

A Study of Design Efficiency with a High-Level Language for FPGAs

Zain-ul-Abdin and Bertil Svensson
Centre for Research on Embedded Systems (CERES),

Halmstad University, Halmstad, Sweden.
{Zain-ul-Abdin,Bertil.Svensson}@ide.hh.se

Abstract

Over the years reconfigurable computing devices
such as FPGAs have evolved from gate-level glue logic to
complex reprogrammable processing architectures.
However, the tools used for mapping computations to
such architectures still require the knowledge about
architectural details of the target device to extract
efficiency.

A study of the Mobius language and tools is
presented in this paper, with a focus on generated
hardware performance. A number of streaming and
memory-intensive applications have been developed and
the results have been compared with the corresponding
implementations in VHDL and a behavioral hardware
description language. Based upon experimental
evidences, it is concluded that Mobius, a minimal parallel
processing language targeted for reconfigurable
architectures, enhances productivity in terms of design
time and code maintainability without considerably
compromising performance and resources.

1. Introduction and Motivation

Field Programmable Gate Arrays (FPGAs) are
drawing the attention of an increasingly wide audience
because of their double performance advantages, not only
providing better price per performance but also
consuming far less power per computation, when
compared to ordinary CPUs. Another key factor is that,
over the last decade, the enhancements in FPGA density
and speed have not only followed but somewhat exceeded
Moore’s law [1]. The possibility of run-time
reconfiguration by which FPGAs can be remotely
configured has also led to the growing realization of
algorithms in silicon instead of using general purpose
processors.

The target applications for FPGAs range from signal,
image and video processing to communication,
cryptography and pattern matching.

Despite these merits, FPGAs have still achieved
limited applicability because of the difficulty in
describing complex algorithms in the hardware oriented
design methods such as structural Hardware Description
Languages (HDLs) and schematic based tools. They
require a more rigorous development process, involving
manpower training beyond application level, resulting in
an increase in development cost and time-to-market. In
addition, the clock speed of FPGAs is typically ten times
lower than that of general purpose processors, and due to
this they need to exploit large scale parallelism in
algorithms to compete with these devices. The techniques
used to obtain maximum performance include keeping the
design synchronous, implementing pipelining, minimizing
logic cell fan out, duplicating logic in critical paths and
handcrafting the critical sections of the design.

Thus there is a dire need for a higher layer of
abstraction, as structural HDL is well below the level of
classical application programming, in order to hide the
low level hardware complexities from the developer. One
such high-level behavioral language is Mobius, which
allows the applications to be described as a composition
of concurrent processes. The individual processes
communicate among each other by using typed channels.
This approach hides the intricacies of low-level details
from the application programmer. In the rest of the paper
we refer to structural HDL as HDL.

In this paper we present an experimental study of the
Mobius language and tools, with a focus on the efficiency
of the generated HDL code. This work is part of our
ongoing research whose initial studies are presented here.
A comparison has been made between results obtained
from implementations built in Mobius, VHDL and
Streams-C.

The rest of the paper is organized as follows: Section
2 presents some of the similar languages. Section 3
provides a review of the Mobius language. Section 4
describes the Mobius design flow and tools. The results of 1-4244-0910-1/07/$20.00 ©2007 IEEE.

implementations are discussed in Section 5, and the
conclusions drawn from the study are presented in Section
6.

2. High-level Languages for Reconfigurable

computing

There have been a number of initiatives taken in both
the industry and the academia to address the requirement
of high-level languages for reconfigurable silicon devices.
A few of them are described here.

Handel-C is a high-level language with ANSI-C like
syntax used to program gate level reconfigurable
hardware [2]. It supports behavioral descriptions with
parallel processing statements (par) and constructs to
offer communication between parallel elements. Handel-
C is being used for compilation for synchronous hardware
and inherits sequential behaviors.

Streams-C, a project initiated by Los Alamos
National Laboratory, is based on the Communicating
Sequential Processes (CSP) model for communication
between processes and used for stream-oriented FPGA
applications. The Streams-C implementation consists of
annotations and library function calls to stream module.
The annotations define the process, stream, and signal.
The Abstract Syntax Tree (AST) consisting of sequences
of the basic and pipelined data path blocks, is generated
by the compiler and the compiler analyses the AST for
partitioning of control and data flow blocks [3]. Streams-
C, which is a subset of ANSI-C, lacks the support for two
dimensional arrays.

SA-C, a single assignment synthesizable language is
one of the academic projects. SA-C is designed as
functional in nature, not intended as a stand-alone
language [4]. The compiler constructs the data flow
graphs of the application before generating FPGA
configurations. SA-C eliminates the need for pointers as
used for de-referencing in C, and does not support
recursion and while-loops.

SPARK is a high-level synthesis tool, which
translates C code to VHDL [5]. The compiler applies a
number of optimizations such as loop unrolling and code
motion to improve the synthesis results of control
intensive computational blocks. SPARK, specialized for
multimedia and image processing applications, cannot
perform optimizations on input data reuse.

Compiler for Application Specific Hardware (CASH)
converts the C source code into Pegasus [6], which is an
intermediate representation in the form of a dataflow
machine. It exploits instruction level parallelism by
applying prediction and speculation. Other optimizations
include pipeline balancing and data width resizing.

The reason for selecting Mobius for experimentation
is that it is one of the recently emerging languages for

reconfigurable computing where concurrency is inherent.
This facilitates the use of parallelism to structure
programs, thus enhancing code modularization and reuse.
Most of the other languages discussed have a C like
syntax and expose parallelism by either providing
statement-level parallel constructs or relying on the
compiler to maximize parallelism.

3. Mobius language

Mobius is a tiny, domain specific, concurrent
programming language with CSP-based [7] interprocess
communication and synchronization methodologies using
handshaking [8]. It has a Pascal like syntax with bit
specific and Occam like extensions, suitable for both fine-
grained and coarse-grained architectures.

The hierarchical modules in Mobius are composed of
procedures and functions. The processes execute
concurrently and communicate with each other through
message passing unidirectional channels. A channel
consists of req, ack and data signals and provides
unbuffered, point-to-point communication. The data
width can be user defined. An active port can either
initiate a read or a write. The data types supported by
Mobius are integer(n), float(n,m),
fixed(n,m), Boolean, channels, arrays,
records, bit-select and timers. The data type
can itself be an array in order to construct multi-
dimensional arrays and every type conversion is explicit
in Mobius. Furthermore, Mobius has built-in support for
floating point operators such as add, subtract, multiply,
divide, invert, square-root and comparison. The size of
mantissa and exponent is parameterizable, depending on
the constraints for area conservation or desired precision.
There are also constructs to manage the flow control such
as seq (sequential block), par (parallel block), alt
(alternative communication), while, if/else, for
and repeat. The non-deterministic alt construct can
be used to choose between multiple channel events.

4. Mobius Compiler

Figure 1 shows the complete design flow used for

developing in Mobius [9]. The tool-chain consists of three
components, namely Simulator, SW compiler and the HW
compiler.

There is also a prototype debugger derived from the
simulator. Mobius SW compiler generates ANSI-C
compatible code with inherent run time support. Any
application developed in Mobius can be tested at the
functional level by using the simulator, which is a
transaction modeler lacking timing information.

Figure 1 Mobius design flow [9].

However, there are certain discrepancies regarding
the generated HDL code, for example, the non-
deterministic alt scheduling, the fact that the simulator
uses double precision format for floating point operations
irrespective of what is specified in the source code, and it
also enables recursion and hierarchical scoping, not
supported in the generated code.

The major focus in this study has been laid on the
HW compiler, which generates the synthesizable
Verilog/VHDL code with embedded test bench. The
corresponding HDL code can then be synthesized or
simulated by using any third-party tool to generate the
bitstream for the FPGA. The Mobius implementation has

been translated to data flow graphs consisting of
handshake primitives, which are interconnected by
handshaking channels [9]. The data flow graphs give an
abstract view of the generated hardware logic. Mobius
uses a 4-phase handshaking protocol for data transfers
over channels. The data channels are further classified as
either push or pull channel and the control channel is only
used for synchronization.

The use of the handshaking primitives automatically
manages the flow control and provides automatic elastic
pipelining. The various handshake primitives along with
their respective resultant circuits are shown in Figure 2 .
All of these handshake primitives provide events to
sequence the actions. Each handshake primitive contains a
passive sync activation port and optionally a number of
active sync output activation ports. In the handshake
graph, the filled dots or arrows represent active ports,
whereas the hollow circles indicate passive ports and the
arrow heads indicate the direction of the data flow. By
examining the equivalent circuits, it can be deduced that a
sequential primitive translates to a sequencer with the ack
(a) signal of the first statement connected to the req (r)
signal of the following statement. A parallel block
constitutes a fork-join where fork allows the concurrent
activation of events for the child statements. The next
three primitives allow the control channel to synchronize
the data transfers. An if-else block is translated to a
demultiplexer followed by a multiplexer and the mapping
of input values to the choice of output port is based on the
condition. A do-loop is decomposed into a mux-demux
pair operating in a loop so that as long as the control input
of the multiplexer is asserted, it activates the following
statement. A transfer primitive is used to implement
assignment by transferring a data value from the pull data
path and pushing it towards the push data path and is
implemented as wires.

Figure 2 Mobius handshake primitives and circuits [9].

Generally, the Mobius compiler generated VHDL

code can be divided into four sections:
• Definition of top-level package
• Definition of Mobius specific primitives
• Definition of application procedures and

functions
• Definition of test bench
It is possible for third-party IP cores to interact with

the Mobius generated VHDL, provided they are
compliant with the Mobius handshaking protocol.

There is so far no automatic resource sharing
implemented by the compiler, so it is up to the developer
to build a resource sharing architecture. A client-server
model can be implemented to share the resources among
multiple clients using a time-multiplexing technique. An
important factor considered while implementing such a
structure is that the shared resource should be large and
complex enough to justify the additional logic used.

5. Experimental Results and Discussion

The experimental results presented in this section are
compared based on the area utilization and maximum
achievable frequency characteristics of the generated
code, as well as on the development effort involved.

Comparison of Mobius vs Hand coded
implementations

In this section the implementation results for three
benchmark applications are presented, as summarized in
Table 1. A comparison has been made between the
Mobius results and those of manually optimized versions
provided by Xilinx [10] [11]. The results have been
obtained from Xilinx ISE 8.2i synthesis tool based on the
XCV300 device.

The first example is an FPGA based digital filter.
These are gaining interest because of their flexibility and

performance. The hand-crafted implementation consists
of an 8-tap transformed form Finite Impulse Response
(FIR) filter with Constant Coefficient Multipliers (KCM),
adders, registers and a delay-locked loop [10]. The fixed-
point representation used for input samples is 16-bits and
that of coefficients is signed 14-bits. The Mobius
implementation of the FIR filter consists of inelastic
pipelining to achieve better throughput, but the
disadvantage is that the first few samples are to be
discarded till the pipeline is full. Once the pipeline is
filled it provides an output sample per clock cycle. The
area utilization results of the Mobius design are better
than those of the hand coded, whereas the maximum
speed is 30% lower. This can be explained in the context
of use of KCMs by the hand coded implementation where
the partial products are stored in lookup tables (LUTs),
which is highly efficient.

Next, implementation results of the complex Fast
Fourier Transform (FFT) are discussed. The
implementation consists of a radix-2 decimation in time
algorithm. The design in Mobius receives inputs in
natural order and provides output samples in natural order
too. The bit reversal stages for the samples as well as the
weights are embedded in the FFT process. Since the run-
time calculation of sine and cosine values are not yet
supported in Mobius, the pre-computed weights are
passed along with the input data in a stream. The HDL
implementation also uses pre-computed weights. In order
to conserve the area utilization the algorithm operates on
arrays for real and imaginary parts, but the butterfly
computations have been parallelized. It can be deduced
from the results that the implementation described at the
gate level occupies less area and generates better
performance because the movement of data into and out
of the butterfly processing unit and computation are
overlapped by the use of dual port RAM. Thus the FFT
unit never stalls while waiting for an I/O operation, thus
providing higher throughput rate.

Table 1 Resource Utilization & Code Complexity of Mobius and Hand coded applications.

Benchmarks No. of Slices No. of Slice

FFs
No. of 4-

Input LUTs
No. Of
Bonded

IOBs

Max.
Frequency

MHz

Lines of
Code

8-tap FIR (Mobius) 559 279 994 38 48.36 61
8-tap FIR (VHDL) 672 811 948 56 68.04 480
8-pt. FFT (Mobius) 785 331 1388 64 48.89 121
8-pt. FFT (VHDL) 533 670 957 67 71.297 1759
2D-DCT (Mobius) 631 190 1117 25 43.97 112
2D-DCT (VHDL) 1573 1608 1876 23 61.02 866

for i:=0:(mrows-1) do
seq

for j:=0:(mcols-1) do
seq

tmp2 := 0;
for k:=0:(mrows-1) do
seq

itmp1:= indtyp((i*mcols)+k);
itmp2:= indtyp((k*mcols)+j);
tmp1 := xmat[itmp1] * ctmat[itmp2];
tmp2 := tmp2 + tmp1

end;
itmp3:= indtyp((i*mcols)+j);
zmat[itmp3] := tmp2

end
end;

Figure 2 Mobius implementation of 1D-DCT using Vector processing.

The third implementation is a Two-Dimensional

Discrete Cosine Transform (2D-DCT) employed in video
compression [11]. The architecture adopted for
implementing 2D-DCT in the HDL version consists of
cascaded stages of an 8-point one-dimensional DCT, a
double RAM buffer and another 1D-DCT. The 1D-DCT
has been implemented by using vector processing which
employs parallelized multipliers, giving a regular
structure with simple control and interconnect to provide
improved performance and area utilization. The 2D-DCT
in Mobius has been implemented in the form of matrices
by using arrays, as shown in Figure 2. The indtyp is a
new type, and xmat,zmat are the array matrices defined
previously in the complete code. The cosine and inverse
cosine transposed coefficients are stored as constants in
arrays. The input matrix is passed through an input
channel and vector processing has been performed in two
steps operating on the arrays. The results are passed
through the output channel to the test bench. The use of
arrays results in the instantiation of block RAM, thus
conserving the slice resources considerably compared to
the hand written implementation, but the maximum speed
achieved is lower due to operating in a sequential loop.
The Mobius implementation has an initial latency of 234
clock cycles as compared to 92 cycles for the VHDL
implementation [11] (the performance mentioned in the
application note can not be reproduced by us because of
the unavailability of proper simulation tools). The latency
of the Mobius implementation can be improved by
implementing pipelining, but it will result in increased
area resources.

The number of lines of code may be used as a
measure of the complexity involved in debugging and
development of the implementations. With this measure

the relative complexity in a VHDL design is 8 to 14 times
higher than that in a Mobius based one.

Comparison of Mobius vs Streams-C

In this section, the synthesis results are compared for
implementations performed in Mobius and in the
Streams-C [3] language. The results presented are
targeted for the Xilinx XCV1000 device and are shown in
Table 2.

A Polyphase filter is a multirate filter employed
along with FFT in signal detection to extract RF signal
subbands from noisy environments [3]. The design of a
polyphase filter bank is based on a lowpass FIR filter with
symmetric coefficients. The input stream consists of 8-bit
unsigned encoded data, while the coefficients are 12-bit
unsigned values. A bank of four polyphase filters is
mapped on the FPGA. The results show that the Mobius
implementation not only acquires less area utilization, the
maximum speed of the Mobius design is also much
higher. This can be explained by the fact that the
Streams-C compiler is unable to pipeline the
computational blocks in the algorithm having the
conditional control flow. In contrast, fine-grained
parallelism has been achieved efficiently in the Mobius
design by the use of par statements within the
conditional block, as shown in Figure 3. It is worth
mentioning here that in terms of speed the Mobius results
even exceed the hand coded version [3].

The final example is a relatively complex Pixel
Purity Index (PPI) algorithm [12]. The PPI algorithm has
been used in the analysis of hyper spectral images. A
large number of random D-dimensional vectors called
skewers are generated.

Table 2 Performance results of Mobius and Streams-C applications.

Benchmarks Area Slices Speed

MHz
Development Time

in Weeks
Polyphase filter (Mobius) <1% 98.2 1/2
Polyphase filter (Streams-C) 1% 40 1/2
Pixel Purity Index (Mobius) 2% 54 1
Pixel Purity Index (Streams-C) 6% 40 1

while true do
seq
 cu ? u;

par
 m1 := datat(b1*u);

 m2 := datat(b2*u);
 m3 := datat(b3*u);
 m4 := datat(b4*u)

end;
if (even=1) then

par
 ot := e1+m1;
 e1 := e2+m2;
 e2 := e3+m3;
 e3 := m4;
 even := 0

end
else

 par
 ot := o1+m4;
 o1 := o2+m3;
 o2 := o3+m2;
 o3 := m1;
 even := 1

end;
 cy ! ot
end

Figure 3 The Polyphase filter bank in Mobius.

For each skewer every data point is projected onto

the skewer and the corresponding location along the
skewer is noted. The data points corresponding to the
extrema are listed and the number of times a specific pixel
is placed on the list is also noted. The one with the highest
number gives the most pure pixel. The computationally
most expensive part is the calculation of the dot products
between the skewers and the pixels, and this part has great
potential for parallelization. The individual dot products
are independent and can be executed concurrently. The
Mobius implementation consists of 6144 pixels, 4096
skewers and 512 spectral bands. Thus the complexity of
the implemented PPI algorithm is O(8×512×12). It can be
deduced from the results that Mobius produces much
better resource utilization as well as enhanced

performance in terms of speed. The Streams-C generated
results lag due to the inability to pipeline loops that have
conditional constructs and due to the lack of capability of
having arrays of processes on chip [3].

If we take a look at the figures of the development
time required for these two applications, it is deduced that
one can achieve improved performance comparable to
respective hand-crafted applications [3] by using Mobius,
whereas the amount of effort put in development is
similar to Streams-C.

6. Conclusions

A study has been performed by using a CSP based
multi-threaded language. The benchmark applications
considered range from streaming applications like FFT
and DCT to control flow based applications like PPF and
PPI, all including computationally intensive and memory
intensive kernels.

The study reveals that Mobius can be regarded as a
design and algorithm space exploration tool that enhances
the productivity by keeping the control with the
programmer. The local control and data flow can be
parallelized to achieve better throughput and minimum
area. However, the parallelization of compute-intensive
blocks of an algorithm of course results in an increase in
area utilization. The features like automatic pipelining,
parameterization and variable length data types allow the
programmer to bridge the gap between algorithms and
circuits. In addition the availability of floating point
operations opens the possibility of efficient mapping of
high performance scientific applications onto the FPGAs.
However there is still minimal library support available
for developing designs in Mobius.

The comparison of Mobius generated results with
Streams-C and hand coded implementations proves that
Mobius provides the flexibility of a high level language
without compromising the device utilization and
performance. In terms of development time the achieved
engineer efficiency is almost 10 times better than when
working with the corresponding HDL codes.

Despite the fact that so much work has already been
conducted to explore new paradigms from higher level

software to circuit design level for reconfigurable
computing, still there are opportunities ahead of us. One
such possibility is to extend the use of the CSP based
model to other more coarse-grained architectures such as
PACT’s eXtreme Processing Platform (XPP) [13] and
from a high level language generate low level Native
Mapping Language (NML) [14] code.

ACKNOWLEDGMENT

We would like to thank Dr. Per Ljung from

CodeTronix LLC and Lars Sjöberg from EWE AB for
making their tools available to us and for their support
during this study.

The research has been financed by a grant from the
Swedish Knowledge Foundation.

REFERENCES

[1] A. Dellson, G. Sandberg, and S. Möhl, “Turning FPGAs

into supercomputers- debunking the myths about FPGAs-
based software acceleration”, Proceedings of the 48th Cray
User Group Conference, Lugano, Switzerland, May, 2006.

[2] Handel-C language reference manual, Version 3.1,
Celoxica Inc., 2002.

[3] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the
Streams-C C-to-FPGA compiler: An application
perspective”, Proceedings of the 9th ACM International
Symposium on Field Programmable Gate Arrays,
Monterey, CA, Feb. 2001.

[4] W. Najjar, W. Bohm, B. Draper, J. Hammes, R. Rinker, R.
Beveridge, M. Chawathe, and C. Ross, “High-level
language abstraction for reconfigurable computing”, IEEE
Computer 36(8), Aug. 2003, pp. 63-69.

[5] S. Gupta, N. Dutt, R.Gupta, and A. Niculau, “SPARK: A
high-level synthesis framework for applying parallelizing
compiler transformations”, Proceedings of the 16th
International Conference on VLSI Design, New Delhi,
India, Jan. 2003.

[6] M. Budiu and S. C. Goldstein, “Compiling application-
specific hardware”, Proceedings of the 12th International
Conference on Field Programmable Logic and
Applications, Montpellier, France, Sep. 2002.

[7] C.A.R. Hoare, “Communicating sequential processes”,
Prentice-Hall, 1985.

[8] Mobius language manual, Codetronix LLC., May 30, 2006.
[9] P. Ljung, S. Zahrai, W. Snapp, and G. Wenes, “Industrial

experience using Mobius for rapid hardware development”,
Proceedings of FPGA World Conference, Stockholm,
Sweden. 2005.

[10] XAPP219, “Transposed form FIR filters”, Xilinx
homepage, 16 Sep. 2006.

http://direct.xilinx.com/bvdocs/appnotes/xapp219.pdf

[11] XAPP610, “Video Compression using DCT”, Xilinx

homepage, 16 Sep. 2006.
http://direct.xilinx.com/bvdocs/appnotes/xapp610.pdf

[12] D. Lavenier, J. Theiler, J. Szymanski, M. Gokhale, and J.

Frigo, “FPGA implementation of the pixel purity index
algorithm”, SPIE, FPGAs and Reconfigurable Processors
for Computing and Applications, vol 4212, Boston, MA,
November 2000.

[13] V. Baumgarte, F. May, A. Nuckel, M. Vorbach, and M.
Weinhardt, “PACT XPP – A self-reconfigurable data
processing architecture”, Proceedings of 1st Inernational
Conference of Engineering of Reconfigurable Systems and
Algorithms (ERSA’01), Las Vegas, NV, June 2001.

[14] PACT software design system M64 reference manual
version 4.0 (PSDS-M64_Reference_Manual.pdf), Mar.
2004.

