
Splice: A Standardized Peripheral Logic and Interface Creation Engine

Justin Thiel and Ron K. Cytron

Washington University
Department of Computer Science and Engineering

St. Louis, Missouri 63130 USA
{jthiel, cytron}@cs.wustl.edu

Abstract

Recent advancements in FPGA technology have allowed

manufacturers to place general-purpose processors along-

side user-configurable logic gates on a single chip. At

first glance, these integrated devices would seem to be

the ideal deployment platform for hardware-software co-

designed systems, but some issues, such as incompatibil-

ity across vendors and confusion over which bus inter-

faces to support, have impeded adoption of these platforms.

This paper describes the design and operation of Splice,

a software-based code generation tool designed to address

these types of issues by providing a bus-independent struc-

ture that allows end-users to integrate their customized pe-

ripheral logic easily into embedded systems.

1. Introduction and Motivation

In essence, Splice is an interface-generating application

that processes a set of C-like function prototypes as input

and generates a software driver and HDL logic stub to han-

dle the I/O operations of each defined function. This high-

level view is shown below in Figure 1. Through the use of

templates, dynamic libraries, and well defined compatibil-

ity mechanisms, Splice is able to generate interfaces for an

extremely varied range of target bus mechanisms from the

same set of input prototypes. By filling in the HDL logic

stubs generated by the tool with “business logic,” a wide

variety of hardware-based functions can be both modeled

and implemented.

The advantages of this approach to hardware-software

co-design are threefold:

1) Software driver creation is simplified: Often, hard-

ware designers are confronted with the task of converting

pre-existing software routines into hardware logic blocks,

1-4244-0910-1/07/$20.00 c©2007 IEEE.

Figure 1. High-Level Functionality of Splice

with the goal of increasing overall system performance. In

most cases, designing fast hardware blocks that are func-

tionally equivalent to existing software is a fairly straight-

forward task, due to the fact that most software source files

contain easily identifiable repetitive portions of sequential

code that can be converted into logical statements and per-

formed in parallel. However, it is unclear how to maintain

some semblance of compatibility with the existing applica-

tion structure while selectively porting pieces of the code

base to hardware.

By using Splice to automate hardware and software in-

terface creation, the task of selectively converting software

functions into hardware logic blocks is vastly simplified.

This simplification occurs primarily because Splice gener-

ates its output files from a set of C-like function definitions.

As a result, an end-user can provide the application with a

set of extant function prototypes and the tool will generate

a set of software drivers with the same calling conventions.

These drivers can then be dropped into the existing appli-

cation as replacements for the software routines, and used

to activate the hardware implementation of each function

without the need to modify any additional source code. If

the end-user is starting from scratch, the drivers generated

by Splice form the ideal starting point for application devel-

opment.

2) Vendor lock-in is eliminated: Currently available SoC

FPGAs from vendors such as Xilinx and Altera embed mi-

croprocessors and bus interfaces that are fundamentally in-

This work was supported by National Science Foundation grant CNS-

0313203, the Air Force Research Laboratory, and the Boeing Corporation.

compatible with one another, while a number of companies

such as Gaisler Research provide soft-core (or logic-based)

processors that offer their own unique set of interconnects

and capabilities [11, 8, 1, 3]. Each of these bus mecha-

nisms has its own timing characteristics, transfer protocol,

and feature set, making it next to impossible for a developer

to optimize a design for every available platform. Develop-

ers might thus omit support for the advanced features that a

device is capable of providing, in the interest of simplicity

and meeting time-to-market demands.

Splice addresses this issue by defining a bus-independent

peripheral logic interface, called the Splice Interface Stan-

dard (SIS), which is observed by all user-logic files gen-

erated by the tool. The SIS transparently handles all inter-

actions between the various bus mechanisms that the tool

supports, providing a unified peripheral interface from the

point of view of the end-user. As a result, Splice-compliant

designs can be moved between FPGA or bus architectures

with little or no effort on the part of the developer, assuming

that the desired target interface is supported by the tool.

3) Future compatibility is ensured: Due to the rapid pace

of advancements in the areas of FPGAs and embedded pro-

cessors, it is reasonable to assume that the bus interfaces

provided by current FPGA-based SoCs will not be avail-

able five years from now. Furthermore, even if comparable

FPGAs are still in production, faster (incompatible) devices

would likely be available, providing a more attractive plat-

form for system deployment. As a result, any legacy hard-

ware designs that were tied to a specific system bus would

have to be at least partially recoded to interface with the

newly available devices.

In an effort to avoid “reinventing the wheel” each time

a new type of FPGA device is released, Splice provides

support for user-definable bus interfaces. By following a

simple API, end-users can create SIS-compliant interface

adapters that are loaded by the tool at run-time via dynamic

libraries. Through these libraries, hardware and software

interface code can be generated for bus interfaces that do

not yet exist, enabling existing designs to be ported forward

with minimal effort.

The remainder of this paper provides an overview of the

implementation of Splice and is organized as follows. The

next section provides a discussion of related work, followed

by sections that describe the various hardware and software

mechanisms provided by the tool. A real-world use-case

for Splice is presented in Section 7 along with experimental

results, followed by some concluding remarks in Section 8.

2. Related Work

The Splice approach to bus-interface generation and

linkage somewhat resembles the methods employed by dis-

tributed object specification systems such as CORBA [6].

Like CORBA, Splice generates functional bindings based

on relatively abstract interface definitions provided by the

developer. CORBA, however, operates solely in the realm

of software and thus is incapable of implementing the types

of hardware-software interfaces that Splice provides. Fur-

thermore, due to the complexities that a system such as

CORBA must handle, it is forced to rely on fairly abstract

bindings to handle each and every situation in which it

might be deployed. In contrast, the structure of each in-

terface file generated by Splice is governed by well defined

protocols and microprocessor ISAs, allowing for better op-

timization of I/O transfers across the software-hardware

boundary regardless of the bus interface that is targeted by

the end-user.

Splice can also be compared with hardware-centric de-

sign automation languages such as Handel-C [2] or System-

C [4]. Much like Splice, these types of systems oper-

ate upon C-like source files to create platform-independent

hardware-based netlists and/or HDL files. In sharp contrast

to Splice, however, both Handel-C and System-C infer not

only interface mechanisms, but also business logic from the

input source code. The downside to this approach to hard-

ware design is that it is often unclear what type of calcu-

lation hardware will be generated from a particular set of

end-user input. Splice, on the other hand, does not attempt

to infer calculation logic for the user-defined functions it

operates upon, and is thus aimed at a somewhat different

group of end-users than any other currently available soft-

ware/hardware generation systems.

3. Defining Hardware-Software Interfaces

Function prototypes for Splice are patterned after the

ANSI C programming language. Support for all stan-

dard C data types is provided along with a type-defining

(typedef) mechanism that enables support for any ad-

ditional types that a developer might need. By providing

support for a commonly used language, many already con-

structed C function prototypes can be passed directly into

the tool from a header file without modification. This, in

turn, makes it easy for the end-user to maintain software-

side interface compatibility within a pre-exiting application.

Due to the fact that ANSI C was not originally designed

as an HDL, there are currently some features of the lan-

guage, such as structs and pass-by-reference, that are either

not supported by Splice or require small modifications to be

deployed on hardware. In addition, a variety of language ex-

tensions were added to support hardware-specific constructs

and provide access to advanced interface features. The re-

mainder of this section provides a description of the various

types of syntax extensions Splice supports and how they can

be activated within user-defined function prototypes. Sec-

tions 5 and 6 describe how these features are implemented

in the generated user-logic stubs and software drivers that

Splice produces as output, while Figure 2 summarizes the

various language extensions for which Splice provides sup-

port.

Defining Pointer-Based Data Transfers The most com-

monly used syntax extension defined by Splice is support

for data pointers. In typical C applications, data pointers

are extremely powerful and able to pass large amounts of

data between functions with little effort on the part of the

end-user. Hardware devices, however, cannot typically be

passed pointers into memory or unbounded arrays due to the

physical resource limitations of FPGAs. Therefore, when

pointer-type inputs and outputs are required, the user must

define how many items need to be transmitted across the

bus interface to synchronize with the hardware.

One method used to define pointer transmission is via

an explicit numeric declaration. This type of declara-

tion specifies precisely how many items of a particu-

lar data type need to be transferred from main memory

into hardware and is supported on both input and output

data structures. To make use of explicit transfers, stan-

dard pointer declarations need to be extended with the

“colon” (or ‘:’) operator. As an example, a declaration of

void some function(int* x:5) would mean that

5 integers should be passed into the hardware implemen-

tation of ’some function’ as input from a unbounded

array (x) each time its corresponding driver is called.

As an alternative to explicit pointer declarations, the

end-user also has the option of using an implicit index

value to define how many items should be passed into

or out of a hardware function. Implicit array transfers

reference the values of other inputs listed in the prototype

to determine how many items should be transferred,

allowing end-users to create “dynamic” hardware functions

that operate on variable-length parameters. Much like

explicit transfers, the “colon” operator extension is used to

define an implicit declaration. As an example, a declaration

of void some function(char x, int* y:x)

would imply that some function takes in a total of ’x’

integers transferred from the ’y’ integer pointer array.

Regardless of the type of pointers used within a function

declaration, the data they require is always passed by-value

into the hardware as opposed to by-reference. In effect, this

means that a pointer passed into a function as an input can-

not be written to by the hardware and then returned as an

output. As a result, only a single return value (or array of

values) can be passed back from the hardware by any single

function call.

Defining “Packed” Data Transfers In addition to pro-

viding support for explicit and implicit pointers, Splice also

defines an additional language extension to assist in the

packing of data values. In simple terms, data packing is a

mechanism that allows a designer to transfer multiple data

entries to or from a compatible target bus in a single trans-

mission cycle. For instance, if provided with a 32-bit wide

interface, a total of four 8-bit characters could be transferred

across the bus in a single cycle if data packing is used, re-

sulting in a 75% reduction in transmission time versus trans-

ferring one character at a time.

To enable the use of data packing within function dec-

larations, the “plus” (or ‘+’) extension was added to the

Splice syntax. Use of this extension must be combined

with either an explicit or implicit pointer declaration to

be recognized by the tool. As an example, the statement

void some function(char* x:8+) would imply

that the user wants to transmit 8 characters across the bus

in packed mode. This would enable all 8 values of ’x’ to be

transmitted in 2 cycles (4 values/transmission) as opposed

to 8, speeding up operation and freeing the bus sooner for

additional transactions.

Defining Direct Memory Access (DMA) Transfers

Along with extensions to handle various array operations,

Splice also provides syntax enhancements that allow end-

users to transfer input and output data parameters via DMA.

Enabling this feature allows the designer to transfer infor-

mation to and from a hardware peripheral without direct

CPU-to-memory-to-bus interaction, thus freeing up the pro-

cessor to perform other tasks while data transmission takes

place. This feature is especially helpful in cases where a

function requires a large block of input to operate, and thus

a large number of CPU cycles could be saved by automat-

ing said requests. Support for this feature is limited to use

with bus interface types that have built-in physical support

for DMA operations. In other words, Splice is not capable

of providing DMA support to a bus that does not already

have such capabilities.

Assuming that a DMA-supporting target bus is selected,

the feature can be activated by including the “caret” (or ‘ˆ’)

syntax extension within a user-defined function prototype.

As is the case with packing, use of this extension is lim-

ited to those I/O parameters that make use of either ex-

plicit or implicit transmission. As an example, the state-

ment void some function(int* x:8ˆ) would im-

ply that the user wants to create a hardware block

that takes in 8 integers via DMA. This would enable

some function to be activated without the need for the

CPU to physically pass data into the user-logic block.

Defining Multiple Hardware Instances Another ad-

vanced feature that Splice provides syntax extensions for

is the ability to automatically generate multiple copies of

the same hardware function from single prototype declara-

tion. This feature is useful for a multi-threaded software

application in which the developer wishes to have a copy of

a specific peripheral hardware function available for each

software thread to use. By having multiple copies of the

same hardware function, developers can avoid the perfor-

mance penalty of having to arbitrate access to a single re-

source and, as a result, drastically improve performance.

Similar to pointer declarations, this feature is activated

by the “colon” operator, but the colon is included at

the end of a declaration instead of being inserted on a

per-parameter basis. As an example, a declaration of

void some function(int x, int y):4 would

generate four independent copies of some function

that could all execute calculations in parallel.

Defining Blocking Function Calls By default, any pro-

totypes defined in Splice that return a value are assumed to

be synchronous operations, while any that return ‘void’ are

assumed to asynchronous. That is, if a prototype specifies a

‘void’ return type then the generated driver for such a func-

tion will return control to the user application immediately

after all input parameters have been transmitted across the

bus. As a result, the end-user is not guaranteed that a par-

ticular function has finished processing once the driver call

has completed and program execution is resumed.

This system works well for simple “set-it-and-forget-it”

functions, but is incapable of handling ‘void’-type hard-

ware operations that rely on ordered execution. In an ef-

fort to enable support for these types of functions within

Splice, an extension for blocking hardware function calls

was added to the tool. Support for this feature is enabled by

setting the return type for a prototype that returns no value

as ‘wait’ instead of ‘void’. As an example, the statement

wait some function(int x, int y) would im-

ply that the end-user wants to pass two integers (x and y)

into a user-logic block and then wait for the hardware to

signal that all internal calculations have completed before

enabling further bus transactions to occur.

Feature Extension Example

Explicit Pointers : (colon) void some func(int* x:8);

Implicit Pointers : (colon) void some func(char x, int* y:x);

Data Packing + (plus) int some func(int* x:8+);

DMA ˆ (caret) int some func(int* x:8ˆ);

Multiple Instances : (colon) void some func(int x):4;

Blocking Calls wait wait some func(int x);

Figure 2. Summary of Language Extensions

4. Splice Interface Standard

Splice was designed to provide end-users with an easily

expandable hardware-software system generation platform.

In order to provide this functionality, the tool makes exten-

sive use of bus-independent hardware and software inter-

faces that were created to simplify system development and

provide a high degree of design flexibility. One such mech-

anism employed extensively throughout the tool is known

as the Splice Interface Standard (SIS).

Essentially, the SIS functions as an intermediate inter-

face between an external system bus and the user-logic files

generated by Splice. Any system bus of interest must have

its signals and transmission protocols adapted to those of

the SIS in order to ensure that communication with user-

defined functions can take place. The communication sig-

nals utilized by the SIS can be seen in Figure 3, and further

information in regards to constructing an interface adapter

can be found in Section 5 of this paper.

Figure 3. SIS Signaling Conventions

The exact methodology used to adapt the signals of a

particular system bus to the SIS will vary depending on the

complexity of the interface that is being targeted. There are,

however, a number of pre-defined axioms that dictate how

the SIS interface should interact with a user-defined func-

tion. Through this protocol, which is outlined in Figure 4,

almost any type of bus-related transfer operation can be ac-

complished. Complex operations such as DMA and burst

transactions can be handled via the external bus interface

and then converted into simple SIS-compliant transactions

without the end-user knowing that such a conversion has oc-

curred. As such, every read and write transaction across the

SIS appears to be identical from the viewpoint of the user-

logic functions, vastly simplifying transmissions compared

to traditional bus interface mechanisms.

Figure 4. Simplistic SIS Timing Diagram

5. User-Logic and Bus Interface Generation

User logic and interface generation is a multi-step pro-

cess that consists of three independent stages. In the first

stage, one or more top-level interface files are generated to

link user hardware blocks to the specified system bus. Next,

a bus arbitration file is generated to handle the multiplexing

of shared signals between each user-specified function. In

the third and final stage, a separate user-logic stub file is

generated for each hardware prototype that handles all re-

lated input and output operations automatically.

The contents of the logic, arbitration, and interface files

that are generated will vary greatly from project to project.

This is due to the fact that factors such as the format of the

input function prototypes, the bus interface being targeted,

and the types of “advanced” features the end-user requires

all have an impact on the structure of the resulting stubs.

What is constant, however, is the method used to generate

the files and the relationships between them.

Bus Interface Generation Generation of bus interfaces

is accomplished by consulting a set of reference HDL files

that describe the basic logical statements and wired connec-

tions that are required to implement the target system in-

terface. These files essentially adapt the bus’s native input

signals into the format required by the SIS (as described in

Section 4) to allow bus-independent hardware blocks to be

created and deployed.

Arbitration Unit Generation Once a proper interface

file for a peripheral has been generated, Splice then cre-

ates an arbitration unit to sit between the bus and user-

defined hardware functions in order to multiplex access to

the shared output signals defined by the SIS. To perform

this arbitration, each user-defined function (or instance of

a function if multiple instances are required) is assigned a

unique function ID based upon a parameter that is specific

to the target bus. Software drivers generated by the tool

can then use these identifiers to target particular hardware

functions and orchestrate calculations. This method of ac-

cess control is required because all user-logic blocks are at-

tached to a common connection point (the bus), and thus

would corrupt the shared signaling lines if some method of

arbitration were not employed.

In theory, the multiplexers defined within the arbitration

file could create a performance bottleneck if a set of func-

tions has a high ratio of I/O to business-logic time. In real-

ity, however, hardware functions will typically spend an or-

der of magnitude more time (cycles) calculating results than

they will handling I/O operations. As a result, having multi-

ple components share the same bus interconnect should not

create a performance bottleneck within the system. Further-

more, by sharing the same bus interface between all hard-

ware functions, any additional connection points on the bus

will be available for use by other peripherals, such as Eth-

ernet devices or memory controllers.

User-Logic Stub Generation After interface and arbitra-

tion files have been generated for a particular peripheral de-

vice, Splice then creates a seperate user-logic stub for each

prototype that the end-user has defined. Each generated

stub implements a minimum of two distinct functional units

known as the ICOB (input-calculation-outputblock) and the

SMB (state machine block) that work together to handle all

bus interactions for a particular hardware function. In do-

ing so, these blocks allow each function within a system

to operate in an autonomous fashion, while also providing

support for any calculation logic that may be added by the

end-user. In cases where the default functional units do not

provide enough flexibility to implement a desired function,

the end-user is free to add any additional blocks that are

required. The relationship between the ICOB and SMB is

portrayed in Figure 5.

Figure 5. Layout of a Typical User Logic Stub

The ICOB is a clock-sensitive unit that is responsible

for implementing all bus interactions for a specified hard-

ware function in the order expressed within its correspond-

ing prototype. By default, all input and output bus-level

signaling, such as read and write verification, is handled by

the ICOB, but no actual data storage or transfer is done. The

reasoning behind this is that end-users may want to allocate

their own system-specific structures such a Block RAM or

register files for storage that are outside the scope of Splice.

Working in tandem with the ICOB, the SMB is respon-

sible for updating the “current state” signal that is used to

move between the various input, calculation and output op-

erations defined within the ICOB. Transitions within the

SMB are accomplished via a set of combinational logic

statements that are activated each time the ICOB requests

a state transition. Since the ICOB is itself a clocked pro-

cess it will only request a state change a maximum of once

per cycle, thus ensuring ordered completion of all function-

related operations.

6. Software Driver Generation

The software drivers created by Splice are constructed as

simple functions written in the C language. A separate func-

tion is created for each prototype that was provided to Splice

at run-time, with the resulting calling conventions designed

to mimic those provided as input. As such, if Splice is pro-

vided with a set of pre-existing software prototypes as input

then the drivers generated from them can be used as drop-in

replacements for said functions, making it easy to integrate

and test the resulting hybrid system.

A longer discussion of software-driver generation will

appear in the full paper. For now, the details can be in-

ferred from the example shown in Figure 6. It should be

noted, however, that when advanced features such as DMA

or multi-valued outputs are required to complete a trans-

action they are handled internal to the driver, thereby free-

ing software developers from the burden of implementating

such transfers on their own.

// ID Used to Target sample_function

#define SAMPLE_FUNCTION_ID 2

// Driver Used to Activate sample_function in HW

float sample_function(int* x, int y)

{

// Allocate Storage for output

float result;

// Transfer Two Values of x

write_double(SAMPLE_FUNCTION_ID, &x[0]);

// Transfer One Value of ‘y’

write_single(SAMPLE_FUNCTION_ID, &y);

// Grab Result from Hardware

read_single(SAMPLE_FUNCTION_ID, &result);

return result;

}

Figure 6. Autogenerated Driver Code

7. Real World Implementation Example

While Splice is able to provide a wide-array of inter-

face generation capabilities, the tool would be useless if

the hardware it generated was substantially slower than that

which could be implemented “by hand”. Therefore, in an

effort to quantify the performance impact that the bus in-

terfaces and arbiters generated by Splice have upon overall

hardware performance, a pre-existing hardware device was

chosen and re-implemented to make use of a number of

Splice-compliant interfaces. Specific details about the de-

vice that was used in this testing are presented below along

with a selection of performance results.

The device selected for testing was a linear interpolator

that is used within the Sonic Eagle unmanned aerial vehicle

(UAV) to approximate continuous flight control data for the

aircraft from a set of time-valued samples. The interpolated

data is then used to steer the aircraft properly during the

time periods in which sampled data is not being received.

This device was chosen primarily for the following three

reasons:

1. We have access to two pre-existing bus interconnects

for the device that were coded by hand for use in pre-

vious research.

2. The calculation logic for the device runs in a pre-

dictable manner and requires the same numbers of

clock cycles to produce results each time it is run, mak-

ing it simpler to obtain reproducible performance re-

sults.

3. The interpolator can be run in four modes (scenar-

ios), each of which require differing amounts of input

to execute, thus providing the chance to test the per-

formance of Splice-generated interfaces under a wide

range of usage patterns.

For the purposes of testing, a Xilinx ML-403 develop-

ment board was used as the hardware deployment plat-

form. The ML-403 contains a Virtex4-FX12 FPGA with

an embedded PowerPC 405 (PPC405) microprocessor, and

a number of supporting peripherals such as 64 MB of DDR-

SDRAM, a UART interface, and two separate Ethernet con-

trollers. The onboard CPU is able to communicate with

user-logic deployed on the FPGA through three distinct bus

interfaces: the Fabric Co-Processor Bus (FCB), the Pro-

cessor Local Bus (PLB), and the On-chip Peripheral Bus

(OPB) [5, 9, 7]. In our testing, only the FCB and PLB

were utilized as interfaces for the linear interpolator. The

OPB, by virtue of the fact that is designed for use with low-

speed peripherals, was deemed too slow to handle the trans-

fer rates required by the device.

In terms of functionality, the FCB is a 32-bit bus that

is intended to be used as a co-processor interconnect for a

single device. The bus is not directly addressable through

memory mappings, but can be accessed via a number of

FCB-specific opcodes that are included in the PPC 405 ISA.

In addition to simple single-word load and store operations,

the FCB also has native support for double- and quad-word

burst transmissions [5]. Due to the fact that the interface is

not memory-accessible, however, support for DMA trans-

fers is not provided.

Unlike the FCB, the PLB is a general-purpose intercon-

nect designed to interface to a number of different 32/64-bit

devices at the same time. Access to the bus is controlled

through an arbiter that operates in a similar fashion to those

generated by Splice. PLB devices are memory-accessible

and can be configured by the end-user to support any num-

ber of the advanced features (such as DMA) that the bus

provides [9]. One peculiarity of the bus is that although

burst transactions are supported, the PPC 405 has no in-

structions that are capable of activating such transmissions.

The impact this has on performance is further explored later

in this section.

Each of the four usage scenarios of the linear interpo-

lator operate upon three sets of input values to generate a

single output. The exact meanings of these values are not

important for the purposes of this analysis since the amount

of calculation done in each implementation is constant. As

such, a full explanation of the inner workings of the interpo-

lator is omitted for the sake of brevity. The precise number

of inputs that each scenario requires is shown in Figure 7. It

should be noted that since each set of values transferred to

the hardware is contained in a separate data array, it would

be impossible to transfer all items across the bus via a single

burst or DMA transaction.

Scenario Set 1 Set 2 Set 3 Total

1 2 1 2 5

2 4 2 4 10

3 8 3 6 16

4 16 4 8 28

Figure 7. Input Parameters for Each Scenario

A total of five interface implementations for the linear

interpolator were used in our testing: two hand-coded vari-

ants and three generated via Splice. Of the hand-coded im-

plementations, the PLB variant (referred to as “Initial PLB”

in the figures provided below) was the product of the first at-

tempt at generating an interface for the linear interpolation

device. At the time the interface was coded, the designer

was not aware of all of the intricacies of the PLB and thus

the interface was not nearly as optimized as it could have

been. Thus, the performance results obtained from this in-

terface should be considered representative of what an end-

user who is unfamiliar with the protocols of a particular bus

would likely create. Conversely, the hand-coded FCB inter-

face (“Optimized FCB”) is a highly optimized implemen-

tation that was created to replace the slower PLB intercon-

nect.

All three Splice-generated interfaces are attached to an

identical user-logic function that makes use of implicit

pointer declarations to transfer the required number of val-

ues from each of the three datasets depending on the sce-

nario that is run. One of the generated interfaces (“Splice

PLB (Simple)”), is a minimally sized PLB interconnect that

is capable of orchestrating single-word (32-bit) transmis-

sions across the bus. The generated FCB interface (“Splice

FCB”), on the other hand, is able to facilitate double and

quad-word transfers for sets of data values that can benefit

from such transmissions.

The third and final interface generated for testing via

Splice for testing is an additional PLB interconnect (“Splice

PLB (DMA)”) that contains the supplementary control

logic required to support DMA transactions. The use of

DMA across the PLB bus is interesting in that it does not

benefit transactions of four or fewer data values. This is due

to the fact that the DMA circuitry requires a minimum of

four bus transactions to setup and take down, thus negating

any benefits for lesser transmissions [10].

To perform the testing, a memory-accessible clock-cycle

accurate timer was loaded onto the FPGA along with a

small Xilinx Embedded Development Kit (EDK) project

consisting of the bare minimum hardware to activate each

peripheral interface and obtain results. The embedded PPC-

405 was clocked at 300 MHz, while the on-chip PLB and

FCB interconnects were clocked at 100 MHz. For the hand-

coded PLB and FCB interfaces pre-existing drivers were

used to transmit data to and from the interpolator, while

Splice-created drivers were used for the three generated in-

terfaces. The results of these tests for each interpolation

scenario can be seen in Figure 8.

The performance results show that Splice-generated in-

terfaces compare favorably to those generated by hand.

Overall, the Splice-generated simple PLB Interface is ap-

proximately 25% faster than the naı̈ve hand-coded imple-

mentation. Furthermore, the Splice-generated FCB inter-

face is approximately 43% faster than the naı̈ve PLB im-

plementation and only 13% slower than an optimized hand-

coded FCB interconnect. For this particular hardware de-

vice, DMA transactions enacted via the PLB bus are not

very beneficial, representing only a 1-4% performance in-

crease versus a non-DMA implementation.

Besides pure performance results, there is also the issue

of how many FPGA resources each implementation con-

sumes. Although reconfigurable logic devices continue to

grow in size at a rapid rate, there are still cases where it is

difficult to fit all of the logic required for a particular de-

sign onto the chip. Resource usage statistics for each of the

tested bus interconnects are provided in Figure 9.

The resource usage numbers obtained for each bus im-

plementation are comparable to the performance results.

On average, the Splice-generated simple PLB interface con-

sumes about 23% less FPGA resources than the naı̈ve hand-

coded implementation. Similarly, the Splice-generated

FCB interface requires (on average) 28% less resources than

the naı̈ve PLB implementation, and only around 2% more

resources than an optimized hand-coded FCB interconnect.

The most surprising usage statistic perhaps, is the as-

tronomical resource usage that results from enabling DMA

transactions for a PLB device. In this particular case, the

DMA-supporting interface requires anywhere from 57-69%

Figure 8. Runtime for Each Scenario

more FPGA resources to implement than the otherwise

identical simple PLB interconnect. As such, when an end-

user chooses to enable DMA support for a particular device

they need to ensure that the possible performance benefit is

worth the additional resource cost.

8. Conclusions and Future Work

Manufacturers such as Xilinx and Altera have recently

introduced a number of FPGA-based SoC devices in an at-

tempt to provide developers with a flexible embedded sys-

tem development platform. Issues such as a lack of inter-

vendor compatibility between platforms, however, have

prevented these devices from being adopted en masse.

Splice attempts to address such problems by providing flex-

ible and easy-to-use facilities by which end-users can auto-

matically generate interfaces, user-logic stubs, and C-based

software drivers for a wide variety of target bus mechanisms

from a set of simple C-like function prototypes.

In terms of both performance are resource usage, Splice-

generated interfaces compare favorably with manually cre-

ated optimized interconnects and can outperform “naı̈ve”

bus implementations by a significant margin. Furthermore,

by virtue of the fact that the tool can generate interconnects

almost instantly, Splice allows an end-user to experiment

with the various bus mechanisms supported by their SoC

without the need to manually code a single interface. This,

in turn, saves valuable development time and allows the

end-user to focus exclusively on creating optimized “busi-

ness logic” for their peripheral.

Currently, Splice suffers from a number of limitations,

including a lack of support for C-language features such as

structs, and a somewhat inflexible implementation of im-

plicit pointers. Furthermore, built-in support for a wider va-

riety of bus interfaces will likely be required in order for the

Figure 9. FPGA Resource Consumption

tool to gain wide acceptance. Despite these small issues,

however, Splice is still able to provide a set of powerful

hardware/software generation tools that enable end-users to

generate devices that are easily expandable and that are not

instantly outdated each time a new family of FPGAs is in-

troduced.

References

[1] Altera. Nios II Processor Reference Handbook, May 2006.

[2] S. Chappell and C. Sullivan. Handel-c for co-processor

and co-design of field programmable system on chip. In

Workshop on Reconfigurable Computing and Applications,

September 2002.

[3] J. Gaisler, S. Habnic, and E. Catovic. GRLIB/LEON3 Users

Manual, August 2006.

[4] IEEE. IEEE Standard System C Language Reference Man-

ual, 2005.

[5] H.H. Ng and L. Pillai. Accelerated system performance with

the apu controller and extreme dsp slices. Xilinx Application

Notes, September 2005.

[6] Object Management Group. CORBA Specification, January

2006.

[7] Xilinx. Processor Local Bus (PLB) Specification, July 2003.

[8] Xilinx. Microblaze Processor Reference Guide, October

2005.

[9] Xilinx. On-Chip Peripheral Bus (OPB) Specification, De-

cember 2005.

[10] Xilinx. PLB IP Interface Guide, April 2005.

[11] Xilinx. PowerPC 405 Processor Block Reference Guide, 2.1

edition, July 2005.

