
libDMC: a Library to Operate

Efficient Distributed Model Checking

Alexandre H∗, Fabrice K and Yann T-M
Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe

4, place Jussieu, F-75252 Paris CEDEX 05, France
Alexandre.Hamez@lip6.fr, Fabrice.Kordon@lip6.fr, Yann.Thierry-Mieg@lip6.fr

Abstract

Model checking is a formal verification technique that

allows to automatically prove that a system’s behavior is

correct. However it is often prohibitively expensive in

time and memory complexity, due to the so-called state

space explosion problem. We present a generic multi-

threaded and distributed infrastructure library designed to

allow distribution of the model checking procedure over

a cluster of machines. This library is generic, and is

designed to allow encapsulation of any model checker in

order to make it distributed. Performance evaluations are

reported and clearly show the advantages of multi-threa-

ding to occupy processors while waiting for the network,

with linear speedup over the number of processors.

1 Introduction

Software model checking is a formal analysis technique

that allows one to verify the behavior of a specification.

The basic principle is to exhaustively explore the state

space (represented as a finite labeled transition system) of

a modeled system. Such an operation is performed by a

model checker and requires the specification to be finite and

formally defined using formal languages like Promela [11],

LOTOS [8] or Petri Nets [10].

Model checking is a well accepted approach to analyze

specifications of hardware and (network) protocols, and

is now increasingly being applied to software systems

[11]. There is a particular complexity in the verification of

distributed systems due to asynchronous communications.

Thus, efficient and very sophisticated techniques like

decision diagrams [3], partial order reduction techniques

∗ A. Hamez has double affiliation: UPMC/LIP6 and EPITA Reseach and

Developpement Laboratory (LRDE).

1-4244-0910-1/07/$20.00 c©2007 IEEE.

[18], or exploitation of system symmetries [5] have been

developed to reduce the complexity of the procedure.

However, they still require the storage of a large number

of states in main memory, thus they scale up with difficulty

to industrial size problems. For example, the verification of

a middleware’s core in [12] could not be achieved for large

configurations (large number of modeled threads) due to

both implementation constraints of the model checker and

intensive use of memory and CPU.

In recent years, distribution of model checking appeared

to be a solution to increase memory capacity and CPU

by taking advantage of a network of workstations. The

principle is quite simple: states of the state space have to

be distributed over a set of machines that compute them

separately. The use of a cluster seems interesting for this

because it can be dedicated to the computation and usually

enjoys a high bandwidth dedicated network.

This paper presents libDMC, a library to encapsulate a

model checker in order to use the capacity of a cluster

for state space generation. We aim to produce a way to

quickly parallelize a model checker and to use it on a cluster

for evaluating reachability properties (also called safety

properties). Such properties are constraints over the state

space (for example an invariant). Reachability properties

are easier to use than causal properties (expressed by means

of temporal logic formulas). Indeed, engineers often use

OCL1 [17] constraints and program asserts (that naturally

correspond to reachability properties).

Our library is designed to face the following challenges:

it should allow integration of existing model checkers.

Our goal is to distribute several existing model checkers,

not redevelop from scratch distributed versions of existing

algorithms. However this requires a generic environment

dedicated to distribution of any type of state space

construction. Additionnaly we would like to make the

best use possible of available resources. We target clusters

of multi-core or multiprocessor hosts, thus we want a

1Objet Constraint Language

parallel (i.e., multi-threaded) implementation. Some further

challenges due to the integration of monolithic legacy code

in a multi-threaded environment were faced to allow this.

The paper is structured as follows. Section 2 briefly

presents the principles of model checking and, in particular,

the reachability analysis problem. Then, Section 3 explains

the architecture of our distributed model checking library.

We provide some details on the implementation of our tool

in Section 4 prior to a discussion on its performances in

Section 5.

2 Sequential and Distributed Model Check-

ing

The goal is to perform reachability analysis by

controlling an invariant in each state as it is visited. To

do so, we need to store all states in order to 1) detect

when a state has already been visited and 2) exhibit a faulty

execution path when the property is not verified.

2.1 Reachability Analysis

To check whether an invariant P is not preserved

(thus a faulty behavior is detected), the verification using

reachability analysis can be described as follows [6]. A

labeled finite state machine M is defined as a four tuple

M = 〈S , S 0, T, LP〉 where: S is a finite set of states, S 0 ⊆ S

is the set of initial states, T ⊆ S × S is a transition relation,

LP : S → {true, f alse} is a function that labels with true

each state that satisfies P. A path in the structure M from

a state s is a finite sequence of states π = s0 s1 s2 . . . sn such

that s0 ∈ S and (si, si+1) ∈ T holds for all i ≥ 0. The set

of reachable states reach is defined as s ∈ reach ⇔ ∃π =

s0 s1 s2 . . . sn, s0 ∈ S 0, s = sn, i.e., there exists a path from an

initial state s0 to s.

foreach s ∈ S 0 do1

todo.push(s)2

reach.add(s)3

while todo , ∅ do4

s := todo.pop()5

foreach s′ ∈ trans(s) do6

if ¬reach.contains(s′) then7

todo.push(s′)8

reach.add(s′)9

if labels(s′, P) = f alse then return P is10

false.

return P is true.11

Algorithm 1: Reachable state space generation algorithm.

Given S 0, T and L, the verification of a safety property

P by model checking consists in determining whether

∄s ∈ Reach, such that LP(s) = f alse (i.e., all reachable

states verify the invariant P). To this end, explicit-state

based model checkers2 run algorithm 1 and are usually

constructed using:

1. trans: a function representing the transition relation,

which returns, for a given state s, the set of its

successors by T . This function is often quite

complex, as its definition depends on the formalism

used in the model checker. Furthermore, many

state-space reduction techniques are implemented

inside this function such as state canonization to

exploit symmetries [20, 5], state compression and

decompression schemes to obtain compact state

signatures for storage [11], optimizations related

to accelerating the detection of enabled events, to

guiding the procedure by selecting the order in which

events are considered, or suppressing some of the

enabled events in given states without invalidating the

procedure [11], etc.

2. labels: a function representing the labeling function L,

such that labels(s, P) is true in a state s such that P

holds in that state. This labeling function is usually

implemented by running some boolean tests on the

state, and typically has a low complexity.

3. reach: a compact data structure to store the

reachability set currently under construction, in a

manner that allows a low complexity test contains for

presence of a state and fast insertion add of states.

Most commonly, splay trees, hash tables and variants

of Bloom filters are found [22].

4. todo: a queue (for breadth first search) or stack (for

depth-first search) to store states that have yet to be

fully explored. pop refers to the operation that extracts

a state and push adds a state.

For verification of safety properties, full storage of the state

graph is not required during construction, although parts

of the graph may need to be reconstructed a posteriori to

obtain a witness trace to the undesired state.

2.2 Distributed and Parallel Model Che-
cking

The previous algorithm highlights the characteristics of

a generic model checker. Our goal is to implement it in a

parallel and distributed context, to allow model checking of

larger models. We observe that computationally, the most

2By opposition to symbolic-based model checkers using decision

diagrams as data structures.

expensive treatment is usually the function trans, due to its

numerous optimizations. When the complexity of trans is

dominant, we note the possibility of computing successors

in parallel instances of trans that need not interact, except

to avoid treating the same state twice.

Memory-wise, the test reach.contains(s′) on line 7 is

the critical point. If this test requires disk access, the

model checking procedure usually does not terminate due

to virtual memory swapping. An obvious solution at this

level is to implement a distributed hash table scheme, to

take advantage of a cluster’s memory capacity.

In such a scheme, the call on line 7 first tests if the

local host is the owner of this state. This is done using

a static localization function (e.g., a checksum), that for

each state designates a host. This function partitions

the full state space over the hosts participating in the

computation. Newly reached states are sent to their owner

asynchronously. Note that the localization function should

have a homogeneous distribution to ensure load balancing.

In our case, we experimentally observe that load balancing

is related to state distribution.

2.3 Related Work

Our study of the literature shows several attempts

at proposing a distributed model checker. In [14] the

authors implemented a parallel version of Spin. The

problem however, was that the main state space reduction

technique of Spin, called partial order reduction, had to be

reimplemented in a manner that degrades its effectiveness

as the number of hosts collaborating increases. Thus

performances, reported up to 4 hosts in the original paper,

were reported to actually not scale well on a cluster (see

Nasa’s case study in [19]). Another effort to implement a

distributed Spin is the DivSpin [2] effort. However, they

chose to reimplement a Promela engine rather than using

Spin’s source code. As a result their sequential version

is at least twice as slow as sequential Spin in its most

degraded setting with optimizations deactivated. And any

further improvements of the Spin tool will not profit their

implementation.

An effort that has met better success is reported in

[20] for a distributed version of the Murphi verifier from

Stanford. Murphi exhibits a costly canonization procedure.

The original implementation in [20] was built on top of

specific Berkeley NOW hardware3, which limits portability.

A more recent implementation [15] is based on MPI,

however it is limited to two threads per hosts, one handling

the network and one for computation of the next state

function. Our work is however comparable to that effort in

terms of design goals: reuse of existing code over a network

of multiprocessors machines, a popular architecture due to

3The Berkeley Network of Workstations

its good performance/cost ratio. The good results reported

by these Murphi-based tools with slightly sublinear speedup

over the number of hosts encourage further experimentation

in this direction.

An important point is that we wish to reuse existing

model checker implementations, not redevelop from scratch

distributed versions of existing model checker algorithms.

Our team has been maintaining a tool integration platform,

that incorporates many explicit state based tools for the

analysis of Petri nets. We thus wanted to develop a generic

solution such that with as little modification as possible of

existing tools (usually quite complex monolithic legacy C

code) we could offer the computation power of a cluster.

As a test case for the tool, we wished to implement a

distributed version of the tool GreatSPN 2.0 [7], originally

developped in Torino and now co-maintained between

Torino and LIP6. The part of the tool concerned (the model

checking kernel) is over 86 KLOC of C. It implements

extremely efficient symmetry based reductions that in

favorable cases allows to reduce exponentially the size of

the state space [5]. Recent advances [1] have perfected the

tool to allow exploitation of partial symmetries, broadening

the range of models and properties that can be verified.

The compromise is that the transition relation is costly

computationally due to a so-called canonization procedure

like Murphi, but the algorithm yields a small state space.

This setting is favorable to a distributed approach, as shown

by the success of the Murphi-based tools. Computation

time is a critical issue with GreatSPN as some computations

can last two days on a single machine without exhausting

memory.

3 Architecture of libDMC

libDMC is a library designed to offer a distributed and

parallel implementation of existing, explicit-state based,

model checkers. To limit dependences between a given

model checker and our library, we chose to define an

interface for interaction based on the description of a

labeled finite state machine (see Section 2.1).

We can implement such an interface at the model

checker kernel level by extracting the primitives related to:

determining the initial states set S 0, computing a state’s

successors trans, and labeling states with the truth value

of a property labels. The internal description of states

used by the kernel is thus a black box, of which we only

assume that a state is considered as a contiguous segment of

memory, and that a state has a unique interpretation on all

hosts. Given these constraints, we replace the main loop of

a model checker by a distributed controller, and the existing

data structures todo and reach by our own implementations.

This architecture allows libDMC to make no hypothesis on

the encapsulated model checker data structures.

The drawback of such an interface is that no additional

informations can be transmitted with a state. At first,

we thought that we needed more informations on states

in order to have an homogeneous distribution of states.

But, as shown in section 5.1, we were able to attain this

goal without any additional hints. So, if a model checker

designer wants to store extra informations on a state for

model checking purposes, he can do it when constructing

a state.

We present libDMC’s architecture in two steps. First we

outline the design of a model checker engine as an assembly

of autonomous components which interact only via abstract

interfaces. Then we present how this architecture can be

distributed and discuss the coordination of the distributed

execution.

3.1 A Generic Architecture for State
Space Generation

libDMC architecture is structured using three majors

components (Figure 1), that represent the main data

structures identified in Algorithm 1.

The NewStatesSet handles the new states (todo).

StateManager and FiringManager share access to it, the

FiringManager uses pop and StateManager uses push on

it.

The FiringManager (which handles trans) pops

states from the NewStatesSet and invokes the successor

computation, which has been extracted from the (existing)

model checker. Then each successor is transfered to

the StateManager to be processed. The FiringManager

is multithreaded; this multi-threading allows to take

advantage of possible multiprocessorss/core computers in

a cluster (parallel computation of trans). Therefore, each

component of libDMC is thread-safe.

The StateManager (which handles reach) determines

whether a state is new or not. If a state s is new, the

StateManager inserts s into its unicity table and puts it in

the NewStatesSet. Otherwise, it is simply discarded.

The implementation of the successor computation

component is left to the existing model checkers. A

simple interface is defined to obtain: the set of initial

states S 0, the successors (through an iterator interface) of

a given state, and the labeling function. libDMC is mostly

independent from any model checker implementation choi-

ces because both the successor computation function and

states representation are parameters of our library. States

are seen as raw data to be processed, transmitted and stored.

Therefore, model checker designers only bring the semantic

of their formalisms, our library takes care of the rest.

This separation of concerns is important since designing

and implementing a formalism and all associated semantics

is a difficult task. This way, model checkers designers can

FiringManager

Multiple threads
NewStatesSet

Successors computation - User defined

StateManager

Unicity table

push_state()

pop_state()

 process_state()

Figure 1. libDMC architecture in local

generation mode

focus on their formalisms without having to bear the burden

of networks and threads implementations aspects.

3.2 A Distributed Architecture for State
Space Generation

For the distributed version of libDMC, we dissociate the

state space generation from its distribution. We expect

this mechanism to greatly simplify future extensibility of

libDMC.

The algorithm of local generation is not modified

except that the FiringManager interacts with a new

implementation of the StateManager interface, realized by

three new dedicated components (strong boxes in Figure 2).

• The DistributedStateManager computes the owner of

each state (i.e., it says if a state is local or not).

• A set of StateManager Proxies represents distant hosts.

Each state transmitted to one of these proxies is

forwarded to the corresponding StateManager Service

(proxy design pattern [9]).

FiringManager threads are constantly competing to

compute new states, thus communication latency is

overlapped by parallel successor computations, allowing

full CPU usage.

3.3 Communication Models

Two communication models are used in two different

layers:

• Supervision handles initialization, execution

monitoring and detection of procedure termination,

following a master / slave model.

• State-space generation is handled in a peer-to-peer

manner. Peers exchange states using n− 1 connections

to other peers.

FiringManager

Multiple threads
NewStatesSet

Successors computation - User defined

pop_state()

Distributed

StateManager

StateManager

Unicity table
process_state()

SM Proxy SM ServiceNetwork

 process_state()

process_state()

local state

state incoming from a distant host

state owned by a distant host

push_state()process_state()

Figure 2. libDMC architecture in distributed

generation mode

The supervision layer is handled by a master host. This

host starts the program and deploys processes over all the

hosts. It also is in charge of detecting termination and

stopping the program. Supervision is inexpensive (few

communications), thus the master host can also participate

in the computation.

Termination is handled by a dedicated monitor running

on the master host. It uses a local inactivity measure for a

host based on the fact that 1) all threads are inactive and 2)

its NewStatesSet is empty. Peers notify this condition (i.e., it

has become active or inactive) to the master when it occurs.

When this condition is met on all peers, an additional test

is run to check that 3) no message remains in the network,

by checking that all sent states have been received (a simple

difference of sent and received states).

4 Implementation

libDMC implements the principles of the previous

section. This section lists some technical aspects of this

experimentation.

Language. To implement libDMC, we chose C++ for its

support of object-oriented programming capabilities and its

efficiency. Moreover, interface with C is easy to achieve; it

is important since most model checkers are developed in C.

Encapsulating model checkers. We successfully

experimented the encapsulation of two model checkers

coming from different research teams: GreatSPN [7] (Univ.

Torino) and CheckPN [4] (Univ. P. & M. Curie). So far, we

only exploit the reachability analysis capabilities of these

tools.

Communications support. As MPI 1.1 was not

clearly thread-safe and as we couldn’t find a complete

implementation of MPI 2 (which theoretically adds support

for multiple threads) at the time of the design of libDMC, we

used TCP to handle network communications. This solution

is portable and offers a low overhead compared to higher-

level communications libraries.

Making encapsulated model checkers thread-safe. One

challenge was to multi-thread existing model checker

implementations. GreatSPN for instance is inherently non-

reentrant, due to numerous global variables. The solution

adopted consists in compiling the tool as a shared library

that can be loaded and dynamically linked into. Simply

copying the resulting shared object file in different file

locations allows to load it several times into different

memory spaces. This is necessary as threads usually share

memory space.

State balancing algorithm. A key-point of distributed

model checking is the localization function, which returns

the host that owns a given state (i.e., it is stored in

its local memory). To be generic, we had to chose a

function independent from state representation, that ensures

a uniform distribution of states over the cluster hosts. We

chose MD5 [16] (after testing some others) as it is able to

compute a checksum on raw data and is known to have a

uniform distribution.

4.1 Interfaces for encapsulated model
checkers

The general interface presented in Section 3 for the state

space generation is described through the C++ abstract

interface shown at Figure 3.

1 typedef struct

2 {

3 void∗ s t a t e c o n t e n t ;

4 s i z e t s t a t e s i z e ;

5 } s t a t e ;

6

7 class abs t rac t f o rma l i sm

8 {

9 public :

10

11 v i r t u a l s t a t e ∗

12 g e t i n i t i a l s t a t e () = 0 ;

13

14 v i r t u a l a b s t r a c t s u c c e s s o r s i t e r a t o r ∗

15 g e t s u c c i t e r a t o r (s t a t e ∗ s) = 0 ;

16 } ;

Figure 3. Interfaces of the abstract formali-

sm class

Designers of model checkers just have to implement

this interface (and some others, which are necessary for

implementation details, such as the ones described below)

to describe how the state space of a model is generated.

The get initial statemethod returns the initial state

(lines 11-12) through a state data structure (lines 1-5).

This structure contains a pointer to the state content and

its size. As one can see, states are completely opaque to

libDMC.

The get succ iterator method returns an iterator on

successors of a state s (lines 14-15). This iterator has to im-

plement the abstract successors iterator interface.

5 Performances

Performances have been measured on a cluster of 22

dual Xeons hyper-threaded at 2.8GHz, with 2GB of RAM

and interconnected with Gigabit ethernet. We focused our

evaluations on two parameters: state balancing and obtained

speedup.

Performances have been computed using GreatSPN. The

following parametric specifications have been selected:

• the Dining Philosophers, a well known academic

example; its complexity grows with the number of

philosophers,

• the model of the PolyORB middleware kernel [12]; its

complexity grows with the number of threads in the

middleware,

• the specification of a telephone commutator [21]; its

complexity grows with the number of subscribers.

The first model is academic and served as a validation

example for our encapsulated model checkers. The two

others correspond to industrial case studies and their

associated specification is much more complex. Moreover,

these models were developed independently from this

project and thus serve as “fair” benchmarks.

Let us note that the analysis of the PolyORB kernel

could not be achieved for more than 17 threads (12 055 899

symbolic states, the equivalent of 6.57 × 1017 concrete

states without symmetry reductions). Computation then

took more than 40 hours. Such a size is quite common

when analyzing industrial systems. Parallelization of model

checking indeed allows to apply it on larger models.

5.1 Load Balancing

The fact that states are homogeneously distributed over

the involved hosts in the cluster is an important issue since

it is related to load balancing of the application. The goal is

to avoid the situation were some hosts are overloaded while

others are idle. This is required to reach a linear speedup.

Therefore, we measured the number of states owned

by each host. We then compared these results to the

theoretical mean and noted the variation. These measures

are summarized in Table 1. In this table, column 1

represents the parameter that scale up the model, column 2

the number of involved hosts, column 3 the total number of

states, column 4 the theoretical mean, column 5 the standard

deviation and column 6 the standard deviation expressed in

percentage.

The measures show an even state distribution up to 16

hosts. However we observed that for 16 hosts and over,

there are two groups of state distribution. This pushes

the standard deviation up by an order of magnitude. This

problem may be related to the use of MD5, and requires

further investigation.

5.2 Speedup

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20 22

S
p
e
e
d
-u

p

Number of hosts (dual-processors)

Theoretical speedup
11 philosophers
12 philosophers
13 philosophers
14 philosophers

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

Theoretical speedup
4 threads

11 threads
17 threads

S
p
e
e
d
-u

p

Number of hosts (dual-processors)

Figure 4. Speedups for Dining Philosophers
(top) and PolyORb (bottom).

Figure 4 shows the speedup curve we obtain for the

Philosophers and the PolyORB specifications. Distributed

Parameter Hosts Symb. States Mean Std. deviation Percentage

Dining Philosophers

12 philosophers 4 347 337 86 834 427 0.5%

15 philosophers 4 12 545 925 3 136 481 792 < 0.1%

12 philosophers 22 347 337 15 788 689 4.4%

15 philosophers 22 12 545 925 570 269 24 179 4.2%

PolyORB middleware

11 threads 4 3 366 471 841 618 1021 < 0.1%

11 threads 16 3 366 471 210 404 402 0.2%

17 threads 16 12 055 899 753 494 1131 0.2%

11 threads 20 3 366 471 168 324 5393 3.2%

17 threads 20 12 055 899 602 795 19 557 3.2%

25 threads 20 37 623 267 1 881 163 60 540 3.7%

Telephone Service

4 subscribers 4 12 544 968 3 136 242 1138 < 0.1%

4 subscribers 8 12 544 968 1 568 121 969 < 0.1%

4 subscribers 16 12 544 968 784 060 647 < 0.1%

4 subscribers 20 12 544 968 627 248 20 055 3.2%

Table 1. States distribution for the Philosophers, PolyORB and Telephone Service models

execution time is compared to the standard version of

GreatSPN (i.e., not plugged to libDMC). Our library induces

a low overhead: execution for the mono-threaded, single

host version linked with libDMC within 95% to 105% of

the standard version. The local but multi-threaded version

is truly twice as fast on a bi-processor machine.

The main observation is that, in many cases, the observed

speedup is over the theoretical one based on the number

of processors (two per host): we have a supra-linear

acceleration factor (of a few percents). We observed this

in near all our experiments on several models with various

parameters. We attribute this to hyper-threading since the

supra-linear acceleration factor was not observed on dual

core PowerPC 970, which doesn’t have hyper-threading.

This hypothesis seems to be correlated by [13]. Apparently,

the multi-threading implementation enables an intensive use

of all the processor units:

• all I/O and mutexes are overlapped by other threads,

• multi-threading probably increases a simultaneous use

of dedicated hardware functions in the processors’s

pipe-line,

• shared code (between threads) and access to common

data may introduce a better use of caches.

We also observe that the larger the state space, the more

efficient encapsulated model checkers are. This is because

there are more chances for a state to have at least a successor

that is then distributed to another host, leading todo queues

handled by the NewStatesSet to never be empty during the

computation (which would make idle hosts).

6 Conclusion

In this paper, we presented libDMC, a library dedicated to

the encapsulation of model checkers to distribute them. Our

work is focused on state space generation and evaluation of

reachability (or safety) properties, which is also a limit of

most other existing implementations of distributed model

checkers.

We have implemented and used libDMC to encapsulate

two model checkers. We also measured performances on

model checking of some large models. Our performance

results are better than those of [20] (that report a near linear

speedup over the number of hosts), with supra-linear to the

number of processors speedup reported. Moreover:

• our solution offers a framework to ease the integration

of existing model checkers,

• our solution relies on a portable architecture (sockets,

pthread library) that takes maximum advantage of

modern cluster characteristics,

• libDMC is the only library that multi-threads the

generation of the state space, thus leading to excellent

results on multiple processors architectures.

We succeeded in analyzing specifications that could not

be computed before, due to limitation of memory and

CPU. If several days of computation may remain acceptable

for the development of critical components, many projects

could benefit from the linear speedup in the evaluation of a

safety property. The gain in the size of the problems that

can be treated is appreciable in any context.

In the future, we intend to extend the functionalities of

libDMC to handle properties expressed in temporal logic

(LTL in particular). We also intend to plug Spin into

libDMC to further validate our framework genericity, and

run more comparisons with existing solutions.

References

[1] S. Baarir, C. Dutheillet, S. Haddad, and J.-M. Ilié. On

the use of exact lumpability in partially symmetricalwell-

formed nets. In Second International Conference on

the Quantitative Evaluaiton of Systems (QEST 2005), 19-

22 September 2005, Torino, Italy, pages 23–32. IEEE

Computer Society, 2005.

[2] J. Barnat, V. Forejt, M. Leucker, and M. Weber. DivSPIN - a

SPIN compatible distributed model checker. In M. Leucker

and J. van de Pol, editors, 4th International Workshop

on Parallel and Distributed Methods in verifiCation

(PDMC’05), Lisbon, Portuga, 2005.

[3] J. Burch, E. Clarke, and K. McMillan. Symbolic model

checking: 1020 states and beyond. Information and

Computation (Special issue for best papers from LICS90),

98(2):153–181, 1992.

[4] CheckPN is a simple model-checker for Petri Nets. http:

//spot.lip6.fr/wiki/CheckPn/.

[5] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad.

Stochastic well-formed colored nets and symmetric

modeling applications. IEEE Transactions on Computers,

42(11):1343–1360, 1993.

[6] E. Clarke, O.Grumberg, and A. Peled. Model Checking.

MIT Press, 2000.

[7] G. G. Editor, A. for Timed, and S. P. Nets. http://www.

di.unito.it/˜greatspn/.

[8] P. V. Eijk and M. Diaz, editors. Formal Description

Technique Lotos: Results of the Esprit Sedos Project.

Elsevier Science Inc., New York, NY, USA, 1989.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

patterns: elements of reusable object-oriented software.

Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1995.

[10] C. Girault and R. Valk. Petri Nets for Systems Engineering.

Springer Verlag, 2002.

[11] G. Holzmann. The Spin Model Checker, Primer

and Reference Manual. Addison-Wesley, Reading,

Massachusetts, 2004.

[12] J. Hugues, Y. Thierry-Mieg, S. Baarir, F. Kordon,

T. Vergnaud, and L. Pautet. On the formal verification

of middleware behavioral properties. In T. Arts and

W. Fokkink, editors, Proc. Ninth International Workshop on

Formal Methods for Industrial Critical Systems (FMICS 04),

Electronic Notes in Theoretical Computer Science. Elsevier,

2004.

[13] D. Koufaty and D. T. Marr. Hyperthreading Technology in

the Netburst Microarchitecture. IEEE Micro, 23(2):56–65,

2003.

[14] F. Lerda and R. Sisto. Distributed-memory model checking

with SPIN. In Proc. of the 5th International SPIN Workshop,

volume 1680 of LNCS. Springer-Verlag, 1999.
[15] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and

G. Gopalakrishnan. Parallel and distributed model checking

in eddy. In A. Valmari, editor, SPIN, volume 3925 of Lecture

Notes in Computer Science, pages 108–125. Springer, 2006.
[16] J. G. Myers and M. Rose. The Content-MD5 Header Field.

Technical report, Internet draft standard RFC 1864, 1995.
[17] OMG. OCL 2.0 Specification - Version 2.0 ptc/2005-06-06.

OMG, June 2005.
[18] D. Peled. Combining partial order reductions with on-

the-fly model-checking. In Proc. 6th Int. Conf. on

Computer-Aided Verification, volume 818 of Lecture Notes

in Computer Science, pages 377–390, Stanford, USA, June

1994. Springer Verlag.
[19] M. Rangarajan, S. Dajani-Brown, K. Schloegel, and D. D.

Cofer. Analysis of distributed spin applied to industrial-

scale models. In SPIN, volume 2989 of Lecture Notes in

Computer Science, pages 267–285. Springer, 2004.
[20] U. Stern and D. L. Dill. Parallelizing the Murϕ verifier.

In Proceedings of the 9th International Conference on

Computer Aided Verification, pages 256–278. Springer-

Verlag, 1997.
[21] A. Vernier and E. Paviot-Adet. Vérification et mise en œuvre

de réseaux de Petri, chapter Modélisation et vérification de

l’interopérabilité de services de télécommunication, pages

233–252. Hermès Science, 2003.
[22] Wikipedia. Hash table — wikipedia, the free encyclopedia,

2007. [Online; accessed 22-January-2007].

