

C++ based System Synthesis of Real-Time Video Processing Systems targeting
FPGA Implementation

Najeem Lawal, Mattias O’Nils, Benny Thörnberg

Mid Sweden University
Dept. of Information Technology & Media

SE-851 70 Sundsvall, SWEDEN
{mattias.onils, benny.thornberg, najeem.lawal}@miun.se

Abstract

Implementing real-time video processing systems put

high requirements on computation and memory
performance. FPGAs have proven to be effective
implementation architecture for these systems. However,
the hardware based design flow for FPGAs make the
implementation task complex. The system synthesis tool
presented in this paper reduces this design complexity.
The synthesis is done from a SystemC based coarse grain
data flow graph that captures the video processing system.
The data flow graph is optimized and mapped onto an
FPGA. The results from real-life video processing systems
clearly show that the presented tool produces effective
implementations.

1. Introduction

Video processing is gaining importance in such areas

as process surveillance, communication and security
systems. Often the video processing in these systems are
done in real-time. In real-time video processing systems
(RTVPS) huge amounts of information are processed in
real-time. Memory accesses are the main bottle neck in
these systems, which make the optimization of memory
structures and memory access the key design challenge in
achieving cost effective implementations for embedded
applications [1].

Smart camera is a term normally used for a video
camera with built-in computing power [2]. Smart cameras
are, for instance, used in robotic vision and the
information leaving the camera can, for example, be
statistics based on various objects [3]. The most important
idea behind the smart camera architecture is to collect
video data and then analyze, interpret and reduce the
information before it leaves the camera. To ensure real-

time processing, the computation architecture used in the
camera traditionally are VLIW processor and more
recently it has been shown that programmable logic
(FPGAs) are more efficient in implementing RTVPS
systems [4][5]. Based on this fact, we have selected FPGA
as the target architecture for the design environment
presented in this paper.

The pre-processing parts of an RTVPS are usually
neighborhood oriented. Examples of such 2-D operations
are convolution, histogram, spatial and gray-level
transforms, erosion, dilation and component labeling [6].
Consequently, spatio-temporal RTVPS will operate on a
3-D neighborhood, which will also increase data storage
and transfer intensity. Examples of 3-D operations are
optical flow calculations and scene change detection [7].
Figure 1 depicts an example of a 3-by-3-pixel spatial
neighborhood. The neighborhood slides over the video
operation’s input frame in a progressive scan order [7].
One output pixel is calculated at every neighborhood
position. Consequently, the data flow dependencies are
regular, meaning that they are the same for every pixel
position, except for the frame boundaries.

There are several attempts to increase the abstraction
levels of the design entry with the target to shorten the
design time. This has led to many propositions for
implementing hardware from high level languages. These
include C/C++ [8]-[13], Java [14], [15] and MATLAB
[16], [17]. Familiarity with C and its variants has led to
focus on synthesizing hardware from C. Since C modules
can be compiled into object codes for several
architectures, compiling these object codes into hardware
is seen as an efficient way of hardware synthesis from
system level designs.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

row

column

Figure 1. A 2-D pixel neighborhood slides
over the input frame in a progressive scan
order.

De Micheli [11] summarized the major research

contribution in the use of C/C++ for hardware modeling
and synthesis while Edwards [12] provided in details,
challenges to hardware synthesis from C-based languages.
It was observed in [12] that the studied approaches
generate inefficient hardware due to difficulties in
specifying or inferring concurrency, time, type and
communication in C and its variants. Modeling languages
like SystemC [9] and HardwareC [18] have been
optimized to efficiently overcome some of these
shortcomings (for example, both handle concurrencies
through process-level parallelism) and are often employed
to capture the system behavior in the form of executable
specifications. The executable specification provides the
possibility of design exploration (choosing among
different algorithms and resources), system functionality
partitioning (choosing between software and hardware),
and memory requirements and state transitions. These
specifications can be converted into RTL design manually
or automatically using CAD tools like the Synopsis
C2HDL [19] (creates VHDL and Verilog modules from
multi-module level hierarchy in C and also provides HDL
simulations).

Current approaches to C/C++ based system synthesis or
any other synthesis environment do not efficiently make
use of the FPGA architecture especially the memory sub-
systems for real-time video processing systems. This is
due to the manner in which memories are currently being
instantiated in FPGAs. In this paper, we present a system
synthesis tool for implementing RTVPS with multiple
neighborhood oriented filters targeting FPGAs.

The tool takes advantage of our already developed
memory modeling tool IMEM [23], memory allocation
[21], boundary conditions management tool [24] and
behavioral simulation platform. The synthesis process
explicitly separates the modeling and implementation of
memory requirements and behavior of the filter functions.
In this paper we show that real-time video processing
systems can be synthesized from C/C++ or SystemC codes
to FPGA implementation. The approach supports
verification through simulation of both the C/C++ and
VHDL modules of the filter with real video signal to
ensure that the behavioral specifications of the filter are
satisfied.

2. Conceptual model – IMEM

The video system is captured using a coarse grained

synchronous dataflow graph called IMEM, see Figure 2A.
IMEM means Interface and MEmory Model and is build
on top of the SystemC modeling library [23]. Each node in
the IMEM dataflow graph captures both the abstract video
interface and the memory model as shown in Figure 2B.
The model is stated to be conceptual since it explicitly
captures the data dependencies. The memory model is a
description of the neighborhood of pixels that the task
operates on, Figure 3A shows an example of such a
neighborhood. Additionally, each node consists of a
description of the task’s functional behavior. The task
does not include any data dependency or timing related to
the dataflow, just an un-timed C++ description of the
relation between input and output pixels.

The IMEM model can be verified through simulation at
system level using the SystemC simulator. Source and
sink nodes can easily be added to the model, which
produce and consume video data, respectively. When
verified the supporting tool set can extract the IMEM
model from the system to the synthesis tools, which is
further described in Section 4.

3. Target architecture

The target architecture is FPGA having on-chip Block

RAMs. These RAMs are required as cache memory for
the streaming data oriented application that we target.
Resource reuse is not possible between processes but only
within individual tasks (as shown in Figure 2).

The architecture in Figure 4 handles data storage and
boundaries conditions for the spatial pixel neighborhood
shown in Figure 3.

p1 p2 p3 p4

p5 p6 p7

in out

A)

B)

IMEM model

C++ function

Task

Figure 2. IMEM model of a video processing
system.

In Figure 4, the video/image processing (VIP)
algorithm is the neighborhood oriented filter. It is
connected to the memory architecture through the port
interfaces for all the pixels data required in the
neighborhood. The sliding window controller SLWC
monitors the centre pixel in a spatial neighborhood and
using the position information provides valid data for all
the pixels in the spatial neighborhood through the Line
buffers, Window ctrl and Pixel Switch. The Line buffers in
Figure 3B are required to buffer image data in order to
create the neighborhood shown in Figure 3A. They are
implemented in hardware through the line buffer modules
described in details in Section 5.

Window control (Window ctrl) provides control signals
used by the Pixel switch to build a spatial neighborhood
around the current pixel. Window ctrl is implemented in
hardware such that only one copy is instantiated and used
to control all Pixel Switch modules instantiated for all the
spatial neighborhoods in a VIP algorithm involving more
than one frames. The Pixel switch replaces all pixels in a
spatial neighborhood affected by boundary condition
using predefined default values if the centre pixel is at the
image boundary. The output sync is optional and is
required to realign the pixels with other video signals
where time synchronized data and control signal outputs
are expected. This is because the neighborhood’s output
pixel is usually skewed with respect to the input video
control signals by an amount depending of the
neighborhood size and the number of pipeline stages.

The architecture in Figure 5 eliminates the optional
output sync and is suitable for a system with many
neighborhoods and high demands for Block RAMs. A
central state machine is employed to maintain the data and
control signal synchronization for all the neighborhoods.

row

column

b33

Line buffer Line buffer

d d d d d d

a33 a32 a31 a23 a22 a21 a13 a12 a11

Pixel
input

a11 a12 a13

a21 a22 a23

a31 a32 a33

A)

B)

W=3

W

Figure 3. A: Spatio-temporal neighborhood
of pixels. B: Memory architecture for a
single image processing operation.

Linebuffers

Window
ctrl

Pixel
switch

SLWC

...

VIP Algorithm

Sync.

a11 a12 a13

a21 a22 a23

a31 a32 a33

In
data

Neighbourhood
data

Neighbourhood
output

Out
data

a)

b)

Figure 4. Boundary conditions implementation
architecture.

Central State
Machine

Operator 1
(Mem & Algorithm)

Operator 2
(Mem & Algorithm)

Operator n
(Mem & Algorithm)

Data &
Control
to video

sink

Data &
Control
from
video
source

Control signal
Data signal

Figure 5. Neighborhood oriented system.

4. System synthesis

The IMEM synthesis workflow depicted in Figure 6

demonstrates how our research on modeling and high
level synthesis fits into an implementation trajectory. This
workflow is defined at six different levels along the left-
hand axis. The video-processing algorithm is developed
and simulated using IMEM at level 1. This executable
model can then be verified through functional simulation.
Data dependency information, frame sizes, composition of
the 3-dimensional neighborhoods and color space models
are exported into an interface and memory model at level
2. Hence at it is at this level that the memory requirements
of a RTVPS are separated from the behavioral C++
description of the RTVPS filters (as shown in Figure 2B).
The interface between the memory and filters of each
operator is also defined at this level. The model exported
in level 2 is the input to the memory synthesis process at
level 3. This is where memory estimation, memory
hierarchy optimization, memory allocation and address
generation is performed.

At level 3, the SystemC functional description together
with the interface template generated from the memory
model is synthesized using a SystemC based commercial
high-level synthesis tool, in this paper Agility from
Celoxica. The VHDL code from both the functional part
and the optimized interface and memory model is
integrated at level 4 and synthesized at level 5. Hence the
components separated at level 2 are integrated at level 5.
Hardware simulation and compilation are also carried out.

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

1

2

3

4

5

6

Memory Hierarchy
Optimization

IMEM
Conceptual Modelling

IMEM Projector High-level Synthesis

Memory
Allocation

Address
Generation

Interface generation

VHDL code for
FPGA

C++ High level
synthesis (Celoxia)

Functional mapping
of algorithm

VHDL code for
FPGA

FPGA logic compiler

FPGA based
execution platform

Memory
Storage

Estimation

Figure 6. System synthesis workflow.

5. Memory synthesis

The memory synthesis tool creates all necessary

memory and control functionality needed for a functional
spatio-temporal RTVPS. The required memory
architecture specified by IMEM for both spatial and
temporal neighborhood is automatically optimized and
mapped against the memory resources in a manner that
produce an efficient implementation in terms of used
resources. The tool also generates a VHDL template for
the filter function, instantiates the filter and interfaces it
with a memory management VHDL.

5.1 Space-time optimization

In the clock synchronous target architecture, temporal

resource sharing is only used within a task. Thus, the
scheduling problem for the overall system is reduced to a
space-time mapping problem. Where tasks, buffers and
delays are placed in time. Since memory is a scarce
resource on the FPGA, the placement is done as a
minimization process where the objective function is to
reduce the number of storage elements.

∑
∈SIQ

QNSMinimize (1)

NSQ∈Z+ is the memory storage requirement associated

with all data flow dependencies stemming from the video
stream indexed by Q. { }+∈= ZNVNVSI |,,2,1 is an

index of NV number of video streams.
One optimization that is explored is buffer retiming,

which is depicted in Figure 7 [25]. The objective is to
move buffers such that the behavior of the whole system
does not change and such that the total size of all buffers

is minimized. For example, in Figure 7A the delay is
placed after operation B the width of the buffer is 12, and
when moved to the signal width is reduce to 8. The
behavior of the system is unchanged but the buffer size is
reduced by 33% [25]. Other optimizations that are
explored are sharing of buffers between tasks and buffer
elimination.

5.2 Memory allocation and mapping

The Line buffers identified in Figure 4 are required to

store data required in the spatial neighborhood in Figure 3.
They are implemented using global memory object
(GMO) architecture [20]-[23]. For each neighborhood
oriented operator in the VIP algorithm, a GMO can be
achieved through:

plinesiR wnW ×= (2)

where WRi is the width of the GMO, nlines is the number

of required line buffers for an operator and wp is the bit
width representing a pixel. The length of the GMO is
equal to the length of the operator’s line buffers [20].
GMOs require a minimal number of required memory
entities in comparison to the direct mapping architecture.
Consequently, the number of memory accesses for an
RTVPS operation is minimal for a GMO.

Implementing GMOs and their allocation to Block
RAMs requires an efficient algorithm so that accessing the
allocated data and reconstructing the line buffers would be
seamless and with as little overhead and latency as
possible. An allocation algorithm has been developed and
implemented [21] for this purpose. This algorithm creates
the GMOs based on Equation (2). It partitions the GMOs
to ensure that their widths conform to those specified by
the FPGA, thus ensuring optimal usage of the Block
RAMs. The algorithm takes advantage of the dual port
capabilities of the Block RAMs to achieve optimal
allocations and the possibility of allocating a GMO to as
many Block RAMs as required.

A(α) B(β)

C(µ)

Input

Output

A)

Size = 12α
bits

A(α) B(β)

C(µ)

Input

Output

B)

Size = 8α
bits

8

12 12

12

d

d

Figure 7. Example of register retiming.

Figure 8 depicts how the algorithm would allocate four
memory objects according to the GMO architecture. In
Figure 8A, the four line buffers were grouped together to
form one GMO. Assuming the GMO is 640 pixels wide
and if it were to be allocated on a Xilinx Spartan 3 FPGA,
it would be partitioned into two segments, of widths 32
and 16, since it would be not possible to have a data path
width of 48 on a Xilinx Spartan 3 FPGA. In addition,
since each Block RAM is 16KBit (excluding parity
feature), the first segment, of width 32, would require 2
Block RAMs, thus creating two partitions. The second
segment would require a single partition on a Block RAM.

Figure 8B illustrates the partitioning of the GMO while
Figure 8C shows how the GMO is allocated to two Block
RAMs using a data path of 32-bit and 16-bit. The main
objective of the allocation algorithm is to minimize Block
RAM usage. This is achieved in Figure 8 since two Block
RAMs were used as opposed to four Block RAMs
required for direct mapping of the four line buffers. In the
figure op, seg, par and BR represent the operator, segment,
partition and Block RAM numbers respectively. In [22]
two possible approaches for accessing and reconstructing
the allocated memory objects were presented and
compares. The implemented GMO takes the form of a
circular buffer allocated to a set of memory locations
corresponding to the video width and performs first-read-
then-write memory access operation in one single clock
cycle.

640 by 48

op = 1

Allocation

512 by 32

op = 1 seg = 1
par = 1

BR1 Port A

512 by 32

op = 1 seg = 1
par = 1

640 by 16
op = 1 seg = 2 par = 1

B)

C)

BR2 Port B Port A

640 by 16
op = 1 seg = 2 par = 1

Unused Memory 2kBit

L by 12

L by 12

L by 12

L by 12
L by 48

Ri

op_id = 1

A)

128
by 32
op = 1
seg=1
par=2

128
by 32
op = 1
seg = 1
par = 2

Figure 8. Implementation of memory
architecture.

6. Integration and verification

Figure 9 depicts the integration of tools and steps

required for system synthesis and verification. The
memory requirement, determined by IMEM (example is
shown in Figure 9 [A]), is used in the memory synthesis
tool to generate a memory management module in VHDL
and a SystemC header module (Figure 9 [B]) that contains
a reference to the neighborhood oriented filter written in
C/C++/SystemC (Figure 9 [C]) as clock sensitive thread.
SystemC compilation refines the filter function iteratively
through simulation until a synthesizable module satisfying
the behavioral specifications of the RTVPS is achieved.
This module is then compiled into VHDL module.

VHDL compilation instantiates the memory
management module and the synthesizable filter function,
implements the timing relation of the system data-flow
and verifies the behavior of the system by simulation. The
final VHDL module is synthesized and downloaded into
FPGA. The SystemC simulator is also used to provide
video signal impulse data to the VHDL simulator test-
bench and to write its video response thus verifying that
the VHDL module produces expected result.

From Figure 9 we can define two approaches to
implementing RTVPS namely, automatic synthesis, in
which C-like algorithms can be compiled into HDL while
our tool is used to manage memories, and semi-automatic
synthesis in which the designer writes HDL modules and
relies on our tool which is used to manage memories.

7. Results

To measure the performance of the two synthesis

approaches identified above, we implemented three simple
RTVPS applications with 640-by-480 frame resolution
and 3-by-3 spatial neighborhood and compared the results
with manual synthesis. The first video operation is a 1-bit
morphological erosion, the second an 8-bit mean filter and
lastly an 8-bit median filter. Table 1 shows the synthesis
results.

Table 1 Synthesis Results
 Erosion Mean Median
 Auto Semi Man Auto Semi Man Auto Semi Man
Area
 Slices 125 124 69 256 265 250 517 481 448
 FF 88 86 55 332 358 255 509 494 389
 LUT 222 220 124 415 421 405 921 840 808
BRAM 1 1 2 1 1 2 1 1 2
Speed
(MHz) 92 92 100 75 92 83 42 92 85

SystemC
Simulator

VHDL
Simulator

Impulse

Response

Behavioral
Specification

Semi-automatic
Synthesis

 Automatic Synthesis

C/C++ Filter function [C]

Mem
Req.

[A]

SystemC
Compilation

VHDL
Compilation

Memory
Synthesis

FPGA

SystemC
Module [B]

VHDL
Module
(Fig 4b)

Memory Management
VHDL Module

(Fig 4a)

Netlist

IMEM

[A] Memory Requirements
 Video Width: 640
 Pixel Width: 8
 # of Line buffers: 2

[B] #include "systemc.h"
 SC_MODULE(VIP_Algorithm) {
 public:
 sc_in< bool > input_signals;
 sc_out< sc_uint<8> output;
 void Filter_Core();
 SC_CTOR(VIP_Algorithm) {
 SC_THREAD(Filter_Core);
 sensitive_pos << clk;
 }
 };

[C] Filter_Core() {
 // A normal VIP algorithm
 // function written in
 // C/C++/SystemC.
 int<16> var; // variables
 // Manipulate inputs
 output = input_signals * 2;
 }

Figure 9. System integration and verification.

The table shows that in all cases, the manual approach

has lower area cost except for the number Block RAMs
where 50% savings are achieved. If the three filters in
Table 1 had been combined according to Figure 5, we will
save four out of six Block RAMs. This is due to resource
sharing since true dual port allocation is used to allocate to
Block RAMs rather than ordinary dual port allocation
used in implementing line buffers. The table also shows
that the speed of the automatic synthesis is highly affected
by the algorithm complexity decreasing from erosion to
median filter while remaining slightly constant for the
other approaches. From the table the semi-automatic
approach combines the advantages of cost and speed. The
table does not compare development time since this
depends on the designer’s skill and algorithm complexity.
Our approaches however generally implements algorithms
(especially the memory management parts) within a few
minute rather than days in the manual approach.

8. Conclusion

This paper has presented a synthesis tool for C++ based

synthesis of real-time video processing systems targeting
FPGAs. It has been shown that this tool produces cost
effective implementations capable of running at high
clock speeds. The number of used block RAMs is lower
than it would be for a manual design and the speed of the
memory architecture is close to the speed of the FPGA
resources. The algorithm implementation that is
synthesized using this high-level synthesis tool can be
written manually or using by third party SystemC to HDL
compilers. Thus, the tool presented in this paper is a big
step towards accomplishing a compiler that effectively
synthesizes real-time video processing systems on to an
FPGA. This can lead to new video processing
applications, where the combination of high performance,
cost effective FPGA and a fully automated design flow
would fulfill requirements that otherwise would be hard to
meet by most commercial tools but are possible by the

tool in this paper due to resource reuse through true dual
port allocation to Block RAMs.

References

[1] F. Catthoor, et al. Custom Memory Management
Methodology. Kluwer Academic Publishers (1998).

[2] W. Wolf, B. Ozer and T. Lv. Smart cameras as embedded
systems. Computer, Vol. 35 No.9 (2002) 48-53.

[3] D. S. Shrestha, B. L. Steward and S. J. Birrell. Video
Processing for Early Stage Maize Plant Detection.
Biosystems Engineering, Vol. 89 No. 2 (2004) 119-129.

[4] F. Yang and M. Paindavoine. Implementation of an RBF
Neural Network on Embedded Systems: Real-Time Face
Tracking and Identity Verification. IEEE Trans. on Neural
Networks, Sept. 2003, pp. 1162 - 1175.

[5] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross and
M. Chawathe. Accelerated image processing on FPGAs.
IEEE Trans. on Image Processing, 2003, pp. 1543 - 1551.

[6] R. C. Gonzales and R. E. Woods. Digital Image Processing.
Addison Wesley (1993).

[7] A. Bovik. Handbook of Image & Video Processing.
Academic Press (2000).

[8] D. D. Gajski and L. Ramachandran. Introduction to High-
Level Synthesis. IEEE Design & Test of Computers, 1994,
pp 44 – 54.

[9] Open SystemC Initiative, “SystemC User’s Guide”, version
2.0.1, www.systemc.org

[10] J. Sanguinetti and D. Pursley. High-Level Modeling and
Hardware Implementation with General-Purpose Languages
and High-level Synthesis. Ninth IEEE/DATC Electronic
Design Processes Workshop, April 2002.

[11] G. De Micheli. Hardware synthesis from C/C++ models. In
Proc. of IEEE Design, Auto & Test in Europe Conf &
Exhibition, pp 382-383, Mar 1999.

[12] S. A. Edwards. The challenges of hardware synthesis from
C-like languages. In Proc. of IEEE Design, Auto & Test in
Europe Conf & Exhibition, pp 66-67, 2005.

[13] A. Ghosh, J. Kunkel and S. Liao. Hardware Synthesis from
C/C++. In Proc. of IEEE Design, Auto & Test in Europe
Conf & Exhibition, pp 387-389, Mar 1999.

[14] T. Kuhn and W. Rosenstiel. Java based object oriented
hardware specification and synthesis. Proceedings of ASP-
DAC pp 579-581, Jan 2000.

[15] R. Helaihel and K. Olukotun. Java as a Specification
Language for Hardware-Software Systems. IEEE/ACM
Inter. Conf. on CAD, pp 690-697, 1997.

[16] M. Haldar, A. Nayak, A. Choudhary and P. Banerjee. A
system for synthesizing optimized FPGA hardware from
MATLAB. IEEE/ACM Inter. Conf. on CAD, pp 314-319.

[17] P. Banerjee, et al. Overview of a compiler for synthesizing
MATLAB programs onto FPGAs. IEEE Trans. on VLSI
Systems, pp 312-324, Mar 2004

[18] D. Ku and G. De Micheli. HardwareC – A language for
hardware design. Stanford Technical Report, CSL-TR-88-
362, August 1988, and CSLTR-90, April 1990.

[19] Synopsys, C2HDL Compiler, www.synopsys.com
[20] M. O’Nils, B. Thörnberg and H. Norell. A Comparison

between Local and Global Memory Allocation for FPGA
Implementation of Real-Time Video Processing Systems. In
Proc. of IEEE Int. Conf. on Signals and Electronics
Systems, Sept 2004.

[21] N. Lawal, B. Thörnberg, M. O’Nils and H. Norell. Global
Block RAM Allocation Algorithm For FPGA
Implementation Of Real-Time Video Processing Systems.

Journal on Circuits Systems and Computers, Vol. 15, No. 5
Oct. 2006.

[22] N. Lawal, B. Thörnberg and M. O’Nils. Address Generation
for FPGA RAMs for Efficient Implementation of Real-
Time Video Processing Systems. Proc. of the IEEE Int'l
Conf. on FPLA, Aug 2005, pp: 136-141.

[23] B. Thörnberg, H. Norell and M. O’Nils. IMEM: an object-
oriented memory- and interface modeling approach for real-
time video processing systems. In Proc. of the Forum on
Specification & Design Languages, Sept. 2002.

[24] H. Norell, N. Lawal and M. O’Nils. Automatic Generation
of Spatial and Temporal Memory Architectures for
Embedded Video Processing Systems. European
Association for Signal and Image Processing (EURASIP)
Journal on Embedded Systems, 2006.

[25] B. Thörnberg, M. Palkovic, Q. Hu, L. Olsson, P.G.
Kjeldsberg, M. O’Nils and F. Catthoor. Bit-Width
Constrained Memory Hierarchy Optimization for Real-
Time Video Systems. IEEE Transactions on CAD of
Integrated Circuits And Systems.

