
Code Compression and Decompression for Instruction Cell Based Reconfigurable
Systems

Nazish Aslam1, Mark Milward2, Ioannis Nousias2, Tughrul Arslan1, 2, Ahmet Erdogan1, 2

1 Institute for System Level Integration, Alba Campus, Livingston, UK EH54 7EG
2 University of Edinburgh, School of Engineering and Electronics, Edinburgh, UK EH9 3JL

Abstract

Code compression has been applied to embedded
systems to minimize the silicon area utilized for program
memories, and lower the power consumption. More
recently, it has become a necessity for multiple-issue
architectures, such as VLIW and TTA, to permit a viable
realization of these designs. In this paper, a code
compression and decompression scheme suitable for newly
emerging reconfigurable technologies is presented, which
pose further challenges by having an order of magnitude
higher memory requirement due to much wider instruction
words than typical VLIW/TTA architectures. Two
dictionary-based lossless compression schemes are
implemented and compared for an example reconfigurable
system. This paper looks at several conflicting design
parameters, such as the compression ratio, silicon area
and speed. Test programs for a 2D DCT, minimum error,
wimax and H.264 have been evaluated with compression
ratios in the range of 41% to 62% recorded with the best
scheme.

1. Introduction

The newly emerging technology of reconfigurable
computing [1-6] aims to combine the flexibility of FPGAs
with the programmability found in General Purpose
Processors/Digital Signal Processing Processors in a
unified and easy programming environment.
Reconfigurable computing cores tend to be developed in
terms of flexibility and performance, which correspond to a
high amount of parallel processing units with its associated
interconnect.

Similarly, other multiple-issue architectures such as
VLIW and TTA also exploit instruction level parallelism in
order to provide higher throughput for computationally
intensive algorithms. However controlling several parallel
processing units demand excessively large instruction
memories, and an associated very wide instruction fetch

bandwidth. A wide bandwidth instruction fetch mechanism
is required to supply multiple instructions per cycle to the
several processing units of the architecture. This increases
the silicon cost, making the higher throughput offered by
these architectures less attractive.

Code compression plays a crucial role in tackling these
issues by reducing the amount of information needed to
represent the code. A lot of research has gone into code
compression for embedded systems, particularly for RISC-
based architectures [7-9], to reduce silicon area occupied
by the memory and consequently reduce power
consumption. The asymmetric nature of code compression
allows the compressor to be made as complex and
computationally intensive task as required as it is
performed once at compile time. However, since the
decompressor has a direct effect on the targeted processors
performance, the decompression hardware should be kept
as small and simple as possible to minimize area overhead
and latency.

Code compression in multiple-issue architectures faces
extra challenges than single-issue due to the need of
decompressing a very large instruction word quickly
enough so not to compromise the speed of the processors.
Yet a reduced instruction bandwidth is also desired to
minimize wiring congestion and power consumption. By
applying code compression, there is consequent inevitable
delay between the main program memory and the
processor, hence the aim is to minimize this enough so that
it does not become the speed bottleneck for the actual core.
Furthermore, it is desirable to minimize the overall area
taken up by the decompressor logic so that the benefits
achieved by performing program compression, and the
sacrifice made in terms of extra latency, are not lost by
having a large decompressor hardware.

It is well recognized that higher compressions may be
achieved if a compressor and decompressor are made
application specific, however this is not feasible for our
targeted reconfigurable architecture as well as conventional
processors since they should be capable of running several
different programs and those programs may change in

1-4244-0910-1/07/$20.00 ©2007 IEEE

future via software downloadable upgrades. Thus a generic
design is needed which would give a reasonable
compression across most programs, and would be easily
scalable as the number of functional units increase.

This paper presents code compression and
decompression schemes for an example coarse-grain
reconfigurable architecture. The reconfigurable architecture
introduced in [6] offers a very high number of parallel
processing units and thus has a very wide instruction width.
It is dynamically reconfigurable, thus it has to have the
ability to store many configuration codes in memory which
program the processing units for a particular moment in
time.

In this paper, we present a couple of dictionary-based
code compression schemes for reconfigurable architectures
which aim to satisfy the above requirements and a
comprehensive comparison is performed for them. The first
scheme is based on existing methods where one dictionary
is assigned to a single functional unit. The second scheme
is based on a novel ‘unit-grouping’ technique. It is
noteworthy that many of the previously published work on
code compression for multiple-issue processors fail to
account for silicon area or decoding speed of algorithms,
which gives an unrealistically optimistic view of some
compression schemes.

This paper is organized as follows. Section 2 reviews
related work. Section 3 gives a brief overview of the
targeted reconfigurable architecture and discusses the
features of a typical program code which may be run on it.
The first compression scheme implementation is presented
in Section 4, followed by the second compression scheme
implementation in Section 5. Section 6 gives the
experimental results for both compression schemes and
performs a comparison. Finally, Section 7 summaries the
findings.

2. Related Work on Code Compression

Different lossless compression schemes can be found in
abundance in literature. However it is important to note
that code compression has different requirements to other
forms of lossless data compression, thus the same
compression schemes cannot be applied to both, though
some ideas may be borrowed. Many well known data
compression schemes provide very good compression
ratios but they typically decompress files from beginning to
end in a very sequential manner. This is not feasible for
embedded systems which require either decompression to
be performed on small blocks or on an instruction-by-
instruction basis due to the change of flow in the program.

Code compression normally requires each compressed
instruction to be encoded as such that its decompression
and execution can be done immediately, without waiting
for the subsequent instructions to be decoded, as otherwise
an unacceptable time delay will be introduced. Also

programs require the ability to make conditional jumps to
new locations within the code. Whether or not a jump is
taken directly depends upon how the condition is evaluated
at execution, which in return mandates the previous
requirement of decompressing and executing individual
instructions immediately without waiting for subsequent
instructions decode, as that effort may be wasted if a jump
is required.

The two common categories of lossless compression are
statistical and dictionary-based. Statistical compression
extracts statistical information from the data and uses that
information to perform the compression. Many statistical
methods result in codewords that are not fixed in length,
thus it becomes necessary to first establish the range of bits
for the next instruction, and only then the extraction and
decompression can start for that particular instruction.
Thus, this becomes a very serial operation and following
instructions cannot be decoded until the prior ones have
already been decoded, increasing the overall processing
latency. However, for dense program codes of multiple-
issue architectures, statistical methods perform better than
dictionary based [10]. It is noteworthy that the targeted
reconfigurable architecture in this paper is more similar to
the traditional VLIWs with rigid instruction formats rather
than modern VLIWs with flexible instructions; i.e. the
individual instruction positions within a wide instruction
correspond to specific functional units, thus their code is
less dense due to many inactive units, whereas in flexible
instructions, the individual instructions within a wide
instruction can be processed by any functional units.

Statistical compressions for modern VLIWs include
work done by Larin and Conte [11] who uses Huffman
coding to compress instructions in 3 different ways
allowing varying degrees of trade-off to be made between
the compressed program size and the decompressor size.
Further work is done by Xie et al [12] who have used
arithmetic coding with a Markov model and report
compressions of 67.3% to 69.7%. They also present a
Tunstall based variable to fixed encoding scheme [13] and
a fixed to variable encoding scheme [10] with
compressions in the range of 65% and 70% to 82%
respectively.

Dictionary-based schemes compile dictionaries of
frequent instructions found in a program and replace those
instructions with the corresponding dictionary index.
Dictionary-based algorithms normally result in poorer
compression than statistical methods but tend to result in
faster and simpler decompression logic. Nam et al [14]
propose a dictionary based compression scheme for
traditional VLIWs, and use isomorphism to create two
dictionaries, one for storing operations, and the other for
operands. Only frequent instruction words are compressed.
The point to note is that this compression scheme becomes
worse when the number of functional units increases from

4 to 12. Compression ratios from 63% to 71% are reported
although no discussion on silicon area or latency is found.

Further dictionary based compression schemes are
provided by Ros and Sutton [15] who investigates
compression at 3 levels of instruction granularity. The most
efficient compression scheme gave an average compression
ratio of 68.3%; however it is a sequential design, thus quite
slow. Other design parameters such as area or latency are
not shown, and furthermore dictionary initialization bits are
not added to the compression ratio calculation. Ishiura and
Yamaguchi [16] also use dictionaries where they apply
automatic field partitioning to partition instructions into
smaller bit-sets to keep the corresponding dictionaries
small. Compression ratios of between 46% and 60% are
reported.

3. Target Reconfigurable Multiple-Issue
Architecture

3.1 Instruction cell based architecture

The recently developed industrial distributed
reconfigurable instruction cell based architecture [6] was
targeted for applying the proposed code compression
techniques. The architecture is able to provide dynamic
hardware reconfigurability and a high throughput. It uses a
complex scheduler to effectively extract instruction level
parallelism from general-purpose high level language
codes [17].

The architecture consists of an array of heterogeneous
instruction cells, where the number and type of these
function units are parameterizable upon application. For
this paper, a 64 function units architecture was chosen,
although the actual reconfigurable system is capable of
having several fold more units if desired. This implies
significantly more processing units than other existing
multiple-issue architectures; e.g. VLIWs usually have up to
12 processing units. Furthermore, for VLIW, each
processing unit can perform different functions like an
ALU, whereas the units of the target reconfigurable
architecture are more specific purpose, such as multiplier,
divider, shifter, adder, logic, registers, etc. Understanding
the exact nature of each of the processing element is
irrelevant for this paper, however it is suffice to say that
each unit, depending upon its type, can have a varying
number of configuration bits associated with it. The units
of our target system contain cells with configuration bits
varying from 3 up to 32 bits each. Each processing unit
performs a specific subset of primitive operations, and the
associated configuration bits are used to configure that
unit’s operation appropriately at any moment in time.
These configuration bits are accessed from the instruction
memory, whereas the operands required by the functional
units are obtained separately from the data memory.

3.2 Program code

Each wide instruction for the targeted 64 unit
architecture is 474 bits; these wide instructions will now be
referred to as steps. Examining a typical program code,
poor code density is obvious. Most steps contain ‘No
Operation’ (nop) instructions for inactive units, similar to
traditional VLIW. Units are inactive if they are not utilized
in a given step and occur frequently due to inter-instruction
dependencies. They can be identified by their all zero
configuration bits. This is labeled spatial redundancy. The
second type of redundancy is the repetition of
configuration settings for a given unit several times
throughout the lifetime of a program code. This is labeled
temporal redundancy. And finally, performing some code
profiling revealed a very frequent usage of units with large
number of configuration bits, thus any compression
achievable on these would be quite beneficial.

4. Compression Scheme 1 (CS1)

The first design was intentionally made simplistic in an
attempt to minimize the latency associated with a single
step decompression, while achieving a reasonable memory
size reduction, and is based on similar compression
techniques already applied for VLIW/TTA processors.

Spatial redundancy removal eliminates all nop
instructions for inactive units in a given step. This results in
varying step sizes. Consequently, the decompressor would
neither know when a complete single step has ended nor
which functional units the configuration settings are
intended for. Adding especially reserved end-of-step tags
to the end of each step can signify a step completion. Some
tags are also needed before each configuration bit-set
within a step to provide information on which unit they are
allocated. Given there are 64 units in the targeted
reconfigurable architecture, 6bits can identify all the units
uniquely, and would precede the corresponding
configuration bit-sets. A reserved end-of-program tag is
needed to indicate that the entire compressed program code
has been decoded. For this, a codeword which can be
guaranteed to never occur in any compressed program code
can be used.

For removal of temporal redundancy, the common
technique of index dictionaries is applied. One dictionary is
associated per unit, where each dictionary holds a single
copy of all the unique configuration values for its
associated unit. Thereafter the original program code is
scanned and all the configuration values are replaced by
their corresponding dictionary index. Compression can
only be achieved with dictionaries if the number of bits
being replaced is more than the dictionary index bits. This
can only happen if we can guarantee that only a subset of
all the possible unique configuration values can occur
during the lifetime of any program code. This can easily be

the case for a 32bit functional unit, where the 32
configuration bits can have up to 232 unique values, yet in
practical terms, only a small fraction of these are ever
utilized. However, for some of the other units that have
very few configuration bits, such as 3 or 4 bits each, using
a dictionary is not feasible, since the chances of at least
half of 23 or 24 unique combinations occurring in a given
program are very high. Hence such unit configuration bits
are best kept in their original form. After performing some
code profiling, it was found that a dictionary with 210
words would be more than sufficient for units with large
configuration bits without the risk of overflowing, even for
quite large programs like H.264. The large configuration
bits will thus get replaced by 10bit indices. Note that even
though the dictionary lengths are the same for large
configuration units, the word widths will vary for each unit
dictionary to match its corresponding unit’s number of
configuration bits.

The above mentioned redundancy removal techniques
result in variable length compressed steps as well as
variable sized payloads within each step. A payload
represents one compressed instruction for an active unit
inside a step and for CS1, it is made up of:

 OR

Thus, during decompression, the first 6bits for unit

location tag have to be extracted and decoded to deduce the
number of bits to read in for either the dictionary index or
configuration bits. Once established, the next bits are read
and decoded. Then, the following 6bits are read and
decoded to know how many bits are now needed, and so
on. A good compression ratio may be achieved using
variable length payloads, however due to the sequential
nature of the entire decoding process, the time required to
decompress a complete step is unacceptable as the
decompressor will become the speed bottleneck for the
reconfigurable processor.

Nonetheless, if all the payloads are made the same fixed
length, then several payloads may be extracted and
decompressed in parallel, speeding up the time it takes to
decompress a complete step. A payload size of 16 bits is
needed as a minimum to be able to correctly compress the
larger unit instructions. Thus all the other payloads for the
smaller units can also be fixed to this, which will result in

an expansion of the code in some areas rather than
compression, however this trade-off is necessary for
speeding up the decompression process. The resulting
decompressor design is shown in Fig. 1.

This decompressor assumes that it is able to process up
to 8 payloads in parallel from the compressed program
memory; hence it expects 128bits bandwidth. This is
clearly smaller than the initial 474bits bandwidth
requirement, and the number of payloads fetched
concurrently can easily be reduced or increased as desired.
More payloads mean faster decode per step. The design has
a one stage pipeline in order to increase its throughput.
The compression is performed on a per basic block basis in
order to ease how conditional jumps can be taken. When
the reconfigurable core executes a step, and identifies a
branch to a new location, it simply sets the target address
on the ‘sram_start_address’ line and toggles the
‘initialize_sram_address’ signal of the decompressor. This
causes the decompressor to entirely flush the pipeline and
start decompressing steps from the new specified address.
The target addresses for each branch get updated during
program compression according to their new locations.

Performing code compression undoubtedly introduces
some extra delay in the path of code fetch and execution.
Given that the performance of the reconfigurable core is of
utmost importance, then it is quite desirable to be able to
run smaller program codes directly in an uncompressed
form. This is possible by using the index dictionaries for
each of the units as a cache to directly store all the steps of
an uncompressed program if the program is no larger than
1024 steps. A simple state-machine may be implemented to
record all the steps into the dictionaries and steps may be
extracted in an incremental manner.

With this scheme the best compression achievable for a
single step is 474bits reduced down to 16bits. This happens
if only one unit is active. However, the worst case step

decompressor
logic

8 x 1-to-64
demultiplexors

addresses
_rdy

addresses
_received

handshaking
controller

FF

st
ep

_r
ec

ei
ve

d

st
ep

_r
dy

FF
FF

FF
demux_
reset_n

x_address_rd

FF FF

FU0_load FU1_load FU63_load

FU1_address_wrFU0_address_wr FU63_address_wr

FU0_dout FU1_dout FU63_dout

FU0_din FU1_din FU63_din

step_reset_n

step_load

sram_
address

x_din

x_addr
ess_w

r

x_load

enable_dec
ompressor
sram_start
_address

initialise_sram
_address

sram_data payload1

payload8

Figure 1. Decompressor design for CS1.

Original
configuration bits

6 + x bits

6 bits x bits

Unit
location tag

Dictionary Index

16 bits

6 bits 10 bits

Unit
location tag

compression would actually increase the 474bits step to
1024bits, and this can occur if all 64 units are active within
a step.

5. Compression Scheme 2 (CS2)

CS2 is similar to CS1. It performs compression on per
basic block basis and handles branches in the same manner.
Spatial and temporal redundancies are removed as before
and the decompressor has a one-stage pipeline
implemented like in the previous scheme. However, the
main difference lies in how the temporal redundancy is
removed. Instead of assigning one 1K dictionary per
functional unit, a group of functional units get assigned a
1K dictionary. One group may contain from 1 up to 4
different units. This idea came after encountering the
undesirable expansion of code for smaller units in the
previous scheme. Grouping some of the smaller units
together as such that their accumulated number of bits is
either at least equal to or more than 10bits, ensures that the
compressed payload is not worse than what it would have
been in its uncompressed form. It has to be ensured that the
accumulated number of bits do not become too much
greater than the 10bits, as the 1K dictionaries will become
insufficient to hold all the possible unique combinations
occurring in a given program code. For example, grouping
the four 3bit adder units would result in a total of 12bits.
Such a grouping means that up to a maximum of 212 unique
values can occur in the program code if we assume that all
of the four add units are active together in any given step
and go through each of their possible values. However, this
scenario actually occurring in any practical program code
is highly unlikely. So, instead of having a 212 words
dictionary, a 210 dictionary is quite sufficient as it allows
for up to 25% of the total unique configurations to occur in
any given single program code.

25 groups were created after performing the unit
groupings for the target 64 functional unit reconfigurable
core. A 5bits group location tag is now sufficient to
uniquely identify all the group dictionaries. However, each
payload now requires the addition of unit activation bits
that show which units within a given group are active in a
given step. As a group was chosen to contain from 1 up to
4 units, 4 bits are needed for units’ activation information.
Thus, a single payload now becomes 19bits in length:

decompressor
logic

8 x 1-to-25
demultiplexors

addresses
_rdy

addresses
_received

handshake
controller

FF
FF

FF
demux_
reset_n

x_address_rd
sram_

address

payload1

payload8

FF

st
ep

_r
ec

ei
ve

d

st
ep

_r
dy

FF FF

group0_load group1_load group9_load

group1_addr
ess_wr

group0_addr
ess_wr

group9_addr
ess_wr

group0
_din

group1
_din

group9
_din

FFactive0 active1 active9

FU3_
dout

FU1_
dout

FU0_
dout

FU2_
dout

FU4_dout FU13
_dout

FU12
_dout

st
ep

_l
oa

d

st
ep

_r
es

et
_n

FF FF FF
x_din

x_addr
ess_wr

x_loa
d

enable_dec
ompressor
sram_start
_address

initialise_sra
m_address

sram_data

Another advantage of unit groupings is that fewer

demultiplexers are now needed in the design, which can
lower the logic area overhead. As before, the decompressor
(see Fig. 2) assumes it is able to decode 8 payloads in
parallel, therefore expects 152bits instruction fetch
bandwidth. The dictionaries are still usable as an
instruction cache to directly store short (<1025 steps)
uncompressed programs and bypass the decompressor
completely. With this scheme, the best compression
achievable for a single step is 474bits reduced down to
19bits. This happens if only one functional unit is active. If
all the functional units within a step are active then 474bits
expand to only 475bits and this represents the worst case
compression for this scheme.

6. Performance Comparison

A set of DSP applications are used to evaluate the
performances of each compression scheme; namely 2D
DCT, minimum error, wimax and H.264 test programs.
The decompressor designs are implemented using Verilog
HDL and synthesized onto 0.13µm CMOS technology
using Synplicity ASIC. The results are given in Table 1.

The total decompressor area for CS2 is 31.6% lower
than CS1. In both designs, the dictionaries make up 96% of
the total area. These dictionaries are automatically
generated using Virtual Silicon’s Memory Compiler. Note
that even though the capacities of dictionaries for both
designs are equivalent, their areas differ significantly. This
is because more SRAM read and write circuitry is needed
in CS1 as it has 64 1K dictionaries, whereas CS2 only has
25 1K dictionaries with wider words. Furthermore, by
reducing the number of demultiplexers in CS2
decompressor, and the easing of the wiring congestion as a
result, the decompressor logic area is also reduced.

Figure 2. Decompressor design for CS2.

Unit
activation

Dictionary Index

19 bits

5 bits 4 bits 10 bits

Group
location tag

 CS1 CS2
Decompressor logic 0.16mm2 0.11mm2

Dictionaries area 3.79mm2
(485376bits)

2.59mm2
(485376bits)

Total decompressor area 3.95mm2 2.7mm2
Propagation delay 1.914ns 1.918ns

Best case step decode 3.828ns 3.836ns
Worst case step decode 19.14ns 9.59ns

Power consumption 1253µW/MHz 764µW/MHz
2D DCT 73.75% 62.1%

Min error 40.2% 42%
Wimax 41.51% 40.66%

Compression
ratio

H.264 46.1% 41%

The propagation delays for both designs are equivalent,

allowing just over 500MHz clock frequency. Since both
decompressors have a single stage pipeline, the shortest
time to decode a complete step is 2xpropagation delay.
However, in the worst case where all the units within a
complete step are active, the CS1 takes almost twice as
long as CS2 to decode a complete step. As the dictionaries
contribute to the bulk of the area overhead, the power
consumption for each design was estimated using
datasheets of the individual SRAMs. CS2 is almost 40%
less power hungry than CS1. The compressions are
recorded in terms of compression ratio, which is defined as
follows:

Many other published works ignore the bits required for

initializing the dictionaries and treat them as being pre-
initialized in ROM. For our examples, reductions in the
range of 26.25% to 59.8% were achieved with CS1,
whereas CS2 gave reductions in the range of 37.9% to
59%. To better judge whether either of these program
compressions is worthwhile, given that the decompressor
introduces its own area overhead and delays, the results can
be analyzed in terms of effective area savings achieved. To
do this, the size of the original uncompressed program is
found in terms of equivalent SRAM area. Then the size of
the compressed program, including any dictionary
initialization bits, is measured in terms of SRAM area too
and the fixed size of the total decompressor area added to
it. See Table 2.

It is apparent from the results that short programs
actually worsen the area overhead; however larger
programs, like the H.264, provide significant savings. For
the compressions to be worthwhile, a total program size
reduction of approximately 122Kbytes is required for CS1
and 49Kbytes for CS2.

 CS1 CS2
2D DCT 16590bits; 0.193 mm2

Min error 11850bits; 0.178 mm2
Wimax 204768bits; 0.814 mm2

No. of bits
for original
program &
equivalent

SRAM area H.264 9442554bits; 36.9 mm2

2D DCT 12235bits;
0.178 mm2

10295bits;
0.175 mm2

Min error 4758bits;
0.098 mm2

4967bits;
0.101 mm2

Wimax 84996bits;
0.418 mm2

83253bits;
0.411 mm2

No. of bits
for

compressed
program &
equivalent

SRAM area
H.264 4350841bits;

17.4 mm2
3836164bits;

15.4 mm2
Decompressor h/w area 3.95mm2 2.7mm2

2D DCT 4.13 mm2 2.88 mm2
Min error 4.05 mm2 2.8 mm2

Wimax 4.37 mm2 3.11 mm2

Total area
required

after
performing
compression H.264 21.4 mm2 18.1 mm2

2D DCT -2040% -1392%
Min error -2175% -1473%

Wimax -437% -282

Area savings
(negative
value if

worse area) H.264 42% 51%

7. Summary

Two dictionary-based lossless code compression
schemes are implemented for a multiple-issue
reconfigurable architecture, with the aim to reduce the
silicon area and bandwidth costs associated with the
instruction memory. In a comprehensive comparison, our
novel unit-grouping technique outperforms the standard
technique used with dictionary-based compressions.
Significant compression ratios in the range of 41% to 62%
are achieved. The compression scheme is easily scalable to
reconfigurable architectures with increased number of
functional units.

References

[1] Mirsky, E.; DeHon, A.; “Matrix: A reconfigurable computing

architecture with configurable instruction distribution and
deployable resources,” IEEE symposium on FPGAs for
custom computing machines, pp.157-166, Apr. 1996

[2] Hauser, J.R.; “Augmenting a microprocessor with
reconfigurable hardware,” Thesis, University of California,
Berkeley, 2000

[3] D-Fabrix processing array, Reconfigurable Signal Processor,
www.elixent.com, 2004

[4] XPP, PACT, “OFDM decoder for wireless LAN–
whitepaper,” www.pactcorp.com, May 2002

[5] Reconfigurable Computing, Philips, Avispa,
www.siliconhive.com, 2004

Table 2. Compression achieved in terms of
effective area for individual applications

Table 1. Performance results for CS1 and CS2

Compression
ratio =

Original program size

Compressed
program size

Dictionary
initialization

bits
+

× 100

[6] Reconfigurable Instruction Cell Array, U.K. Patent
Application Number 0508589.9.

[7] Lefurgy, C.; Bird, P.; Chen, I.-C.; Mudge, T., “Improving
code density using compression techniques,” Proc. of the 30th
Intl. Symposium on Microarchitecture, pp:194 – 203, Dec.
1997

[8] Liao, S.; Devadas, S.; Keutzer, K., “Code density optimization
for embedded DSP processors using data compression
techniques,” Proc. of the 16th Conference of Advanced
Research in VLSI, pp272, 1995

[9] Wolfe, A.; Chanin, A., “Executing compressed programs on
an embedded RISC architecture,” Proc. of the Intl.
Symposium on Microarchitecture, p.81-91, Dec. 1992

[10] Xie, Y.; Wolf, W.; Lekatsas, H.; “Code compression for
embedded VLIW processors using variable-to-fixed
coding,” IEEE Trans. On Very Large Scale Integration
Systems, Vol. 14, No. 5, pp.525-536, May 2006

[11] Larin, S.; Conte, T.; “Compiler-driven cached code
compression schemes for embedded ILP processors,” Proc. of
32nd Intl. Symposium on Microarchitectures, pp. 82–92, 1999

[12] Xie, Y.; Wolf, W.; Lekatsas, H.; “Code compression for
VLIW processors,” Proc. of Data Compression Conference,
pp. 525, 2001

[13] Xie, Y.; Wolf, W.; Lekatsas, H.; “A code decompression
architecture for VLIW processors,” Proc. of the 34th Intl.
Symposium on Microarchitectures, pp. 66–75, 2001

[14] Nam, S.; Park, I.; Kyung, C.; “Improving dictionary-based
code compression in VLIW architectures,” Trans. on
Fundamentals of Electronics, Communications and Computer
Sciences, Vol. E82-A, pp. 2318-24, Nov. 1999

[15] Ros, M.; Sutton, P.; “A Hamming distance based
VLIW/EPIC code compression technique,” Proc. of the Intl.
Conf. on Compilers, Architectures and Synthesis for
Embedded Systems, pp. 132–139, Sept. 2004

[16] Ishiura, N.; Yamaguchi, M.; “Instruction code compression
for application specific VLIW processors based on automatic
field partitioning,” Proc. of the Workshop on Synthesis and
System Integration of Mixed Technologies, pp. 105-109,
1997

[17] Yi, Y.; Nousias, I.; Milward, M.; Khawam, S.; Arslan, T.;
Lindsay, I.; “System-level scheduling on instruction cell
based reconfigurable systems,” Proc. of Design, Automation
and Test in Europe, Mar. 2006

