Code Generation: On the Scheduling of DAGs Using Worm-Partition

Hatem M. El-Boghdadi
Computer Engineering Dept.
Cairo Univ., Giza, EGYPT
helboghdadi@eng.cu.edu.eg

Abstract

Code generation consists of three main stages, instruc-
tion selection, scheduling and register allocation. The
scheduling stage is very important because it affects the
execution time of resulting code as well as the associated
memory space needed to store the program. This paper
deals with scheduling directed acyclic graphs (DAGs) us-
ing worm-partition. First, we develop a new algorithm to
partition DAGs into a collection of worms while ensuring
that the worm-partition is legal. Although the algorithm
does not guarantee the minimum number of worms, it runs
in optimal O(|V| + |E|) time. This is in contrast to the
known method [4] for producing the minimum number of
worms that runs in O(|V |> + |V||E|). We apply the algo-
rithm to benchmark real problems and show its comparable
results to the previous method. Then we study some DAG
properties that are related to worm partitioning. We derive
a necessary condition for the minimum number of worms in
a given DAG. In other words, a lower bound for the number
of worms. Then we identify two important classes of DAGs,
for which this necessary condition is sufficient as well; i.e.
we show that the lower bound is a tight one. Finally, we
show that our algorithm generates the minimum number of
worms for theses classes of DAGs.

1 Introduction

Digital signal processors (DSPs) are special-purpose mi-
croprocessors that are designed to perform extensive arith-
metic computations. Often in real time environment writing
applications in assembly language have been the dominant
DSP programming convenient. However, writing these ap-
plications in high level languages is becoming more desir-
able.

To meet the constraint of the specialized applications,

1-4244-0910-1/07/$20.00 (©2007 IEEE.

Mohamed Bohalfaeh
Computer Science Dept.
Cairo Univ., Giza, EGYPT
bohalfaehm@yahoo.co.uk

DSPs have different features including multiple memory
banks and multiple buses to support higher memory band-
width and uses a separate address generation unit. Also,
these chips have dedicated address registers to provide more
parallism, limited number of registers and one or more ac-
cumulators to support arithmetic and logic operations.

Thus, it is essential to produce code of the highest quality
that is achievable in a reasonable amount of time. In gen-
eral, code generation consists of three phases; instruction
selection, scheduling and register allocation. Constructing
the schedule takes place after instruction selection and reg-
ister allocation are done. The ordering of the instructions
will cause some data transfer between allocated registers
and memory unit(s) hence the number of these data transfer
should be minimized for real time processing [2]. There-
fore, scheduling is very important not only because it af-
fects the execution time of the resulting code but also it de-
termines the associated memory space needed because the
registers and memory have critical capacity [4]. Thus, de-
signing an efficient method to schedule the control flow of
the instructions is a must. This paper studies the problem
of scheduling directed acyclic graphs (DAGs) using worm-
partition; in which each vertex in the DAG under consider-
ation corresponds to some computation and each edge rep-
resents a dependence or precedence relationship between
computations.

For optimal code the instructions must be scheduled in
such way that no memory spills are introduced. One impor-
tant scheduling algorithm [4] uses worm-partition to parti-
tion the DAG into a set of legal worms by finding the longest
legal worm in the DAG in each iteration (worm partitioning
is defined formally in Section 2). The advantage of using
worm-partition is to minimize the number of data transfers,
and to enable memory spills free schedule. In this paper we
present an new algorithm to partition the DAG into a set of
legal worms. We show that the algorithm has optimal time
complexity. We also study some of the properties of DAGs
that are related to worm partitioning which gives us a better
understanding about the partitioning problem.

Aho and Johnson [1] showed that even for one register
machine, generating optimal code is NP complete. They
showed that the absence of cycles among the worms of in
a worm-partition graph is a sufficient condition for the le-
gality of the worm-partition. They presented optimal code
generation algorithm for one register machines, and they
defined that a worm-partition of a DAG is a set of dis-
joint worms. They also showed that the optimal code gen-
eration problem is NP-complete on two-address machines,
even when the number of registers is unlimited.

Liao [5, 6] used clauses with adjacency variables to de-
scribe the all legal worm-partitions. He applies binate cov-
ering formulation to find optimal scheduling. He presented
a new theorem of code generation for the non-commutative
one register machine, based on a compact binate covering
formulation. He defined two reasons to make the worm-
partition illegal; namely reconvergent paths and interleaved
sharing, and he showed that for a worm-partition to be le-
gal, the vertices of each worm should appear consecutively
in the schedule. However, his work does not provide a con-
structive algorithm to worm partitioning DAGs.

Hong [4] proposed and evaluated a new algorithm to
construct a legal worm-partition while keeping the number
of worms generated as small as possible. He introduced
an additional source vertex S successively in each stage of
his algorithm to prevent including interleaved shared ver-
tices in the worms, and to handle interleaved sharing in
the same way as reconvergent paths. He showed that there
is no reason to consider the reconvergent paths and inter-
leaved sharing which make a worm-partition illegal as dis-
tinct cases. However his algorithm has a complexity of
O(V 2+ |V]|E)).

This paper studies the problem of scheduling DAGs us-
ing worm partitions. First, we develop a constructive algo-
rithm to solve the scheduling problem to control flow of the
instructions based on worm partitioning of a binary DAG.
The algorithm is time optimal where it runs in O(|V |+ | E|)
steps. Although our algorithm does not guarantee the num-
ber of generated worms to be minimal, its performance is
comparable to the algorithm presented by Hong [4]. The
algorithm has been tested on well-known benchmarks and
gives a comparable performance on the average. Then we
study some DAG properties that are related to worm par-
titioning. We derive a necessary condition for the mini-
mum number of worms in a given DAG. In other words, a
lower bound for the number of worms. Then we identify
two important classes of DAGs namely Reduction DAGs
and Broadcasting DAGs for which the necessary condition
is sufficient as well; i.e. we derive a tight lower bounds for
the number of worms for these classes of DAGs. Finally, we
show that our algorithm guarantees the minimum number of
worms for these classes of DAGs.

The next section presents some definitions and prelimi-

naries. In Section 3 we present our algorithm for worm par-
titioning. The experimental results are given in Section 4.
Section 5 derives a necessary condition for the minimum
number of worms in DAGs. Sections 6 and 7 prove that the
necessary condition is sufficient as well for two important
classes of DAGs. For these two classes of DAGs, Section 8
shows that the algorithm generates the minimum number of
worms. Section 9 gives some concluding remarks and di-
rections for future work.

2 Background

In this section we introduce some definitions that will
be needed in the rest of the paper. A Directed Acyclic
Graph (DAG), G(V, E), consists of |V| vertices and |F|
edges with no cycles among vertices. Each vertex, v € V,
represents a computation. Each edge, e € E, represents
dependence or precedence relation between computations.
Figure 1 shows a DAG with 6 Vertices and 7 edges. The
DAG is a binary one where the in-degree and the out-degree
of each vertex is at most 2. Vertices vs and vg are leaves of
the DAG since the in-degree for each of them is zero.

Figure 1. An Example of directed acyclic
graph.

A worm, w = {v1,va, .., v} } in a directed acyclic graph
G(V, E) is adirected path of G such that the vertices v; € w
(1<i<kandl <k <|V|) are scheduled to execute con-
secutively. A worm-partition, W = {w1, wa, ws, .., wpm, } of
G(V, E), is a partitioning of the vertices V' of the graph into
disjoint sets w;, 1 < i < m, such that each w; is a worm.
The worm-partition is said to be legal if a valid schedule
can be derived from G such that the vertices of each worm
appear consecutively in the schedule [5]. Figure 2 shows
examples of legal worm-partition while Figure 3 shows an
illegal worm-partition (because of the existence of a cycle
among the worms in the worm-partition graph).

As shown in Figures 2 and 3, we denote the worm by dot

Figure 2. Examples of legal worm-partition.

ellipse shape, the relation between the vertices inside the
worm by a dot line, and the relation between the worms by
a straight line.

If there are two or more distinct paths from vertex A of
a DAG to vertex B in that DAG, then these paths are said
to be reconvergent paths. Also vertex B is a reconvergent
vertex [4]. As in Figure 1 there are two paths from vg to
ve. The first path passes through vertex vs and the second
path passes through vertex v4. Hence those two paths are
reconvergent paths. Also vertex vy is a reconvergent vertex.
If the vertex has two parents and is not a reconvergent ver-
tex, then it is called shared vertex. If the vertex is either a
shared or reconvergent then it is called a bug vertex.

For two vertices A and B in a DAG, if there is a path
from A to B and there is a direct edge from A to B then the
edge (A, B) is said to be reconvergent edge. As shown in
Figure 1 there is path from v5 to v; passes through vertex
vs and there is direct edge from vs to v1. This edge is a
reconvergent edge.

Figure 3. Example of illegal worm-partition.

3 The New Worm-Partition Algorithm

In this section, we present a new algorithm for worm-
partition. Although our algorithm does not guarantee to
partition the DAG into the minimum number of worms, the
algorithm is time optimal. We also show that the algorithm
runs in O(|V'| + |E|) time. This is in contrast to the algo-
rithm presented in [4] that runs in O(|V |2 + |V||E|). Sec-
tion 4 gives some experimental results using benchmark real
problems and a comparison to previous methods.

Generally speaking, the algorithm consists of three main
phases. The first phase applies depth first search (DFS) to
the DAG G(V, E) to collect data about each vertex; i.e. its
parents (p1, p2) and its children (c1, c2). The second phase
uses the data collected in the first phase to discover the
leaves of the DAG. The third phase partitions the DAG into
a legal worm-partition. The DFS algorithm gives the prior-
ity for right child to be selected in a worm during the search.
For that reason we denote the right child as ¢; and the left
child as ¢5. Section 3.1 gives a high level description of the
algorithm. Also, it derives its time complexity.

3.1 Description Of The Algorithm

In this section we gives a high level description of the
algorithm. Figure 4 gives the pseudo code of the algorithm.
As mentioned before, the algorithm consists of three main
steps as follows:

e Phase 1: Data Collection: this phase applies the DFS
to the DAG G(V, E) to collect data about each vertex.
The collected data consists of the two immediate pre-
decessors vertices (right and left parent), p;, p2, and
the two immediate successors vertices (right and left
child), ¢, co. The values of py, ps (resp. c1, cz) could
be a ¢ representing that the vertex has no right or left
parent (resp. child).

e Phase 2: Leaves Discovering: this phase discovers the
leaf vertices; i.e. vertices with no incoming edges.
This is done by checking if both parents of the ver-
tex, p1,p2 have a value of ¢. Construct a set L that
contains the leaves of the DAG.

e Phase 3: Worm Partitioning: the phase repeats till the
list L is empty. Each time it constructs a worm in the
worm-partition graph. It starts with a vertex in L and
uses the DFS to construct a worm. Let vy denote the
last vertex added to the worm (initially vq is a leaf se-
lected from L). The worm is constructed according to
the following cases:

(a) If vg, has no immediate successor, then the worm
will be ended.
(b) If vg has only one immediate successor c¢; then

(i) If ¢1 has only one incoming edge then add
c1 to the worm.

(ii) If ¢q is a bug vertex (have another parent)
then change the parent ID for c; to ¢ instead
of v4. The worm will be ended not including
Cq.

(c) If vg has two immediate successors cq, co then
(i) If ¢; and ¢y have another parent (bug ver-
tices), then change parent ID for both ¢, co
to ¢ instead of v4. The worm will be ended
not including neither c1 nor cs.

(7i) Ifeither ¢y or co is a bug vertex and the other
is not, then the non bug vertex will be added
to the worm, and change the parent ID for
bug vertex to ¢ instead of vg.

(#i7) If ¢1, co are not bug vertices then ¢; will be

added to the worm, and ¢ will be added to
L.

|
Since the only way that causes cycles is due to reconver-
gent vertices [5], the algorithm does not include any recon-
vergent vertex when constructing a worm. This makes the
generated worm-partition graph a legal worm-partition.
Algorithm Complexity: Now we show that the
agorithm runs in optimal time of O(|V'| + | E|) steps.

Lemma 1 The algorithm visits each vertex in the binary
DAG at most twice.

Proof: The algorithm deals with binary DAGs which con-
tains three types of vertices:

e Type 1: Vertex with no incoming edges: a leaf. The
algorithm selects each leaf exactly once; i.e. the vertex
is visited only once.

e Type 2: Vertex with one incoming edge. If the ver-
tex is selected in a worm the first time visited, then it
is visited once. If the vertex is not selected the first

time visited, it becames a leaf vertex; i.e. the vertex is
visited at most twice.

e Type 3: Vertex with two incoming edges: a reconver-
gent vertex. The algorithm does not include the vertex
in the worm the first time the vertex is visited. How-
ever, it includes it in a worm the second time visited;
i.e. the vertex is visited exactly twice. []

Phase 1 applies the DFS and runs in O(|V] + |E|)
steps. Phase 2 checks the parents of each vertex and runs in
O(]V']) steps. Phase 3 constructs the worm-partition graph
and by Lemma 1, it runs in O(|V'| 4 | E|) steps. Thus, we
have the following result.

Theorem 2 The algorithm correctly partitions a binary
DAG into a legal worm-partition in O(|V| + |E|) steps. R

4 Experimental Results

In this section we present some experimental results of
our algorithm. The algorithm was implemented and ap-
plied to randomly generated DAGs (Table 1) as well as to
benchmark real problems (Table 2) from the digital signal
processing domain (i.e. DSPstone) [7] and from high-level
synthesis [3].

Table 1 shows the results when applying the algorithm
to randomly generated DAGs. Sizes of the DAGs were var-
ied from 50 nodes to 500 nodes. For each DAG size, one
hundred DAG were generated randomly. The first column
gives the number of nodes. The second column shows the
average number of worms obtained when applying the al-
gorithm. The third column gives the average ratio of num-
ber of worms to the number of nodes. In other words, how
much the graph is reduced. The fourth and the fifth column
shows the best and worst ratios respectively.

Table 2 shows the results and a comparison to the al-
gorithm presented by Hong [4]. The third column shows
the number of worms obtained in the worm-partition graph
when applying our algorithm (denoted as Ours) and when
applying the algorithm in [4] (denoted as Hong [4]). The
table shows a matching in the results. The fourth column
gives the ratio of the number of worms to the number of
vertices. Also a comparison is given between our algorithm
and previous methods.

According to the results obtained, our algorithm has
the same performance when applied to the benchmark real
problems as the algorithm presented in [4] that looks for
the longest worm first. This is in addition to the optimal
running time of our algorithm of O(|V'| + |E|) instead of
O(|V|?> + |V||E|) of Hong [4].

Main Procedure

Input: G(V, E') where V is a set of vertices and E is a set of edges.
Output: W = {w;, 7 < |V}

Begin

1- Apply DFS to G(V, E) to collect data for each vertex

2- Call Discoverpeaves(G(V, E),Leaves)

3- i=0

4- While (Leaves # ¢)

5- w; = ¢

6- Let u be first element in the Leaves set

7- Leaves = Leaves — u

8- DF Sy orm(u)

9- w; = w; +u

10- If (u(c1)&u(c2)) = true then

11- if ¢1&c2 have another parent then

12- c1(u)&ea(u) = ¢

13- W=WUw;

14- elseif c1 has not another parent and c2 has another
parent then

15- ca(u) = ¢

16- DF Sworm(ci)

17- elseif c1 has another parent and c2 has not another
parent then

18- c1(u) = ¢

19- DF Sy orm(c2)

20- elseif ¢1 and c2 have not another parent then

21- Leaves = Leaves + c2

22- DF Sworm(ci)

23- Endif

24- elseif w has only one child then

25- if ¢1 has another parent then

26- ci(u) = ¢

27- W=WUw;

28- elseif ¢1 has no another parent then DF Syyorm(ci)

29- End if

30- elseif u has no child then W = W U w;

31- Endif

32- i=4i+1

33- End

34- End While

35- Discoverpeaves(G(V, E),Leaves)

36- Leaves = ¢

37- Foreachv € G(V, E)

38- If (v(p1)andv(p2)) = ¢

39- Then Leaves = Leaves + v

40- End

End

Figure 4. Pseudocode for the partitioning al-
gorithm.

Table 1. Results when applying the algorithm
to randomly generated DAGs.

[V| | Ave. |[W] | Ave.Ratio | BestRatio | Worst Ratio
WiV

50 15.07 0.3014 0.18 0.4

100 30.86 0.3086 0.24 0.37

200 61.49 0.30745 0.26 0.345

300 92.78 0.3093 0.276 0.34

500 156.11 0.3122 0.28 0.348

Table 2. Results when applying the algorithm
to benchmark real problems.

Benchmark | |V] [W| Ratio [W|/|V]
Ours | Hong [4] Ours Hong [4]

AR-Filter 28 12 12 0.4286 0.4286
FDCT 42 20 20 0.4762 0.4762
DIFFEQ 11 5 5 0.4545 0.4545
SEHWA 31 16 16 0.5161 0.5161
F2 22 7 7 0.3182 0.3182
DOG 11 5 5 0.4545 0.4545

5 Lower Bound On The Number Of Worms

In this section we study some of the properties of the bi-
nary DAG. This would give us a better understanding about
the partitioning problem. We first derive a necessary con-
dition for the minimum number of worms in a binary DAG
(a lower bound). Next we identify two important classes of
DAGs for which the above necessary condition is sufficient
(tight bound) as well.

Let Dy be a binary DAG of N nodes. Let the level of
node z in the DAG be fevel(x). Assume that the leaves of
the DAG is at a level 0; i.e. fevel(z) = 0 if z is a leaf.
Let m(Dy) be the number of levels in Dy. Clearly, the
maximum number of levels in Dy is N levels.

Let the width of Dy at level i be width(Dy);. The
width, w, of Dy is the maximum width of a level in Dy)
where w = max{width(Dn);}, 0 < i < m(Dn). Now
we derive a necessary condition for the minimum number
of worms of Dy .

Lemma 3 For any w > 1, a directed acyclic graph (DAG)
can be partitioned into w worms only if the DAG has a width
of at most w.

Proof: Let Dy denote a binary DAG of N nodes. We
prove that if D has a width of w + 1 nodes then the DAG
cannot be partitioned into w worms. The existence of one
level of nodes in Dy with w + 1 nodes implies that each
node of the w + 1 nodes should be in a different worm.
Thus the worm-partition would have at least w + 1 wormes.

|

The necessary condition of Lemma 3 applies to any
DAG. However, in general, it is possible for a width-w DAG
to require more than w worms. Now we define two classes
of DAGs for which the above necessary condition is suffi-
cient as well.

6 Reduction DAGs

In this section we consider a particular class of DAGs
and prove that this class can be partitioned into w worms
if the width of the DAG is w. Consequently, the necessary
condition of Lemma 3 becomes sufficient as well.

Definition 1 A reduction binary DAG is a one in which
each node has in-degree < 2 and out-degree < 1. []

Figure 5 (a) shows an example of a reduction DAG. The
benchmark problems DIFFEQ and SEHWA (shown in ta-
ble 2) are two examples of reduction DAGs. These DAGs
are from the domain of DSP and High-Level synthesis.

Consider any width-w reduction DAG, Dy, of N nodes.
Clearly, every subset of Dy also is a reduction DAG. To
prove that Dy can be partitioned into w worms (when the
width of Dy is greater than 1), we only need show the ex-
istence of a worm wi, w; C Dy, that reduces the width
of Dy by 1. We now show that the worm w; can be con-
structed.

Lemma 4 For any connected reduction DAG, Dy, and for
any two levels i and j where i < j, width(Dyn); >
width(Dy);. Moreover, Dy has only one output node.

Proof: Since the out-degree of each node in the reduction
DAG is at most 1, then each node in level ¢ will be con-
nected to at most one node in level ¢ + 1. If each node in
level 7 is connected to a distinct node in level ¢ + 1, then
width(Dn); = width(Dy);. If there exists two nodes in
level 7 connected to the same node at level i+ 1 (in—degree
< 2), then these two nodes have been reduced to one node
in level ¢ + 1 and width(Dy); < width(Dn);.

From the definition of the reduction DAG, two nodes in
the same level could be connected in a lower level. If the
reduction DAG is connected (i.e. all nodes are connected),
then the DAG has only one output node. Otherwise, the
DAG can be dealt with as separate DAGs. []

The following result is a simple to derive from Lemma 4.

Corollary 5§ For any connected reduction DAG, Dy, the
width of Dy is the number of nodes in level zero; i.e. the
number of leaves. [|

Theorem 6 Any connected reduction DAG Dy, can be
partitioned into w worms if and only if the width of Dn
is at most w.

Proof: To prove the theorem, we only need show the ex-
istence of worm w; C Dy where Dy — w; is of width
w — 1.

We proceed by induction on the width of Dy = w. By
Corollary 5, the width of Dy is the number of leaves of the
DAG. Clearly, when w = 1, all the nodes could be included
in one worm. Assume the theorem to hold for a DAG with
w = H leaves and consider a DAG with H + 1 leaves.

Construct the worm w; of width 1 as follows. Step 1
selects any leaf, ¢ in w;. This reduces the width of level 0
nodes by 1. For Step 2, if the child ¢ of £ has only one input
then select ¢ in w;. This guarantees that width of level 1
nodes is reduced by 1 and Step 2 is repeated. If the child c of
£ has two inputs then dont include ¢ in w; and w; is ended.
This is because the level of ¢ has a width < H and by
Lemma 4 all lower levels has a width < H. This guarantees
that Dy — w; is of width H. By the induction hypothesis
the width H DAG can be partitioned into H worms. Thus
the total number of worms of for a DAG of width H + 1 is
H + 1 worms proving the theorem. []

7 Broadcasting DAGs

In this section we consider another class of DAGs that
can be partitioned into w worms if the width of the DAG
is w. Consequently, the necessary condition of Lemma 3
becomes sufficient as well.

Definition 2 A broadcasting binary DAG is a one in which
each node has in-degree < 1 and out-degree < 2. []

Figure 5(b) shows an example of such DAG. Consider
any width-w broadcasting DAG, Dy, of N nodes. Clearly,
every subset of Dy also is a broadcasting DAG. To prove
that Dy can be partitioned into w worms, we only need
show the existence of worm wy; C Dy that reduces the
width of the remaining DAG by 1. The proofs in this section
are analogous to the proofs of Section 6. Thus in this section
we only give the final results without the actual proofs.

Lemma 7 For any connected broadcasting DAG, Dy, and
Sor any two levels i and j where i < j, width(Dy); <
width(Dy);. Moreover, Dy has only one input node. 1

Corollary 8 For any connected broadcasting DAG, Dy,
the width of Dy is number of output nodes. []

Theorem 9 Any connected broadcasting DAG, Dy, can be
partitioned into w worms if and only if the width of Dy is
at most w. |

Figure 5. (a) Example of a reduction DAG.
(b) Example of a broadcasting DAG.

8 Applying The Algorithm To Reduction &
Broadcasting DAGs

In this section we show that the algorithm presented in
Section 3 generates the minimum number of worms when
applied to either a reduction or a broadcasting DAG.

Theorem 10 The algorithm partitions any connected re-
duction or broadcasting DAG, Dy, into w worms if and
only if the width of Dy is at most w.

Proof: To prove that the algorithm partitions a width-w
DAG into w worms, we need only show that the algorithm
reduces the DAG width by 1 when it constructs a worm.

First, consider Dy to be a reduction DAG where by De-
finition 1, the out-degree of each node is at most 1. The
algorithm starts a worm with a leaf, v4, and includes all the
subsequent vertices till a bug vertex, v,, is reached. This
reduces the width of all levels (Yevel(vg) to Level(v,) — 1)
by 1. Since width(Dy); < width(DN)éeuel(v7,)—1a i >
Level(v,.) — 1, then the width of Dy is reduced by 1 prov-
ing the theorem for the reduction DAG.

Consider Dy to be a broadcasting DAG where by De-
finition 2, the in-degree of each node is at most 1. The
algorithm starts a worm with a leaf, v4, and include all the
subsequent vertices till an output vertex is reached. This re-

duces the width of all DAG levels by 1 proving the theorem.
|

9 Concluding Remarks

In this paper we have proposed a new worm partition-
ing algorithm for DAGs while maintaining the legality of
scheduling. Although the algorithm does not guarantee to
produce the minimum number of worms, its performance
was shown to be comparable to previous methods when ap-
plied to benchmark real problems. The proposed algorithm
was shown to be time optimal where it runs in O(|V' |+ | E|)
time. This is in contrast to the known method [4] for
producing the minimum number of worms that runs in
O(IV? + [VIIE].

Also the lower bound problem for the number of worms
in DAGs has been studied. We derived a lower bound for the
number of worms for any connected DAG. We also showed
that for some classes of DAGs in the field of DSP and High-
Level synthesis, this lower bound is tight. We also showed
that our worm-partitioning algorithm generates the mini-
mum number of worms for these classes of DAGs.

This work can be extended in several directions. One
direction is to improve the algorithm to guarantee the min-
imum number of worms while maintaining the optimality
of the algorithm. Other directions include studying other
classes of DAGs for which the lower bound is tight as well.

References

[1] A. Aho, S.C. Johnson, and J. Ullman, “Code Generation for
Expressions with Common Subexpressions,” Journal of the
AMC, 24(1), pp. 146-160, 1997.

[2] G. Araujo, “Code Generation Algorithms for Digital Signal
Processors,” PhD thesis Princeton Department of EE, June
1997.

[3] G. De Micheli, “Synthesis and Optimization of Digital Cir-
cuits,” McGraw-Hill, 1994.

[4] J. Hong, “Memory Optimization Techniques for Embedded
Systems,” PhD thesis, The Department of Electrical and Com-
puter Engineering, LSU, USA, August 2002.

[5] S. Liao, “Code Generation and Optimization for Embedded
Digital Signal Processors,” PhD thesis, MIT Department of
EECS, January 1996.

[6] S. Liao, K. Keutzer, S. Tjiang, and S. Devadas, “A new
viewpoint on code generation for directed acyclic graphs,”
ACM Transactions on Design Automation of Electronic System,
3(1):51-75, January 1998.

[7] V. Zivojnovic, J. Velarde, and C. Schlager, “DSPstone: A
DSP-oriented benchmarking methodology,” Proc. 5th Interna-
tional Conference on Signal Processing Applications and Tech-
nology, October 1994.

