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Abstract 
 

Over the years reconfigurable computing devices 
such as FPGAs have evolved from gate-level glue logic to 
complex reprogrammable processing architectures. 
However, the tools used for mapping computations to 
such architectures still require the knowledge about 
architectural details of the target device to extract 
efficiency.  

A study of the Mobius language and tools is 
presented in this paper, with a focus on generated 
hardware performance. A number of streaming and 
memory-intensive applications have been developed and 
the results have been compared with the corresponding 
implementations in VHDL and a behavioral hardware 
description language. Based upon experimental 
evidences, it is concluded that Mobius, a minimal parallel 
processing language targeted for reconfigurable 
architectures, enhances productivity in terms of design 
time and code maintainability without considerably 
compromising performance and resources.  
 
 
1. Introduction and Motivation 
 

Field Programmable Gate Arrays (FPGAs) are 
drawing the attention of an increasingly wide audience 
because of their double performance advantages, not only 
providing better price per performance but also 
consuming far less power per computation, when 
compared to ordinary CPUs. Another key factor is that, 
over the last decade, the enhancements in FPGA density 
and speed have not only followed but somewhat exceeded 
Moore’s law [1]. The possibility of run-time 
reconfiguration by which FPGAs can be remotely 
configured has also led to the growing realization of 
algorithms in silicon instead of using general purpose 
processors. 
 

 
 

The target applications for FPGAs range from signal, 
image and video processing to communication, 
cryptography and pattern matching. 

Despite these merits, FPGAs have still achieved 
limited applicability because of the difficulty in 
describing complex algorithms in the hardware oriented 
design methods such as structural Hardware Description 
Languages (HDLs) and schematic based tools. They 
require a more rigorous development process, involving 
manpower training beyond application level, resulting in 
an increase in development cost and time-to-market. In 
addition, the clock speed of FPGAs is typically ten times 
lower than that of general purpose processors, and due to 
this they need to exploit large scale parallelism in 
algorithms to compete with these devices. The techniques 
used to obtain maximum performance include keeping the 
design synchronous, implementing pipelining, minimizing 
logic cell fan out, duplicating logic in critical paths and 
handcrafting the critical sections of the design. 

Thus there is a dire need for a higher layer of 
abstraction, as structural HDL is well below the level of 
classical application programming, in order to hide the 
low level hardware complexities from the developer. One 
such high-level behavioral language is Mobius, which 
allows the applications to be described as a composition 
of concurrent processes. The individual processes 
communicate among each other by using typed channels. 
This approach hides the intricacies of low-level details 
from the application programmer. In the rest of the paper 
we refer to structural HDL as HDL.  

In this paper we present an experimental study of the 
Mobius language and tools, with a focus on the efficiency 
of the generated HDL code. This work is part of our 
ongoing research whose initial studies are presented here. 
A comparison has been made between results obtained 
from implementations built in Mobius, VHDL and 
Streams-C. 

The rest of the paper is organized as follows: Section 
2 presents some of the similar languages. Section 3 
provides a review of the Mobius language. Section 4 
describes the Mobius design flow and tools. The results of 1-4244-0910-1/07/$20.00 ©2007 IEEE. 



implementations are discussed in Section 5, and the 
conclusions drawn from the study are presented in Section 
6. 
 
2. High-level Languages for Reconfigurable 

computing 
 

There have been a number of initiatives taken in both 
the industry and the academia to address the requirement 
of high-level languages for reconfigurable silicon devices. 
A few of them are described here. 

Handel-C is a high-level language with ANSI-C like 
syntax used to program gate level reconfigurable 
hardware [2]. It supports behavioral descriptions with 
parallel processing statements (par) and constructs to 
offer communication between parallel elements. Handel-
C is being used for compilation for synchronous hardware 
and inherits sequential behaviors. 

Streams-C, a project initiated by Los Alamos 
National Laboratory, is based on the Communicating 
Sequential Processes (CSP) model for communication 
between processes and used for stream-oriented FPGA 
applications. The Streams-C implementation consists of 
annotations and library function calls to stream module.  
The annotations define the process, stream, and signal. 
The Abstract Syntax Tree (AST) consisting of sequences 
of the basic and pipelined data path blocks, is generated 
by the compiler and the compiler analyses the AST for 
partitioning of control and data flow blocks [3]. Streams-
C, which is a subset of ANSI-C, lacks the support for two 
dimensional arrays. 

SA-C, a single assignment synthesizable language is 
one of the academic projects. SA-C is designed as 
functional in nature, not intended as a stand-alone 
language [4]. The compiler constructs the data flow 
graphs of the application before generating FPGA 
configurations. SA-C eliminates the need for pointers as 
used for de-referencing in C, and does not support 
recursion and while-loops. 

SPARK is a high-level synthesis tool, which 
translates C code to VHDL [5]. The compiler applies a 
number of optimizations such as loop unrolling and code 
motion to improve the synthesis results of control 
intensive computational blocks. SPARK, specialized for 
multimedia and image processing applications, cannot 
perform optimizations on input data reuse. 

Compiler for Application Specific Hardware (CASH) 
converts the C source code into Pegasus [6], which is an 
intermediate representation in the form of a dataflow 
machine. It exploits instruction level parallelism by 
applying prediction and speculation. Other optimizations 
include pipeline balancing and data width resizing. 

The reason for selecting Mobius for experimentation 
is that it is one of the recently emerging languages for 

reconfigurable computing where concurrency is inherent. 
This facilitates the use of parallelism to structure 
programs, thus enhancing code modularization and reuse. 
Most of the other languages discussed have a C like 
syntax and expose parallelism by either providing 
statement-level parallel constructs or relying on the 
compiler to maximize parallelism. 
 
3. Mobius language 
 

Mobius is a tiny, domain specific, concurrent 
programming language with CSP-based [7] interprocess 
communication and synchronization methodologies using 
handshaking [8]. It has a Pascal like syntax with bit 
specific and Occam like extensions, suitable for both fine-
grained and coarse-grained architectures. 

The hierarchical modules in Mobius are composed of 
procedures and functions. The processes execute 
concurrently and communicate with each other through 
message passing unidirectional channels. A channel 
consists of req, ack and data signals and provides 
unbuffered, point-to-point communication. The data 
width can be user defined. An active port can either 
initiate a read or a write. The data types supported by 
Mobius are integer(n), float(n,m), 
fixed(n,m), Boolean, channels, arrays, 
records, bit-select and timers. The data type 
can itself be an array in order to construct multi-
dimensional arrays and every type conversion is explicit 
in Mobius. Furthermore, Mobius has built-in support for 
floating point operators such as add, subtract, multiply, 
divide, invert, square-root and comparison. The size of 
mantissa and exponent is parameterizable, depending on 
the constraints for area conservation or desired precision. 
There are also constructs to manage the flow control such 
as seq (sequential block), par (parallel block), alt 
(alternative communication), while, if/else, for 
and repeat. The non-deterministic alt construct can 
be used to choose between multiple channel events. 
 
4. Mobius Compiler 

 
Figure 1 shows the complete design flow used for 

developing in Mobius [9]. The tool-chain consists of three 
components, namely Simulator, SW compiler and the HW 
compiler.  

There is also a prototype debugger derived from the 
simulator. Mobius SW compiler generates ANSI-C 
compatible code with inherent run time support. Any 
application developed in Mobius can be tested at the 
functional level by using the simulator, which is a 
transaction modeler lacking timing information. 

 



 
Figure 1 Mobius design flow [9]. 

However, there are certain discrepancies regarding 
the generated HDL code, for example, the non-
deterministic alt scheduling, the fact that the simulator 
uses double precision format for floating point operations 
irrespective of what is specified in the source code, and it 
also enables recursion and hierarchical scoping, not 
supported in the generated code.  

The major focus in this study has been laid on the 
HW compiler, which generates the synthesizable 
Verilog/VHDL code with embedded test bench. The 
corresponding HDL code can then be synthesized or 
simulated by using any third-party tool to generate the 
bitstream for the FPGA. The Mobius implementation has 

been translated to data flow graphs consisting of 
handshake primitives, which are interconnected by 
handshaking channels [9]. The data flow graphs give an 
abstract view of the generated hardware logic. Mobius 
uses a 4-phase handshaking protocol for data transfers 
over channels. The data channels are further classified as 
either push or pull channel and the control channel is only 
used for synchronization.  

The use of the handshaking primitives automatically 
manages the flow control and provides automatic elastic 
pipelining. The various handshake primitives along with 
their respective resultant circuits are shown in Figure 2 . 
All of these handshake primitives provide events to 
sequence the actions. Each handshake primitive contains a 
passive sync activation port and optionally a number of 
active sync output activation ports. In the handshake 
graph, the filled dots or arrows represent active ports, 
whereas the hollow circles indicate passive ports and the 
arrow heads indicate the direction of the data flow. By 
examining the equivalent circuits, it can be deduced that a 
sequential primitive translates to a sequencer with the ack 
(a) signal of the first statement connected to the req (r) 
signal of the following statement. A parallel block 
constitutes a fork-join where fork allows the concurrent 
activation of events for the child statements. The next 
three primitives allow the control channel to synchronize 
the data transfers. An if-else block is translated to a 
demultiplexer followed by a multiplexer and the mapping 
of input values to the choice of output port is based on the 
condition. A do-loop is decomposed into a mux-demux 
pair operating in a loop so that as long as the control input 
of the multiplexer is asserted, it activates the following 
statement. A transfer primitive is used to implement 
assignment by transferring a data value from the pull data 
path and pushing it towards the push data path and is 
implemented as wires. 

 

 
 

Figure 2 Mobius handshake primitives and circuits [9]. 



 
Generally, the Mobius compiler generated VHDL 

code can be divided into four sections: 
• Definition of top-level package 
• Definition of Mobius specific primitives 
• Definition of application procedures and 

functions 
• Definition of test bench 
It is possible for third-party IP cores to interact with 

the Mobius generated VHDL, provided they are 
compliant with the Mobius handshaking protocol. 

There is so far no automatic resource sharing 
implemented by the compiler, so it is up to the developer 
to build a resource sharing architecture. A client-server 
model can be implemented to share the resources among 
multiple clients using a time-multiplexing technique. An 
important factor considered while implementing such a 
structure is that the shared resource should be large and 
complex enough to justify the additional logic used. 
 
5. Experimental Results and Discussion 
 
The experimental results presented in this section are 
compared based on the area utilization and maximum 
achievable frequency characteristics of the generated 
code, as well as on the development effort involved. 
 
Comparison of Mobius vs Hand coded 
implementations 
 

In this section the implementation results for three 
benchmark applications are presented, as summarized in 
Table 1. A comparison has been made between the 
Mobius results and those of manually optimized versions 
provided by Xilinx [10] [11]. The results have been 
obtained from Xilinx ISE 8.2i synthesis tool based on the 
XCV300 device. 

The first example is an FPGA based digital filter. 
These are gaining interest because of their flexibility and 

performance. The hand-crafted implementation consists 
of an 8-tap transformed form Finite Impulse Response 
(FIR) filter with Constant Coefficient Multipliers (KCM), 
adders, registers and a delay-locked loop [10]. The fixed-
point representation used for input samples is 16-bits and 
that of coefficients is signed 14-bits. The Mobius 
implementation of the FIR filter consists of inelastic 
pipelining to achieve better throughput, but the 
disadvantage is that the first few samples are to be 
discarded till the pipeline is full. Once the pipeline is 
filled it provides an output sample per clock cycle. The 
area utilization results of the Mobius design are better 
than those of the hand coded, whereas the maximum 
speed is 30% lower. This can be explained in the context 
of use of KCMs by the hand coded implementation where 
the partial products are stored in lookup tables (LUTs), 
which is highly efficient. 

Next, implementation results of the complex Fast 
Fourier Transform (FFT) are discussed. The 
implementation consists of a radix-2 decimation in time 
algorithm. The design in Mobius receives inputs in 
natural order and provides output samples in natural order 
too. The bit reversal stages for the samples as well as the 
weights are embedded in the FFT process. Since the run-
time calculation of sine and cosine values are not yet 
supported in Mobius, the pre-computed weights are 
passed along with the input data in a stream. The HDL 
implementation also uses pre-computed weights. In order 
to conserve the area utilization the algorithm operates on 
arrays for real and imaginary parts, but the butterfly 
computations have been parallelized. It can be deduced 
from the results that the implementation described at the 
gate level occupies less area and generates better 
performance because the movement of data into and out 
of the butterfly processing unit and computation are 
overlapped by the use of dual port RAM. Thus the FFT 
unit never stalls while waiting for an I/O operation, thus 
providing higher throughput rate. 

Table 1 Resource Utilization & Code Complexity of Mobius and Hand coded applications. 

 
Benchmarks No. of Slices No. of Slice 

FFs 
No. of 4-

Input LUTs 
No. Of 
Bonded 

IOBs 

Max. 
Frequency 

MHz 

Lines of 
Code 

8-tap FIR (Mobius) 559 279 994 38 48.36 61 
8-tap FIR (VHDL) 672 811 948 56 68.04 480 
8-pt. FFT (Mobius) 785 331 1388 64 48.89 121 
8-pt. FFT (VHDL) 533 670 957 67 71.297 1759 
2D-DCT (Mobius) 631 190 1117 25 43.97 112 
2D-DCT (VHDL) 1573 1608 1876 23 61.02 866 

 
 



 
for i:=0:(mrows-1) do
seq

for j:=0:(mcols-1) do
seq

tmp2 := 0;
for k:=0:(mrows-1) do
seq

itmp1:= indtyp((i*mcols)+k);
itmp2:= indtyp((k*mcols)+j);
tmp1 := xmat[itmp1] * ctmat[itmp2];
tmp2 := tmp2 + tmp1

end;
itmp3:= indtyp((i*mcols)+j);
zmat[itmp3] := tmp2

end
end;  

 
Figure 2 Mobius implementation of 1D-DCT using Vector processing. 

 
The third implementation is a Two-Dimensional 

Discrete Cosine Transform (2D-DCT) employed in video 
compression [11]. The architecture adopted for 
implementing 2D-DCT in the HDL version consists of 
cascaded stages of an 8-point one-dimensional DCT, a 
double RAM buffer and another 1D-DCT. The 1D-DCT 
has been implemented by using vector processing which 
employs parallelized multipliers, giving a regular 
structure with simple control and interconnect to provide 
improved performance and area utilization. The 2D-DCT 
in Mobius has been implemented in the form of matrices 
by using arrays, as shown in Figure 2. The indtyp is a 
new type, and xmat,zmat are the array matrices defined 
previously in the complete code. The cosine and inverse 
cosine transposed coefficients are stored as constants in 
arrays. The input matrix is passed through an input 
channel and vector processing has been performed in two 
steps operating on the arrays. The results are passed 
through the output channel to the test bench. The use of 
arrays results in the instantiation of block RAM, thus 
conserving the slice resources considerably compared to 
the hand written implementation, but the maximum speed 
achieved is lower due to operating in a sequential loop. 
The Mobius implementation has an initial latency of 234 
clock cycles as compared to 92 cycles for the VHDL 
implementation [11] (the performance mentioned in the 
application note can not be reproduced by us because of 
the unavailability of proper simulation tools). The latency 
of the Mobius implementation can be improved by 
implementing pipelining, but it will result in increased 
area resources. 

The number of lines of code may be used as a 
measure of the complexity involved in debugging and 
development of the implementations. With this measure 

the relative complexity in a VHDL design is 8 to 14 times 
higher than that in a Mobius based one.  
 
Comparison of Mobius vs Streams-C 
 

In this section, the synthesis results are compared for 
implementations performed in Mobius and in the 
Streams-C [3] language. The results presented are 
targeted for the Xilinx XCV1000 device and are shown in 
Table 2.  

A Polyphase filter is a multirate filter employed 
along with FFT in signal detection to extract RF signal 
subbands from noisy environments [3]. The design of a 
polyphase filter bank is based on a lowpass FIR filter with 
symmetric coefficients. The input stream consists of 8-bit 
unsigned encoded data, while the coefficients are 12-bit 
unsigned values. A bank of four polyphase filters is 
mapped on the FPGA. The results show that the Mobius 
implementation not only acquires less area utilization, the 
maximum speed of the Mobius design is also much 
higher.  This can be explained by the fact that the 
Streams-C compiler is unable to pipeline the 
computational blocks in the algorithm having the 
conditional control flow. In contrast, fine-grained 
parallelism has been achieved efficiently in the Mobius 
design by the use of par statements within the 
conditional block, as shown in Figure 3. It is worth 
mentioning here that in terms of speed the Mobius results 
even exceed the hand coded version [3]. 

The final example is a relatively complex Pixel 
Purity Index (PPI) algorithm [12]. The PPI algorithm has 
been used in the analysis of hyper spectral images. A 
large number of random D-dimensional vectors called 
skewers are generated.  

 



Table 2 Performance results of Mobius and Streams-C applications. 

 
Benchmarks Area  Slices Speed  

MHz 
Development Time 

in Weeks 
Polyphase filter (Mobius) <1% 98.2 1/2 
Polyphase filter (Streams-C) 1% 40 1/2 
Pixel Purity Index (Mobius) 2% 54 1 
Pixel Purity Index (Streams-C) 6% 40 1 

 
 

while true do
seq
    cu ? u;

par
  m1 := datat(b1*u);

         m2 := datat(b2*u);
         m3 := datat(b3*u);
         m4 := datat(b4*u)

end;
if (even=1) then

par
   ot := e1+m1;
   e1 := e2+m2;
   e2 := e3+m3;
   e3 := m4;
   even := 0

end
else 

      par
   ot := o1+m4;
   o1 := o2+m3;
   o2 := o3+m2;
   o3 := m1;
   even := 1

end;
    cy ! ot  
end  

Figure 3 The Polyphase filter bank in Mobius. 
 
For each skewer every data point is projected onto 

the skewer and the corresponding location along the 
skewer is noted. The data points corresponding to the 
extrema are listed and the number of times a specific pixel 
is placed on the list is also noted. The one with the highest 
number gives the most pure pixel. The computationally 
most expensive part is the calculation of the dot products 
between the skewers and the pixels, and this part has great 
potential for parallelization. The individual dot products 
are independent and can be executed concurrently. The 
Mobius implementation consists of 6144 pixels, 4096 
skewers and 512 spectral bands.  Thus the complexity of 
the implemented PPI algorithm is O(8×512×12). It can be 
deduced from the results that Mobius produces much 
better resource utilization as well as enhanced 

performance in terms of speed. The Streams-C generated 
results lag due to the inability to pipeline loops that have 
conditional constructs and due to the lack of capability of 
having arrays of processes on chip [3].  

If we take a look at the figures of the development 
time required for these two applications, it is deduced that 
one can achieve improved performance comparable to 
respective hand-crafted applications [3] by using Mobius, 
whereas the amount of effort put in development is 
similar to Streams-C. 

 
6. Conclusions 
 

A study has been performed by using a CSP based 
multi-threaded language. The benchmark applications 
considered range from streaming applications like FFT 
and DCT to control flow based applications like PPF and 
PPI, all including computationally intensive and memory 
intensive kernels. 

The study reveals that Mobius can be regarded as a 
design and algorithm space exploration tool that enhances 
the productivity by keeping the control with the 
programmer. The local control and data flow can be 
parallelized to achieve better throughput and minimum 
area. However, the parallelization of compute-intensive 
blocks of an algorithm of course results in an increase in 
area utilization. The features like automatic pipelining, 
parameterization and variable length data types allow the 
programmer to bridge the gap between algorithms and 
circuits. In addition the availability of floating point 
operations opens the possibility of efficient mapping of 
high performance scientific applications onto the FPGAs. 
However there is still minimal library support available 
for developing designs in Mobius. 

The comparison of Mobius generated results with 
Streams-C and hand coded implementations proves that 
Mobius provides the flexibility of a high level language 
without compromising the device utilization and 
performance. In terms of development time the achieved 
engineer efficiency is almost 10 times better than when 
working with the corresponding HDL codes. 

Despite the fact that so much work has already been 
conducted to explore new paradigms from higher level 



software to circuit design level for reconfigurable 
computing, still there are opportunities ahead of us. One 
such possibility is to extend the use of the CSP based 
model to other more coarse-grained architectures such as 
PACT’s eXtreme Processing Platform (XPP) [13] and 
from a high level language generate low level Native 
Mapping Language (NML) [14] code. 
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