

For the lpr and the JPEG2000, we set w2 = 0, wrel = 1,

because all the streams in between kernels are spilled to

the main memory, and there are no buffer nodes between
kernels (NOBFR). The dynamic update of the node values

does not always result in a better solution for a given area

limit, because it may favor kernels that contribute less in

the total execution time even if they are neighbors of

already selected nodes.

In the experimental evaluation of Figure 6, every kernel

selection includes all appearances of the kernel in the

application. There are cases where the kernel hardware

can be generalized to execute more than one kernel with

little or no extra area cost. For example, an accelerator that

computes the dot product of two complex vectors can be

used to compute the sum of two integer vectors. The

continuous lines of Figure 7 show the speedup when no

generalization is supported, and the dashed lines show the

speedup when the hardware is extended to support the

execution of a similar but no larger kernel that has not yet

been selected.

The experiment shows that hardware generalization is a

very useful mechanism in some cases. For example, almost

all the DFGs of the JPEG2000 benchmark are similar, and
can be mapped to the same hardware without any extra area

penalty. The impchain and ldw benchmarks, on the other

hand, consist of large kernels with limited commonality.

Using graph generalization is particularly important in cases

of limited area budget.

4. CONCLUSION

Hardware accelerators customized for a particular task
and implemented in hardware are an efficient way to

enhance system performance and meet application

requirements. This paper presents a methodology to

automate the selection of streaming kernels that are mapped

in hardware accelerators in a reconfigurable fabric. The

methodology is flexible and can be tuned by the user to

match the application and the targeted device characteristics.

It exploits the parallelism inherent in a lot of applications

and has demonstrated that a small amount of extra fabric

area can result into significant performance gains. In the

future, we plan to integrate this tool to a larger architectural

synthesis program that automates the generation of
hardware given a high level representation of an application.

1

10

0
50

0
10

00
15

00
2000

25
00

30
00

3500
40

00
45

00
5000

im pchain

im pchain s ubs um ed

lpr kernels

lpr s ubsum ed

jpeg2000

jpeg2000 subs um ed

ldw

ldw Subsum ed

Figure 7 Speedup due to subsumed kernels (logarithmic scale)

5. REFERENCES

[1] Fei Sun, Ravi, S., Raghunathan, A., N.K. Jha, “Synthesis of
custom processors based on extensible platforms,” Proceedings
of the International Conference on Computer Aided Design
(ICCAD), November 2002, pp. 641-648

[2] Nathan Clark, Hongtao Zhong, Scott Mahlke, “Processor
Accelerator Through Automated Instruction Set Customization,”
Proceedings of the 36th International Conference on
Microarchitecture, December 2003

 [3] Amarasinghe S., Thies B. “Architectures, Languages and
Compilers for the Streaming Domain” in tutorial at the 12th
Annual International Conference on Parallel Architectures and
Compilation Techniques, New Orleans, LA

[4] Sek M. Chai, Nikolaos Bellas, Malcolm, Dwyer, Dan
Linzmeier. “Stream Memory Subsystem in Reconfigurable

Platforms”, in the 2nd Workshop on Architecture Research using
FPGA Platforms (WARFP). February 2006, Austin, TX

[5] Somsubhra Mondal, Seda O. Memik, Nikolaos Bellas. Pre-
synthesis area estimation of reconfigurable streaming
accelerators. 16th International Conference on Field
Programmable Logic and Applications (FPL), August 28-30
2006, Madrid, Spain

 [6] Chirisescu S., et. al. “ The Reconfigurable Streaming Vector
Processor, RSVP™” in Proceedings of the 36th International
Conference on Microarchitecture, December 2003, pp. 141-150,
San Diego, CA

[7] Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan
Linzmeier. “FPGA implementation of a license plate recognition
SoC using automatically generated streaming accelerators” in
the 13th Reconfigurable Architectures Workshop (RAW), April
2006, Rhodes, Greece

