
Miss Ratio Improvement For Real-Time Applications Using
Fragmentation-Aware Placement

Ahmed Abou ElFarag Hatem M. El-Boghdadi Samir I. Shaheen
abouelfarag@aast.edu helboghdadi@eng.cu.edu.eg sshaheen@ieee.org

Department of Computer Engineering
Cairo University, Giza, EGYPT

Abstract

Partially reconfigurable Field-Programmable Gate Ar-
rays (FPGAs) allow parts of the chip to be configured at
run-time where each part could hold an independent task.
Online placement of these tasks result in area fragmentation
leading to poor utilization of chip resources.

In this paper, we propose a new metric for measuring
area fragmentation. The new fragmentation metric gives
an indication to the continuity of the occupied (or free)
space and not the amount of occupied space. We show how
this metric can be extended for multi-dimensional struc-
tures. We also show how this metric can be computed effi-
ciently at run time. Next we use this measure during online
placement of tasks on FPGAs, such that the chip fragmen-
tation is reduced. Our results show improvement of chip
utilization when using this fragmentation aware placement
method over other placement methods with well known Bot-
tom Left First Fit, and Best Fit placement strategies. In real
time environment, we achieve an improvement in miss ra-
tio when using the fragmentation aware placement over the
bottom left placement strategy.

1 Introduction

Partially reconfigurable FPGA aims to allow part of the
device to be reconfigured while another part is still per-
forming active computation. A device that has this prop-
erty can accommodate number of applications at the same
time where each application can be composed of number of
tasks. To take full advantage of the partially reconfigurable
fabric, good utilization of chip resources is a must [3]. Un-
careful placement of incoming tasks cause portions of chip
area to be wasted because they are too small to hold another

1-4244-0910-1/07/$20.00 c©2007 IEEE.

incoming task. These small portions are called fragments
similar to the fragments in traditional memory systems, and
they could represent significant percentage of chip area [7].
Consequently, area fragmentation is one of the biggest ob-
stacles of obtaining good utilization of chip resources.

In an online placement systems, due to dynamic addi-
tion and deletion of rectangular tasks, the empty area of the
FPGA become highly fragmented and thus FPGA area can-
not be utilized efficiently. Figure 1 shows one such example
where tasks T 1 and T 2 cause fragmentation of the FPGA
area. As a result, a task T 3 may not be placed on the FPGA
surface even if total empty area on the FPGA is more than
the area of the task T 3.

Figure 1. Fragmentation of FPGA area.

In this paper, we propose a new metric for measuring
area fragmentation. The new fragmentation metric gives an
indication to the continuity of the occupied (or free) space
on the reconfigurable chip and not the amount of occupied
(or free) space. High area fragmentation indicates the scat-
tering of occupied portions on the chip and hence could
cause low chip utilization. On the other hand, low area frag-
mentation enables incoming tasks to be placed enhancing
the chip utilization. This measure can be used in monitor-
ing the chip area and select the best empty area to place the
new task and thus reducing the total chip area fragmenta-

tion. We extend this metric for multi-dimensional structures
such as hyper-cubes. We also show how this metric can be
computed efficiently at run time. Next we use this measure
during online placement of tasks, such that the chip frag-
mentation is reduced. We also use this metric in real time
systems to reduce the miss ratio. Our results regarding chip
utilization show 5% to 10% improvement for this fragmen-
tation aware placement method over placement with well
known First Fit, Best Fit and Bottom Left placement strate-
gies. In real time applications, the miss ratio is improved by
up to 7%.

In Section 2, we discuss some of the previous work in
the fragmentation quantification. In Section 3, we clarify
the system model. Section 4 describes the new fragmen-
tation metric and its extension to multi-dimensional struc-
tures. Section 5 introduces a methodology to calculate the
fragmentation metric. Section 6 shows the results of using
the metric during online placement and its effect on area uti-
lization. In Section 7 we summarize our results and make
some concluding remarks.

2 Related Work

In this paper, a highly fragmented chip is the one, which
contains large number of holes separated by some occupied
cells. We focus on the external fragmentation [5], which is
the fragmentation of area resources outside the rectangular
boundary of the tasks. A task may be denied placement if
enough contiguous resources are not available for its rec-
tangular area. We attempt to quantify the fragmentation of
the area resources by calculating Fragmentation Factor or
fragmentation metric.

Two main directions were followed to enhance area uti-
lization of the chip. One allowed task pre-emption (i.e.
stopping the active tasks, preserving them or moving them
to other portions, and reconfigure the new portion). Diessel
and ElGindy [1] presented a heuristic for task compaction
that is one dimensional and order preserving. The technique
attempts to compact running tasks in a certain direction if
the incoming task cannot be allocated (placed) on the chip
area. This compaction, in turn, enables incoming tasks to
be placed leading to a better utilization.

The other direction was through fragmentation aware
placement techniques in which careful placement is done
as to reduce the area fragmentation allowing more space for
future task allocation.

A reliable measure of fragmentation is needed to decide
where to put the new task. All empty places have to be
tested to select one that causes lower fragmentation. Thus,
this placement strategy takes into consideration the frag-
mentation measure value in place selection. This method
is followed in this paper and called Fragmentation Aware
Placement strategy.

(a) Overlapped area.

(b) Fragmentation factor ambiguity.

Figure 2. Examples of Fragmentation calcula-
tions.

Wigley et al. [9] used square of shorter side (which they
call characteristic dimension) of an empty rectangle in the
reconfigurable area as a measure of fragmentation. They
calculated distribution of characteristic dimension and used
the mean of that distribution as a fragmentation metric. It is
clear that different distributions (fragmentation states) may
have the same mean. In other words, the mean of the dis-
tribution does not uniquely identify how much the chip is
fragmented.

Walder et al. [8] used fragmentation grade to quantify
the fragmentation. They found all the empty rectangles re-
quired to cover empty area on the FPGA. If ai is the area
of ith empty rectangle then fragmentation grade is calcu-

lated as F = 1 −
√∑

ai
2∑

ai
. The empty rectangles used in

the previous equation may overlap, and so empty areas may
participate in the fragmentation grade more than once. This
may give inaccurate results. As shown in Figure 2(a), the
fragmentation grade used the same area twice.

Ejnioui and DeMara [2] used fragmentation metric to
quantify the degree of scattering of the holes across the chip
area as the chip fragmentation. fi = ai

A , and F = 1−∏
i fi

where ai is the area of the ith empty rectangle and A is
the chip area. They found the maximum empty rectangles
required to cover empty area on the FPGA, and calculate
the fragmentation factor. The problem of empty area over-
lapping still exists here. Also two different fragmentation
states may give the same fragmentation factor, as shown in
Figure 2(b).

2

All the above methods give absolute fragmentation met-
rics. They take into consideration only the distribution of
the reconfigurable cells. Another trend is the relative frag-
mentation metric which consider the state of the reconfig-
urable cells based on the sizes of the incoming tasks.

As an example of relative fragmentation metric, M.
Handa and R. Vemuri [4], base their calculations on the av-
erage size of the tasks. They used number of empty cells
in the vertical and horizontal vicinity of an empty cell, and
if this number is greater than or equal to double the aver-
age size of incoming tasks, the fragmentation contribution
of this cell is 0. The total fragmentation is calculated by the
sum of vertical and horizontal fragmentation of all empty
cells in the reconfugurable chip area.

Relative metrics are not sensitive to the size of the in-
coming task at certain time, so it is possible to obtain two
different fragmentation measures at different times for the
same fragmentation state of the chip while the size of the
incoming tasks may be highly variable.

As a result, an absolute metric is more accurate. It is
not required to give any indication of how full or empty the
chip is. It should instead give an indication of the degree of
scattering of the holes (or empty areas) across the chip area.

In this paper, we introduce a new measure for area frag-
mentation that is absolute. The new measure gives an in-
dication for the continuity of the occupied (or free) cells
within the FPGA independent of the incoming tasks’ sizes.

3 System Model

In this section, we present the tasks and system model
used in this paper for a partial reconfigurable system.

An H × W partially reconfigurable FPGA chip consists
of H rows and W columns. The lower left corner is the
chip origin. Part of the chip can be configured without af-
fecting the rest of the chip. The FPGA is partially reconfig-
urable with reconfiguration time proportional to the num-
ber of cells being reconfigured since cells are configured
sequentially. Configuration delay is the time to configure a
cell and its associated routing resources.

The system assumes that tasks arrive online, queued and
placed in arrival order. As long as free cells are available
in the FPGA area, the server continues to service incom-
ing tasks by placing each one on an unoccupied area of the
FPGA chip. If a task on the top of the queue is denied place-
ment due to non-availability of contiguous resources (free
cells), the placement queue is stalled till contiguous suffi-
cient empty space exists.

Tasks are non-preemptive. Once they are placed at any
free area in the reconfigurable chip area, and stay at this
place till finishing the execution. Task parameters are not
known in advance. These task parameters are defined as:

for a task ti , ti = (hi ,wi , ai , si , di , xi , yi), hi and wi repre-
sent its height and width respectively and they are measured
in number of cells, ai, si and di are the tasks arrival times,
the tasks service times, and the tasks deadline times respec-
tively. The rectangular area assigned to the task is presented
by its lower left corner (xi , yi) where xi: row number, and
yi: column number. These characteristics reflect a general-
purpose computing system. The size of the task, its arrival
time, service time, and deadline time are uniformly distrib-
uted in a predefined region and a-priori unknown.

Formally, a task ti arrives at time ai , starts to execute
at time si , and finishes at fi . Thus, the task’s waiting
time is given by wait(ti) = si − ai and the response time
is given by resp(ti) = fi − ai . The allocation time of a
task, alloc(ti) is the time the task is waiting at the top of the
waiting queue till it finds a place on the reconfigurable area.

4 Fragmentation Metric

In this section we introduce a new fragmentation metric
for multi-dimensional structures. Our metric does not tie
itself to a specific application. Hence, it can be used or
tailored to the application at hand. Assume that cells are the
smallest units of area resources. Used cells are referred as
occupied cell and unused calls called empty. We start with
a metric for one-dimensional structures, then we extend it
to two-dimensional structures and higher.

4.1 One-Dimensional Fragmentation Met-
ric

In this section we introduce a new metric for one-
dimensional structures. We first introduce some definitions.

Consider a one-dimensional structure, S, that is com-
posed of L cells. Each cell could be in either state (occupied
or empty). We call this structure a cell stream.

Definition 1 A cell stream S of length L is a group of L
consecutive cells.

Remark: A cell stream represents a group of consecutive
cells regardless the state of each cell.

Definition 2 A cell sequence Q of length K is a group of
K consecutive empty cells.

In Figure 3(a), there exist two cell sequences of lengths
2, 3 respectively. While in Figure 3(b), there exist three cell
sequences of lengths 1, 4, 5 respectively. Let c(S) be the
number of cell sequences in the cell stream S. Let QS(x)
denote the xth cell sequence in the stream S and �(QS(x))
be its length (0 ≤ x ≤ c(S)).

Lemma 1 The number of cell sequences, c(S), in a cell
stream S of length L is ≤ �L

2 �.

3

Figure 3. Illustartion of one-dimensional fra-
mentation metric.

Proof: The maximum number of cell streams happens
when each cell stream is of length one. This occurs when
the cell sequence has one empty cell followed by one
occupied cell and so on. Then the number of empty cells
represents the number of cell sequences which is L

2 for a
cell stream of length L.

Let Q̂S = {QS(x) : 0 ≤ x ≤ c(S)} be the set of
cell sequences in cell stream, S of length L. Clearly, the
maximum number of cell sequences |Q̂S | is ≤ �L

2 �.

Our metric measures the continuity of the occupied area
within the cell stream and does not measure how many cells
is empty. Thus, it does not tie itself to a specific problem,
rather, it is a universal metric and could be used in a differ-
ent setting. Measuring the continuity of the occupied cells
in a cell stream translates to measuring how many cell se-
quences within the cell stream. The existence of many cell
sequences with small lengths is an indication to high frag-
mentation. We build on this observation.

Let FS denote the fragmentation metric of the cell
stream, S. As the number of cell sequences increase, the
fragmentation of S increases. The length of each cell se-
quence is another important factor in computing the frag-
mentation of S. As the length of each cell sequence de-
creases, the cell sequence has more contribution to the frag-
mentation metric.

A cell sequence contributes to FS with a value of
1

�(QS(x)) . Then, the fragmentation metric,

F1−d =
|Q̂S|−1∑

x=0

1
�(QS(x))

. (1)

In Figure 3(a) and (b), F1−d = 1
2 + 1

3 = 5
6 and F1−d =

1
1 + 1

4 + 1
5 = 29

20 respectively.

4.2 Two-Dimensional Fragmentation
Metric

Here, we extend the metric introduced in the previous
section to two-dimensional structures. Consider a two-
dimensional structure (array), A, composed of H×W cells.
Each cell could be in either state (occupied or empty). This
makes a good matching with the FPGA model presented in
section 3.

Let Q̂R(i) = {QR(i)(x) : 0 ≤ x ≤ c(R(i))} be the

set of cell sequences within row i. Similarly, let Q̂C(j) =
{QC(j)(y) : 0 ≤ y ≤ c(C(j))} be the set of cell sequences
within column j, where 0 ≤ i ≤ H−1 and 0 ≤ j ≤ W −1.
Clearly, the maximum number of cell sequences |Q̂R(i)| is
≤ �W

2 � where 0 ≤ i ≤ H − 1. Also, the maximum number
of cell sequences |Q̂C(j)| is ≤ �H

2 � where 0 ≤ j ≤ W − 1.
Each row and column is a one dimensional structure and

the result in section 4.1 could be applied. Each row (col-
umn) contributes to the area fragmentation metric . Again,
we here measure the continuity of the occupied area within
the array and does not measure how much area is empty.

Let FR(i) and FC(j) denote the the contribution of row i
and column j to the fragmentation metric, F2−d of the chip.
A cell sequence QR(i) contributes to FR(i) with a value of

1
�(QRi(x)) . Then, FR(i) =

∑|Q̂R(i)|−1

x=0
1

�(QR(i)(x)) .
In an FPGA setting, each row i contributes to the total

area fragmentation metric with a value of FR(i). Let FR

denote the contribution of all rows in the chip. Then FR =∑H−1
i=0 FR(i).
Similarly, each column contributes to the total metric

with a value of FC(j) =
∑|Q̂C(j)|−1

y=0
1

�(QC(j)(y)) . Let FC

denote the contribution of all columns in the chip. Then
FC =

∑W−1
j=0 FC(j). Finally, the fragmentation metric ,

F2−d, can be calculated as F2−d = FR + FC

F2−d =
H−1∑

i=0

|Q̂R(i)|−1∑

x=0

1
�(QR(i)(x))

+

W−1∑

j=0

|Q̂C(j)|−1∑

y=0

1
�(QC(j)(y))

. (2)

In Section 5 we use this metric in online placement of
tasks on FPGAs.

4.3 Higher-Dimensional Fragmentation
Metric

In this section we extend our results to n-dimensional
structures such as hyper-cubes. Consider an n-dimensional
array of cells m1 × m2... × mn. Let d1, d2, ..., dn denote
the n dimensions. The basic unit in this structure is the

4

basic logic block (cell). Each cell is either occupied or
empty. We will consider each dimension and account for
the contribution of this dimension to the fragmentation
metric. We will extend the work done in section 4.2
to n dimensions. A cell in the array can be defined by
determining the value in each dimension where the cell
is located. For example, the cell C(x1, x2, ..., xn) where
0 ≤ xi ≤ mi − 1 and 1 ≤ i ≤ n is the one located at
x1 along the d1 dimension, x2 along the d2 dimension and
so on. Let Fd1 , Fd2 , ..., Fdn denote the contribution of the
d1, d2, ..., dn dimension respectively, to the fragmentation
metric. Let Qdr(x1,x2,...,xr−1,xr+1,...,xn)(k) denote the kth

cell sequence in dimension dr ,1 ≤ r ≤ n, and the val-
ues along the dimensions d1, d2, ..., dr−1, dr+1, ..., dn

are x1, x2, ..., xr−1, xr+1, ..., xn respec-
tively. Let Q̂dr(x1,x2,...,xr−1,xr+1,...,xn)(k) =
{Qdr(x1,x2,...,xr−1,xr+1,...,xn)(k) : 0 ≤ k ≤ c(dr)}
be the set of cell sequences within dimension dr Also
let �(Qdr(x1,x2,...,xr−1,xr+1,...,xn)(k)) denote this cell
sequence’s length. Extending the results in section 4.2,
where 1 ≤ r ≤ n, gives

Fdr =
m1−1∑

x1=0

m2−1∑

x2=0

...

mx−1−1∑

xr−1=0

mx+1−1∑

xr+1=0

...

mn−1∑

xn=0

|Q̂dr (k)|−1∑

k=0

1
�(Qdr(x1,x2,...,xr−1,xr+1,...,xn)(k))

.

The total fragmentation metric is the summation of each
dimension contribution,

Fn−d =
n∑

r=1

Fdr . (3)

A direct application of this metric when n = 3 is to mea-
sure how scattered are the active nodes in hypercubes.

5 Methodology for Calculating the Fragmen-
tation Metric

In this section, we present a runtime efficient algo-
rithm for calculating the fragmentation metric at a given
time. We maintain fragmentation information for rows
(resp. columns) in the form of one dimensional array called
R (resp. C). Fragmentation information is updated after
every addition and deletion of a task to the FPGA. Initially,
when the FPGA is empty, the value of each element in R
and C is zero.

Figure 4 shows a chip with some running tasks. The
arrays R and C that represents the chip area is shown in
the figure along the columns and rows. Each element of
R (resp. C) holds the number of contiguous empty cells

R

C

4

1,2

3,2

4

4

1

2
1

2
1

4
1

1
3 3 3

h

h

h

h

h

h

h

h

h

h

h h h

h h

Figure 4. Calculating fragmentation metric.

in each row (resp. column). Element R(i) (resp. C(j))
contains fragmentation information for row i (resp. column
j). Each element in R (resp. C) may contain more than
one value as a row (resp. column) may have more than one
sequence of empty cells. Figure 4 shows an example of
an FPGA device with 6 rows and 6 columns. In the fig-
ure, R(0) = 4 represents the number of contiguous empty
cells in the first row. The first element of C, C(0) = [2, 1],
represents two distinct empty sequences of lengths 2 and 1
respectively.

The fragmentation metric for the chip, F2−d = FR +FC

where, FR = 1
4 + 1

1 + 1
2 + 1

3 + 1
2 + 1

4 + 1
1 + 1

4 and FC =
1
2 + 1

1 + 1
2 + 1

1 + 1
4 + 1

1 + 1
1 + 1

3 + 1
3 + 1

3 .

5.1 Addition and Deletion of Tasks

The fragmentation arrays R and C can be updated very
efficiently after addition or deletion of tasks. When a task is
added or deleted, it affects only the corresponding elements
of R and C.

If a task is added to or removed from the chip and occu-
pies rows ri to rj and columns ci to cj then the elements
R(ri) to R(rj) will be changed accordingly to reflect the
new status of these rows. The same effect will occur to ele-
ments C(ci) to C(cj).

6 Fragmentation Aware On-Line Placement

In this section, we use the two dimensional fragmenta-
tion metric discussed above to help in the Fragmentation
Aware Placement (FAP) methodology. Again, the fragmen-
tation metric measures the continuity of the occupied (free)
area; i.e. chip states with lower fragmentation metric values

5

indicate more continuity of free space. We use this fact in
choosing the place of the incoming tasks.

Once a task is on the top of the queue, the placement
engine checks all the possible places for that task. The en-
gine chooses the place that results in a lower fragmentation
metric for the new state. This results in a more continuous
space that would hopefully make a room for the next set of
incoming tasks.

The fragmentation metric can be fast calculated using the
arrays R and C as described in Section 5. The main contri-
bution here is to find the best candidate place to put the task
in as to reduce the fragmentation metric for the new state.
The advantage of this method over the traditional placement
methodologies will be shown next.

Based on various distributions of task sizes, inter-task
arrival times, and task execution times, many runs are per-
formed to observe the effect of these parameters on the sys-
tem performance.

6.1 Experimental Results

A series of experiments was done to test the performance
of the methods with synthetic task sets. For each experi-
ment, a set of 1000 tasks characterized by 4 independently
chosen uniformly distributed random variables was gener-
ated. Two of these variables, representing the length and
width of the incoming task chosen randomly (uniformly dis-
tributed), were permitted to range from 1 to 32 cells each. A
variable representing the tasks’ service periods was gener-
ated randomly (uniformly distributed) between 1 and 1000
timeunits . The deadline time of a task is formed by adding
a randome varible (uniformly distributed between 1 and 50)
to the task’s service time. The experiment was repeated with
various inter task arrival period intervals uniformly distrib-
uted between 1 and (10,20, 30, 40, 50, 60, 70, 80, 90, 100,
200, 300, 400, and 500) timeunits (tu).

These tasks were queued and placed in arrival order to a
simulated FPGA of size 64 × 64. The time needed to load
a task was determined by the availability of an empty place
on the chip and the time used to configure the cells needed
by the task. The configuration delay per cell was thus also a
parameter and chosen to be fixed at 1/1000 timeunit . Note
that the computation times of the suggested methods are cal-
culated on a host computer and is not added here. Also the
changes in the value of the configuration time can be con-
sidered in future work

First, the benefit of using the new fragmentation aware
placement algorithm was compared with the performance of
the traditional placement strategies Bottom-Left (BL), First
Fit (First), and Best Fit (Best) with the same data sets with-
out using the real time deadline time test. Then, we examine
the miss ratio in a real time environment.

In Figures 5 and 6, we compare different performance

0

10000

20000

30000

10 20 30 40 50 60 70 80 90 100 200 300 400 500

Inter Task arrival Time

T
im

e
U

n
it

s

BL FAP First Best

(a) Waiting time

0

20

40

60

80

10 20 30 40 50 60 70 80 90 100 200 300 400 500

Inter Task Arrival Time

T
im

e
U

n
it

s

BL FAP First Best

(b) Allocation time

Figure 5. Performance measures (1).

measures for the traditional and the new fragmentation
aware placement methodologies. An input set of data with
task side up to 32 cells, and service time of maximum 500
timeunits is used. The effect of varying the inter task ar-
rival time is examined.

Figure 5(a) shows an improvement in waiting time of
10% over the bottom left method, 17% over the first fit
method and 12% over the best fit method. In Figure 5(b),
the new placement strategy has an average improvement in
allocation time of 5% over the bottom left method, 9% over
the first fit method and 6% over the best fit method. For
the response time, Figure 6(a), we can notice that the new
placement strategy has an average improvement in response
time of 10% over the bottom left method, 16% over the first
fit method and 12% over the best fit method. For the uti-
lization, Figure 6(b), we can notice that the new placement
strategy has an improvement up to 5% over the bottom left
method, up to 9% over the first fit method and up to 6% over
the best fit method.

Table 1 shows the exact measurements for different per-
formance measures when inter task arrival time = 50 and
100 timeunits respectively. All measurements for waiting,
allocation, and response time are in timeunits.

In real time environment, Table 2 shows the improve-
ment percentage in miss ratio when using the fragmentation

6

0

10000

20000

30000

10 20 30 40 50 60 70 80 90 100 200 300 400 500

Inter Task Arrival Time

T
im

e
U

n
it

s

BL FAP First Best

(a) Response time

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 200 300 400 500

Inter Task Arrival Time

T
im

e
U

n
it

s

BL FAP First Best

(b) Chip Utilization

Figure 6. Performance measures(2).

aware placement compared with the bottom left placement
methodology. Task sizes are varied from 1 × 1 to 32 × 32
in the first column, from 8 × 8 to 32 × 32 in the second
column, and so on. The negative values means that the FAP
is worst than BL. We notice that in the first column the best
improvement achieved with inter task arrival time equals 90
timeunits. As we increase the minimum task side length,
we get more improvement in miss ratio. This is because the
small tasks can be placed in some fragments in the chip and
so the effect of the FAP is small. When the minimum task
side length is 16 cells, the effect of the FAP is higher. The
best improvement of 7.4% occurs with minimum task side
of 24 cells and inter task arrival time of 200 timeunits.

7 Concluding Remarks

In this paper, we presented a multi-dimensional fragmen-
tation metric. We used this metric in 2-dimensional struc-
tures to improve area utilization of FPGAs. Fragmentation
aware placement methodology is introduced and its perfor-
mance is compared to some standard placement strategy:
Bottom Left, First Fit, and Best Fit. Our placement method-
ology produces an improvement between 5% and 10% over
other placement strategies in chip utilization. An improve-

Table 1. Performance measures for different
placement methodologies.

Inter-task arrival time =50 time units

FAP BL First Best
W. time 18085 19742 20416 19005
A. time 60 64 65 62
R. time 18648 20310 20984 19571

Utilization 54.25% 50.74% 50.03% 51.93%

Inter-task arrival time =100 time units

FAP BL First Best
W. time 5112 6950 7959 7034
A. time 58 64 65 63
R. time 5674 7517 8528 7601

Utilization 54.53% 50.73% 49.56% 50.88%

Table 2. Miss ratio improvement for FAP
over BL methodology with varying task side
length.

Inter-task
arrival time 1 ∼ 32 8 ∼ 32 16 ∼ 32 24 ∼ 32
in time units

10 -0.8% -0.2% 1.4% 1.2%
20 -0.8% -0.3% 1.4% 1.4%
30 0.4% 0.7% 1.2% 1.0%
40 0.9% 1.9% 1.3% 2.6%
50 -0.2% 0.5% 2.1% 1.2%
60 2.0% 2.4% -0.1% 0.8%
70 0.4% 3.3% 2.9% 2.3%
80 1.3% 2.5% 0.2% 2.0%
90 2.8% 0.7% 2.4% 3.9%
100 1.3% 0.2% 3.1% 3.4%
200 0.4% 2.8% 4.4% 7.4%
300 0.9% 1.4% 4.5% 6.9%
400 0.6% 1.6% 4.0% 6.6%
500 0.0% 0.5% 4.5% 6.7%

ment of 16% in response time is achieved.
The effect of fragmentation aware placement in real time

systems is tested. An improvement of up to 7% is achieved
in miss ratio when using fragmentation aware placement.

Using this fragmentation metric in an acceptance test of
the incoming tasks in real time systems is an important issue
to be considered. Also, applying this strategy to heteroge-
neous reconfigurable systems is under consideration.

References

[1] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B.
Schmidt, “Dynamic scheduling of tasks on partially reconfig-
urable FPGAs,” In IEE Proceedings on Computers and Digital
Techniques, volume 147, pages 181-188, May 2000.

[2] A. Ejnioui and R. F. DeMara, “Area Reclamation Metrics
for SRAM-based Reconfigurable Device,” International Con-

7

ference on Engineering of Reconfigurable Systems and Algo-
rithms , 2005, Las Vegas, Nevada, U.S.A, June 27 - 30, 2005.

[3] M. G. Gericota, G. R. Alves, M. L. Silva, and J. M. Fer-
reira, “Run-Time Management of Logic Resources on Recon-
figurable Systems,” Design Automation and Test in Europe,
pp. 974-979, March 2003.

[4] M. Handa and R. Vemuri, “Area Fragmentation in Recon-
figurable Operating Systems,” Engineering of Reconfigurable
Systems and Algorithms, Las Vegas, NV, June 2004, Depart-
ment of ECECS, University of Cincinnati.

[5] M. Handa and R. Vemuri, “An Efficient Algorithm for Finding
Empty Space for Online FPGA Placement,” Design Automa-
tion Conference, June 2004, San Diego, CA, pp. 960-965.

[6] Renqiu Huang, Ranga Vemuri, “On-Line Synthesis for Par-
tially Reconfigurable FPGAs,” 18th International Conference
on VLSI Design held jointly with 4th International Conference
on Embedded Systems Design (VLSID’05), 2005, Kolkata, In-
dia pp. 663-668.

[7] Manuel G. Gericota, Gustavo R. Alves, Miguel L. Silva, Jos
M. Ferreira, “On-line Defragmentation for Run-Time Partially
Reconfigurable FPGAs,” FPL 2002, LNCS 2438, pp. 302-311,
2002.

[8] H. Walder and M. Platzner, “Non-preemptive Multitasking on
FPGAs: Task Placement and Footprint Transform,” The 2nd In-
ternational Conference on Engineering of Reconfigurable Sys-
tems and Architectures, June 2002, pp. 24-30.1998.

[9] G. Wigley and D. Kearney, “The Management of Applications
for Reconfigurable Computing Using an Operating System,”
conference on Computer systems architecture, 2002, In Pro-
ceedings, volume 6, pages 73-81, 2002.

8

