
Communication Architectures for Dynamically Reconfigurable FPGA Designs

Thilo Pionteck1, Carsten Albrecht1, Roman Koch1, Erik Maehle1

Michael Hübner2, Jürgen Becker2

1University of Lübeck 2Universität Karlsruhe (TH)
Institute of Computer Engineering Institut für Technik der

23538 Lübeck, Germany Informationsverarbeitung
{pionteck, albrecht}@iti.uni-luebeck.de 76128 Karlsruhe, Germany
{koch, maehle}@iti.uni-luebeck.de {huebner, becker}@itiv.uni-karlsruhe.de

Abstract

This paper gives a survey of communication architec-
tures which allow for dynamically exchangeable hardware
modules. Four different architectures are compared in terms
of reconfiguration capabilities, performance, flexibility and
hardware requirements. A set of parameters for the classi-
fication of the different communication architectures is pre-
sented and the pro and cons of each architecture are elabo-
rated. The analysis takes a minimal communication system
for connecting four hardware modules as a common basis
for the comparison of the diverse data given in the papers
on the different architectures.

1. Introduction

With the emergence of partially and dynamically re-
configurable FPGAs, System-on-Chip (SoC) architects are
given a new degree of freedom in system level design.
While conventional SoCs require the number, types and lo-
cations of hardware modules to be defined at design time,
dynamically reconfigurable FPGAs allow these parameters
to be adapted at runtime. This new degree of freedom, how-
ever, also raises new issues that have to be solved. Among
these are the handling of the actual process of dynamic re-
configuration, problems related to online placement of hard-
ware modules, and the question of suitable communication
structures. There has been notable research effort address-
ing the first two issues while the interconnect between dy-
namically exchangeable hardware modules is the subject of
only a few works. Nonetheless, the design of the commu-
nication network has a huge impact on total system per-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

formance. In a reconfigurable system different combina-
tions of hardware modules may impose different demands
on bandwidth and latency of the communication network.
It is therefore advisable to apply dynamic reconfiguration
not only to hardware modules, but to utilize this technique
in order to adapt the communication resources to the actual
communication pattern as well.

The present work gives an overview on adaptable com-
munication architectures for dynamically reconfigurable
FPGA designs. Compared to other works like [11, 13],
this paper focuses exclusively on architectures which pro-
vide support for dynamic exchange of hardware modules
and topology adaptation at runtime. In total four architec-
tures are analyzed in terms of efficiency, hardware require-
ments and flexibility. The analysis is done with regard to
the design and performance parameters defined within this
work. A minimal communication system for connecting
four hardware modules is assumed, so that a better compar-
ison of the diverse data given in the papers on the different
architectures could be achieved. Due to insufficient data for
some architectures the technical details of the actual recon-
figuration process are not covered in this paper.

The rest of this paper is organized as follows: Section 2
provides a brief overview on fundamental communication
structures used in FPGA based designs and introduces the
taxonomy to be used later in the discussion. Runtime adapt-
able communication architectures for dynamically reconfig-
urable FPGA designs are presented in Section 3, followed
by a discussion and comparison in Section 4. Concluding
remarks are given in Section 5.

2. Classification

Typical SoC designs for FPGAs usually utilize either
bus-based or Network-on-Chip (NoC) based communica-

tion schemes. The advantages and disadvantages inherent
to these communication schemes are briefly reviewed in this
section. To begin with, a set of parameters for the classifi-
cation of the different communication schemes is given.

2.1. Parameters

For communication networks, the main performance pa-
rameters are latency and bandwidth. Performance numbers
may relate either to real time or depend on the maximum
clock rate of a synchronous system. For the purpose of this
work, latency and bandwidth are defined as follows:

Latency li ∈ N0 of a network element i is the number of
clock cycles by which a data transfer is delayed when
passing through the network element. The path latency
lP ∈ N0 is the the number of clock cycles by which a
data transfer is delayed by n network elements along
the path from source to destination: lP =

∑n
i li.

Bandwidth bL ∈ R+
0 is the amount of data a network link

L can physically deliver per time unit.

As bandwidth depends on the clock frequency and
bitwidth of a link, these basic parameters are mainly con-
sidered in the following. Besides latency and bandwidth,
throughput is also commonly used for characterizing the
performance of communication architectures:

Throughput t ∈ R+
0 of a networking is defined by

t =
∑k

i=1 bLi , k being the number of links and bLi be-
ing the bandwidth of link Li.

Throughput, however, is not an appropriate measure for
the communication architectures considered in this paper.
As the topology of these communication networks and thus
the number of links may change during runtime, a fixed
throughput value cannot be given. Rather than throughput
the following measure will be referred to:

Parallelism dmax ∈ N supported by a network is the max-
imum number of independent data transfers that can
occur simultaneously.

The parallelism of a communication network depends on
the number of links k, the number of nodes n, and on the
topology. A maximum parallelism of dmaxdoes not guar-
antee that dmax data transfers can take place between arbi-
trary pairs of source and destination.

Besides the performance related parameters of networks,
structural parameters play an important role when chosing
an appropriate communication architecture for a given ap-
plication. The main design parameters are: flexibility, scal-
ability, extensibility and modularity.

Flexibility is the ability of a communication structure to
support different communication patterns in a fixed de-
sign without loss of performance.

Scalability describes the ability of a communication struc-
ture to be modified to provide a fixed set of perfor-
mance parameters independently from the system size
and characteristics.

Normally, the term scalability would only refer to the
design time of a system. As for dynamical reconfig-
urable FPGA designs structural modifications are not
limited to design time, we extend the definition of scal-
ability also to the runtime of a system.

Extensibility is the ability of an architecture to be extended
to larger system designs.

Extensibility is closely related to scalability, but does
not require the extended system to maintain the per-
formance of the unextended system. Throughout this
work only runtime extensibility is considered, i.e. the
extension is done by means of dynamic reconfigura-
tion.

Modularity The modularity of a communication architec-
ture is defined by the extent up to which it can be di-
vided into submodules.

The more an architecture can be decomposed into sub-
modules, the easier is an adaptation of the architecture
to a specific realization. In this context the term reuse-
ability comes up as a modular architecture is one pre-
requisite to a successful design reuse.

2.2. Basic Communication Schemes

The most commonly used communication structures are
buses. Their main advantages are their flexibility, extensi-
bility and their low design costs. In general, buses show a
low latency when the bandwidth demands are low. They are
well suited for communication patterns where most of the
communication takes place between two components, for
instance between a processor and memory. As soon as the
communication pattern involves more than two modules,
the main disadvantage of buses become apparent: Their
scalability is poor. Since all traffic shares a single path,
time-overlapping bus requests have to be serialized. This
leads to a sharing of the effective bandwidth as the num-
ber of components increases. One way to deal with this
issue is using hierarchical or split buses. The AMBA [1]
and CoreConnect [3] bus architectures are examples of hi-
erarchical bus systems. They consist of a low-speed periph-
eral bus connected to a high-speed system bus through a
bridge. There are also extensions where the buses are split
into segments, thus allowing locality of communication to

2

be exploited. These extensions increase the scalability of
buses at the cost of flexibility, as bridges may lead to bottle-
necks between hardware modules on separated buses. An-
other disadvantage of buses are their long communication
lines. In FPGA designs, those lines are costly to route, and
in general lead to huge power consumption and a limited
system clock speed.

The main advantage of NoCs is their ability to sup-
port concurrent communication among hardware modules.
Compared to buses, NoCs show also a very good scalabil-
ity. As, in general, for each new hardware module a new
switch has to be added, the number of links and thus the
possible number of parallel data transfers increases. NoCs
can be designed to support much larger bandwidths than
buses, yet they show a higher latency due to their multi-hop
topology. NoCs are well suited for communication patterns
where several modules communicate with each other in par-
allel. The modularity of NoCs eases design reuse and pro-
vides a good decoupling of the communication fabric from
the processing elements. As a result of the segmented struc-
ture of NoCs, only local wires need to be used, resulting in
less power consumption and higher clock frequencies com-
pared to bus-based architectures. The main disadvantage
of NoCs is the area overhead resulting from the existence
of switches. Each switch comprises buffers, routing logic
and arbitration logic, leading to a significant area overhead
compared to buses which employ a central control logic.

3. Architectures

In this section, four communication architectures sup-
porting the dynamic exchange of hardware modules are
presented. The first two architectures, RMBoC [4,
5] (Reconfigurable Multiple Bus on Chip) and BUS-
COM [9] base on bus-oriented communication schemes.
DyNoC [5] (Dynamic Network on Chip), and CoNoChi
[12] (Configurable Network on Chip) use a NoC-based ap-
proach. The design and implementation parameters for the
architectures are summarized in table 1 and table 2, respec-
tively. Note that for bus-based architectures the implemen-
tation parameters refer to the complete architecture while
for NoC-based designs the implementation parameters re-
fer to one switch.

3.1. Bus-based Systems

Bus-based communication architectures were the first
ones developed for dynamically reconfigurable FPGA de-
signs. They use a slot-based approach, i.e. only one hard-
ware module can be configured in one column of the FPGA.
This restriction was mainly motivated by the column-based
configuration architecture of the Xilinx Virtex-II FPGA and
the limited software support for dynamic reconfiguration.

RMBoC: Reconfigurable Multiple Bus on Chip

RMBoC [4, 5] bases on a modified version of Reconfig-
urable Multiple Bus (RMB) Networks [7] proposed for
multi-processor systems. The RMBoC bus system consists
of a so-called cross-point per processing element and mul-
tiple buses. The k buses are segmented in short parts s that
link neighbouring cross-points. Communication channels
between arbitrary processing elements are established by
sending a request message to the destination via the bus sys-
tem. A cross-point receiving the request tries to find a free
bus in the next segment. If the destination is reached and
the receiver accepts the connection a reply message is sent
via the established channel. In case of completely occupied
bus segments or the refusal of a connection request by the
destination a cancel message is sent along the channel to
release the reserved bus segments. An established channel
is released after usage by sending a destroy message. So,
the protocol is rather simple and demands the system ap-
plication to deal fairly with the resources. RMBoC shows
similarities to a circuit switched NoC. As RMBoC bases on
the RMB architecture mentioned before, it is classified as a
bus-based architecture.

Module

1

Module

2

Module

3

Module

4

Figure 1. RMBoC architecture [4, 5]

The time to establish a connection from source to des-
tination depends on the number of processing elements m

and has an upper bound of 4 ·
⌈

m2+2m+4
2

⌉
cycles. Further

on, data is transferred within a single clock cycle. Table 2
gives both values for a scenario of four modules and four
buses. A minimum of 8 clock cycles is required to set up
a connection and after this data transfer can be done in one
clock cycle.

An example of an RMBoC system with k = 4 paral-
lel buses for the support of m = 4 exchangeable hardware
modules of a fixed size is given in figure 1. The implemen-
tation parameters shown in tables 1 and 2 base on such a
system prototyped on a Xilinx Virtex-II 6000 FPGA in [4].
For a proof of concept a small video application was used.

Depending on the bus width, a maximum clock fre-
quency of about 100 MHz ± 6% was reached with an area
overhead in range between 4% and 15% of the FPGA area.

3

Architecture Type Topology Module Switching Bit width Overhead max. Protocol
Size Payload Layers

RMBoC[4] Bus 1D-Array fixed circuit 1− 32 control msg. circuit switched 1
BUS-COM[9] Bus 1D-Array fixed time mult. arbitrary 20 bit 256 byte 1
DyNoC[5, 6] NoC 2D-Array variable packet 8− 32 ≥ 4 bit n. p. 1
CoNoChi[12] NoC 2D-Array variable packet 8− 32 96 bit 1024 bytes 3

Table 1. Design Parameters

Architecture Latency Frequency Area Device
[cycles] [MHz] [Slices]

RMBoC[4] initial phase: 8 94 5084 Virtex-II
(c = 4, m = 4, � 32bit) establ. connection: 1

BUS-COM[9] 1 66 294 Virtex-II
(c = 4, m = 4,← 32bit,→ 16bit)

DyNoC[5, 6] 1 75 370 Virtex-II
(Switch, � 32bit)

CoNoChi[12] 5 73 410 Virtex-II
(Switch, � 32bit)

c: number of buses, m: number of modules, �: bidirectional bit width,←: input bit width,→: output bit width

Table 2. Implementation Parameters

Unfortunately, the behaviour of RMBoC during the recon-
figuration of a slot at run time is not described. But, because
of placing the cross-points in the columns of a slot, it is ex-
pected that cross-points are freezed during the reconfigura-
tion process so that only established channels can be used.
Note that any reconfiguration of the system does not alter
RMBoC modules or its physical topology. The alteration
of the communication infrastructure on application level is
performed on the level of an overlay network with point-to-
point channels.

BUS-COM

The second bus-based architecture is BUS-COM [9]. Con-
trary to RMBoC, this architectures uses unsegmented buses
which are assigned to hardware modules by an arbiter. The
hardware modules are connected with the bus system via
interface modules called BUS-COM. All modules are phys-
ically connected to all buses, yet virtual network topologies
can be formed by manipulating the time-slot based bus arbi-
tration mechanism based on the FlexRay protocol [2]. For
each bus 32 time slots exist. Each time slots is exclusively
assigned to a certain BUS-COM module during design time.
By means of dynamic reconfiguration the assignment can be
changed. So the distribution of network resources and the
virtual network topology can be adapted to the communica-
tion patterns of the hardware modules. The time slots for
each bus are divided into static and dynamic slots. Static
slots provide hardware modules guaranteed bus access time

to send and receive data of a fixed payload size. Dynamic
slots provide hardware modules additional bus access time
according to their priority. The payload size for dynamic
slots is variable but limited to 256 byte.

Bus-Macros

BUS-

COM

BUS-

COM

BUS-

COM

BUS-

COM

Slot 0 Slot 1 Slot 2 Slot 3

Arbiter

Figure 2. BUS-COM architecture [8]

In [8] a bus system for connecting four hardware mod-
ules as depicted in figure 2 was presented. The system con-
sists of four buses with an input bit width of 32 bit and an
output bit width of 16 bit. The system was designed for
the usage in real time automotive applications and provides
different functions for inner cabin applications on-demand.
A Xilinx Virtex-II 3000 FPGA was used as hardware plat-
form. The buses were realized using special bus macros.
Each macro is able to transport 8 bits of data unidirectional,
resulting in six macros per bus. Each macro uses 20 slices.
Additional area overhead is introduced by the arbiter, and

4

the input- and output macros for one slot, so that in total 296
slices are required for the presented system. The maximum
clock frequency of the BUS-COM architecture is 66 MHz.

In the presented version of BUS-COM only one hard-
ware module can be configured into one slot. There exist an
extended version where the height of a hardware module is
arbitrary and thus multiple modules can be placed into one
slot. The connection of hardware modules to the bus system
is done online in separate slots. The applied techniques are
currently refined so that arbitrary communication channels
can be routed during runtime. As this work is in progress
right now it will not considered for the rest of the paper.

3.2. Network-on-Chips

Network-on-Chip architectures provide a higher degree
of freedom for the online placement of hardware modules.
The placement is not restricted to slots of a fixed size any-
more, instead an arbitrary 2D positioning of components of
rectangular size is possible.

DyNoC: Dynamic Network on Chip

The first presented architecture utilizing a packet-based
NoC approach for dynamically reconfigurable designs was
DyNoC [5, 6]. DyNoC consists of a two dimensional array
of processing elements and routers, in which each process-
ing element is connected to one router. Hardware modules
can be mapped onto multiple processing elements. Routers,
which are physically between the processing elements used
for one module, are removed from the network and can be
used as additional hardware resources for the module they
belong to. An example of a 5 × 5 DyNoC system is given
in figure 3.

Figure 3. DyNoC architecture [5, 6]

The module placement is arranged so that a module is
always completely surrounded by network routers. This

guarantees that the network is always connected. Rout-
ing decision are made deterministic and locally using the
S-XY-routing algorithm [5] which is an enhanced version
of the XY-routing scheme. The S-XY-routing algorithms
is capable of surrounding obstacles by exploiting the fact
that a module is always surrounded by network routers. If a
packet is blocked in its given direction by a placed compo-
nent, the routers surrounding the component are informed
in which direction a packet should be sent.

The feasability of the DyNoC architecture was proofed
with a 4 × 4 DyNoC array in [6] and with a 3 × 3 DyNoC
array in [5]. Both prototypes were realized using a Xilinx
Virtex-II 6000 FPGA. As test applications, again a small
video application utilizing a VGA controller was used.

CoNoChi: Configurable Network on Chip

The CoNoChi architecture [12] comprises virtual cut-
through switches with four equal full-duplex links, lines
connecting the switches, and modules attached to the net-
work. An i × j grid of tiles ti,j ∈ {0, S,H, V } forms the
basis of CoNoChi: An S type tile contains a switch while H
and V type tiles contain horizontal and vertical communica-
tion lines, respectively. Modules are implemented in 0 type
tiles. These tiles are not used by the infrastructure of the
network. The network size and topology can be changed by
replacing individual tiles with tiles of a different type. This
allows a runtime adaptation of the topology of the network
to the number and location of currently configured hard-
ware modules. Depending on the topology, switches can be
added or removed from the network by a global control unit
without stalling the NoC. An example of CoNoChi is given
in figure 4.

CoNoChi employs a three layer protocol header, sup-
porting physical and logical addresses. Routing solely bases
on the physical addresses, used for table lookups of locally
stored routing information. Logical addresses are evalu-
ated by special interface modules connecting the hardware
module with a switch. Like the core modules, the inter-
face components are configured into 0 type tiles. The sup-
port of logical addresses allows hardware modules and sub-
ordinate processing entities to be moved or combined within
the NoC. A prototypical implementation of CoNoChi on a
Virtex-II Pro 1000 was presented in [12]. The CoNoChi
architecture focuses on streaming applications with high
throughput demands such as network applications. An ap-
plication example is given in [10].

4. Discussion

This section provides a comparison of the presented
communication architectures with a focus on the dynamic
reconfiguration capabilities. The discussion does not ac-

5

phy add phy add phy add

phy add phy add

log add
Interface

lo
g
 a
d
d

In
te
rf
a
c
e

log add
Interface

Type H Type V

phy add

Type S Type 0

Application

specific

Module 1

Module 2

Module 3

phy addlo
g
 a
d
d

In
te
rf
a
c
e

Module

4

Figure 4. CoNoChi architecture

count the principle advantages and disadvantages of the ba-
sic communication schemes. As not for all architectures a
hardware description or simulator are available, the com-
parison solely bases on the data given in the corresponding
papers of the architectures.

In total, all architectures provide a sufficient support for
dynamically reconfigurable FPGA designs. The NoC-based
architectures show the best structural parameters but suf-
fer from their huge area overhead. If area efficiency is the
main design parameter, the bus-based systems are the first
choice. Especially BUS-COM requires only few hardware
resources. A fair comparison between BUS-COM and RM-
BoC is difficult, though as only RMBoC provides the area
requirements of the complete system. Concerning flexibil-
ity, RMBoC is superior to BUS-COM due to the segmented
buses. CoNoChi offers the best structural parameters and
the best conceptional support for dynamic reconfiguration,
but suffers from implementation difficulties on the Virtex-II
platform. In contrast DyNoC is designed to get by with
the limited reconfiguration capabilities of the Virtex-II plat-
form.

4.1. Technical Aspects

Concerning system design, the most important questions
are how well does a communication architecture support

RMBoC BUS-COM DyNoC CoNoChi
5084 294 1480 1640

Table 3. Estimated minimum number of slices
for connecting 4 modules with 32 bit links

the communication patterns of runtime exchangeable hard-
ware modules and what kind of restrictions does an archi-
tecture impose to the characteristics of hardware modules.
Based on these questions, the presented architectures can
be divided into two groups. The first group consists of
the bus-based architectures RMBoC and BUS-COM. They
both restrict the shape of modules to the height and width
of the slots in which they can be configured in. The other
group DyNoC and CoNoChi, both utilizing a NoC-based
approach, support hardware modules of arbitrary rectangu-
lar shape. Thus, the NoC-based approaches offer the high-
est flexibility for the selection of hardware modules. This
flexibility, however, does not come without costs.

The minimal area requirements of the presented inter-
connection architectures for connecting four modules with
a link width of 32 bit are given in table 3. Note that for
the comparison several assumptions had to be made. For
DyNoC, the assumption is that each hardware module only
occupies one processing unit of DyNoC. Thus, for four
modules only four switches are required. The area val-
ues for CoNoChi and BUS-COM do not include the area
requirements of the control units. For CoNoChi, this is
the global control unit among others providing the rout-
ing tables and controlling the reconfiguration process, for
BUS-COM this is the bus arbiter. When scaling the size of
the communication network, the area requirements of these
modules appear as a kind of offset. The only value which
includes all hardware resources needed for operation is the
one of the RMBoC architecture. Despite all these restric-
tions, the values in table 3 show a trend. The flexibility
of the NoC-based architectures to support hardware mod-
ules of arbitrary rectangular shape comes at the expense of
area efficiency. Especially if a larger number of modules
have to be connected, the area requirements increase due
to the increasing number of switches. The extent to which
the area requirements for DyNoC and CoNoChi increases
differ. Depending on the topology, for each new hardware
module only one new switch is required for CoNoChi, while
DyNoC may require several, depending on the size of the
modules. Thus, for a larger number of modules and larger
module sizes, the area overhead of CoNoChi will be less
than for DyNoC. If a fixed module size is acceptable for
a system design, the BUS-COM architecture seems to be
a good solution, though with the restrictions of bus-based
architectures in terms of flexibility and scalability.

Concerning the technical realizations, the most unprob-

6

lematic architectures are RMBoC and BUS-COM. Their
slot based architecture is closely related to the reconfigu-
ration capabilities of the Virtex-2 architecture and the (for-
mer) restrictions in the design flow. DyNoC avoids the
reconfiguration restrictions by mapping its own reconfig-
urable architecture, composed of processing elements and
router, on top of the FPGA. As pointed out in [12], the
realization of CoNoChi on the Virtex-2 platform requires
many workarounds. These are mainly caused by the lim-
ited reconfiguration capabilities of the architecture and the
problem of relocating the content of tiles among each other.
Therefore, a full exploitation of the architecture will require
a change in the hardware platform to a Virtex-4 FPGA.

4.2. Performance Parameters

The maximum clock frequency of all architectures is
in the range between 73 MHz and 94 MHz and thus in
the same order of magnitude. Therefore, this parameter is
not appropriate for ranking the different architectures. The
same refers to the bandwidth b, as the bitwidth and depend-
ing on it the bandwidth of each architecture is adaptable at
design time. Differences in the architectures can be found
in the latency l. Considering an established connection, the
lowest latency of lP = 1 is achieved by the bus-based archi-
tectures. The path latency for the NoC-based architectures
scales with the number of switches. However, as for the
area requirements, the extent to which the path latency in-
creases differs for DyNoC and CoNoChi. For CoNoChi, the
number of switches in a system only depends on the number
of hardware modules while the size of a DyNoC array and
thus the number of switches also depends on the size of the
hardware modules. For larger modules, the probability that
for a communication path more switches have to be passed
in DyNoC than in CoNoChi increases.

Another important performance parameter is the maxi-
mum achievable parallelism. Normally, bus-based architec-
tures only provide dmax = 1. The bus systems described
here break this limit by providing k > 1 buses which are
used equivalently. While BUS-COM increases the degree
of parallel communication by providing k buses RMBoC
goes one step further by segmenting the buses into s seg-
ments. So, RMBoC supports a theoretical upper limit of
dmax = s × k parallel communications, whereas BUS-
COM only supports dmax = k channels per time. BUS-
COM is also limited in exploiting locality of communica-
tion, as the bus is not segmented. The NoCs described here
perform packet-switching so that communication channels
are not established exclusively. The degree of parallelism
in communication is theoretically limited by the number of
links but because of their minimal routing strategies links
are not equally loaded.

For the efficiency of an architecture, the control over-

head is also of importance. Except the CoNoChi proto-
col, the protocols are solely designed to address and route
data packets, so, to establish connections on a minimal
base. CoNoChi, however, includes features for reconfigu-
ration such as packet redirection. Considering the protocols
three sorts of overhead occur: firstly, an additional amount
of data must be transmitted, secondly, the protocol compo-
nents consume area and, thirdly, time. The packet-switched
systems as well as BUS-COM need a header to address the
communication partners. So, each data packet is limited
in its size and contains control information which reduces
the effective bandwidth of BUS-COM and CoNoChi to ap-
proximately 90%. Unfortunately, for DyNoC neither the ef-
fective bandwidth nor the maximum payload is given. The
control overhead of RMBoC consists of two small packets,
simplified reply and request, which are not related to a max-
imum amount of data. Thus, the protocol overhead becomes
neglectable here.

4.3. Structural Parameters

The architectures presented in this paper follow different
approaches to the problem of inter-module communication
in runtime reconfigurable systems. These differences are re-
flected by the structural parameters introduced in Section 2,
namely by scalability and modularity. Scalability, in turn,
necessarily requires extensibility while flexibility as a para-
meter referring to a fixed design does not primarily relate
to reconfigurability. Yet, a higher degree of flexibility can
lower the need for frequent reconfiguration and thus have a
positive effect on the performance of a reconfigurable sys-
tem. The ranking of the architectures concerning the struc-
tural parameters is given in table 4.

With regard to the architectures considered in this pa-
per, distributed routing tables and the packet redirection
feature make CoNoChi the most flexible architecture for
the price of an increased area overhead. It is followed by
BUS-COM which provides support for virtually adaptive
topologies and allows dynamically assigned time-slots for
bus allocation. The structure of RMBoC in principle al-
lows bandwidth adaptation by the use of a variable number
of connections between two modules. Finally, DyNoC em-
ploys a light-weight routing scheme which does not support
variable bandwidth or load adaptation. The Scalability of
the presented architectures can be considered the same as
for non-reconfigurable systems based on the same commu-
nication scheme. NoC-based architectures provide in gen-
eral good scalability. Bus-based systems are limited in their
scalability due to their fixed number of buses and thus in
their number of parallel data transfers. Special effects in
this general ranking introduced by the dynamic reconfigu-
ration capability cannot be seen. Concerning runtime exten-
sibility, the NoC-based architectures show the best charac-

7

Architecture Flexibility Scalability Extensibility Modularity
RMBoC[4] high medium low medium

BUS-COM[9] medium medium medium medium
DyNoC[5, 6] low high high high
CoNoChi[12] high high high high

Table 4. Characteristics of the communication architectures

teristics. New components can be added at each border of
the system. BUS-COM in principle limits the extensibility
to only one dimension due to the structure of the bus sys-
tem, whereas for RMBoC no details about the extensibility
of the bus structure are given. The considered approaches
are also modular as each respective architecture provides
a standard interface for any kind of module. Futhermore,
no general restrictions apply to the location of any specific
module. In the context of reconfigurable systems the term
modularity can be narrowed by taking into account the gran-
ularity at which components can be replaced. Both DyNoC
and CoNoChi are based on tiled grids and allow modules of
arbitrary and varying rectangular size to be configured into
the network. In contrast, BUS-COM and RMBoC provide
module sites of fixed sizes. Thus, DyNoC and CoNoChi can
be considered more modular than BUS-COM an RMBoC.

5. Summary

In this paper an overview was given on current ap-
proaches to the module interconnect problem in runtime re-
configurable systems. Focus was set on the specific prop-
erties of these interconnection architectures in the context
of runtime reconfigurability. Using an unambiguous ter-
minology, four particular architectures were presented and
discussed. Albeit some shortcomings in comparable para-
meters, the fundamental advantages and disadvantages of
different paradigms were set out as were the key proper-
ties of the respective architectures. Overall, this survey and
analysis can serve as a guidance when a decision for one or
the other interconnection architecture has to be made.

6. Acknowledgement

This work was funded in part by the German Research
Foundation (DFG) within priority programme 1148 under
grant reference Ma 1412/5.

References

[1] AMBA 2.0 specification. http://www.arm.com/products/-
AMBA.

[2] FlexRay. http://www.flexray.de.
[3] IBM CoreConnect Bus Architecture.

http://www.chips.ibm.com/products/coreconnect/.

[4] A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich, and
J. C. Fekete, Sandor P.and van der Veen. A Practical Ap-
proach for Circuit Routing on Dynamic Reconfigurable De-
vices. In RSP ’05: Proc. of the 16th IEEE Int. Workshop on
Rapid System Prototyping (RSP’05), pages 84–90, Washing-
ton, DC, USA, 2005.

[5] C. Bobda and A. Ahmadinia. Dynamic Interconnection of
Reconfigurable Modules on Reconfigurable Devices. IEEE
Design & Test of Computers, 22(5):443–451, 2005.

[6] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. P. Fekete,
and J. van der Veen. DyNoC: A Dynamic Infrastructure for
Communication in Dynamically Reconfigurable Devices. In
Proc. of the Int. Conference on Field-Programmable Logic
and its Applications (FPL 2005), pages 153–158, 2005.

[7] H. ElGindy, A. K. Somani, H. Schroder, H. Schmeck, and
A. Spray. Rmb – a reconfigurable multiple bus network.
In HPCA ’96: Proc. of the 2nd IEEE Symposium on High-
Performance Computer Architecture, page 108, Washington,
DC, USA, 1996.

[8] M. Huebner, T. Becker, and J. Becker. Real-time LUT-
based network topologies for dynamic and partial FPGA
self-reconfiguration. In Proc. of the 17th Symposium on Inte-
grated Circuits and System Design (SBCCI ’04), pages 28–
32, Pernambuco, Brazil, 2004.

[9] M. Huebner, M. Ullman, L. Braun, A. Klausmann, and
J. Becker. Scalable Application-dependent Network on
Chip Adaptivity for Dynamical Reconfigurable Real-Time
Systems. In Proc. of the Int. Conference on Field-
Programmable Logic and its Applications (FPL 2004),
pages 1037–1041, Antwerp, Belgium, August 2006.

[10] R. Koch, T. Pionteck, C. Albrecht, and E. Maehle. An Adap-
tive System-on-Chip for Network Applications. In Proc. of
13th Workshop on Reconfigurable Architectures, page 194,
Apr. 2006.

[11] T. S. T. Mak, P. Sedcole, P. Y. K. Cheung, and W. Luk. On-
FPGA Communication Architectures and Design Factors. In
Proc. of the Int. Conference on Field-Programmable Logic
and its Applications (FPL 2006), pages 161–168, Madrid,
Spain, August 2006.

[12] T. Pionteck, R. Koch, and C. Albrecht. Applying Partial
Reconfiguration to Networks-on-Chip. In Proc. of the Int.
Conference on Field-Programmable Logic and its Applica-
tions (FPL 2006), pages 155–160, Madrid, Spain, August
2006.

[13] D. Puschini and F. Clermidy. A Comparison Between
NoC and Bus Architectures Based on a Real-Application.
In Proc. of the 2nd Int. Workshop on Reconfigurable
Communication-centric System-on-Chips (ReCoSoC), pages
161–168, Montepellier, France, July 2006.

8

