
A Portable Framework for High-Speed Parallel Producer/Consumers on Real
CMP, SMT and SMP Architectures

Richard T. Saunders , Clinton L. Jeffery , and Derek T. Jones

Rincon Research Corporation University of Idaho
IRAD Division Dept. of Computer Science

Tucson, AZ 85711 USA Moscow, ID 83843 USA
rts, dtj @rincon.com jeffery@cs.uidaho.edu

Abstract

This paper explores generating efficient, portable High-
Speed Producer Consumer (HSPC) code on current shared
memory architectures: Chip Multi-Processors (CMP), Si-
multaneous Multi-Threading processors (SMT) and Shared
Memory Processors (SMP). To build an HSPC, we use a
code generation approach in two stages.

Stage One generates data structures to eliminate mem-
ory interference. This is done by adjusting and timing
cache/buffer/stack placements and lengths for an idealized
producer/consumer. Perfect load-balancing is achievable
for CMP and SMP, but not for SMT due to simultaneous-
execution interference.

In Stage Two, the codebase is refined inside its target ap-
plication: profiling events sent from Python to a consumer
that computes profiling information. Stage two further tests
the impact of altering event sizes, synchronization primi-
tives, container libraries, and processor affinity. Stage two
achieves near perfect balancing for CMP and SMP archi-
tectures, but SMT still performs poorly.

1. Introduction

The producer/consumer relationship is a canon-
ical pattern among event-based communicating
processes/threads[2]. This work addresses the class
of event-based systems in which event processing speed
is a dominating factor. The example application driving
this work is a monitoring and visualization facility for
Python[13], a profiling system that sends events when
certain frequent activities occur[15]. Such systems require
the fastest producers/consumers possible, but writing a

1-4244-0910-1/07/$20.00 c 2007 IEEE.

high-speed producer/consumer is surprisingly difficult (see
Related Work as well as [4]).

For monitoring systems such as profilers, event process-
ing is overwhelming: potentially millions of events per sec-
ond. This is a major problem for profiling systems: de-
tailed event processing is time-intrusive enough to obscure
the behavior of the program under observation. Some profil-
ing systems resort to statistical sampling (such as gprof[5]),
while others (such as Alamo[6]) adopt numerous techniques
to reduce the cost of event production/consumption in a
classic uniprocessor context.

A more aggressive solution in modern systems is to
offload work to another processor. This solution has
been available in the high-performance community for
some time, but recently has become mainstream thanks
to processor trends toward hyperthreading and multi-core
processors[9, 14]. The event generator does minimal work
to generate the event (copying the event to a buffer), then
hands the event-processing work to another CPU. That CPU
processes the event concurrently, leaving the event genera-
tor to make progress and continue “real work.” In this way,
the profiled program’s perturbation is minimized.

We encountered this particular problem in the context of
Python profiling[13], and were motivated to investigate the
general purpose High-Speed Producer/Consumer (HSPC)
techniques described in this paper. In an HSPC scenario, a
producer (event generator) needs to generate events as fast
as possible, and the consumer (event processor) needs to
consume and process the events as fast as possible so coor-
dination between them does not degrade the performance of
the system.

This paper demonstrates how to build an HSPC tool for
a particular platform, and also suggests methods that might
be implemented in libraries (such as the POSIX threads li-
brary) or compilers and runtime systems.

2. Methodology

In order to generate HSPC code, we experimentally gen-
erated code in two stages: Stage One attempted to produce
interference-free code using an ideal producer and con-
sumer. Stage Two used a more realistic real-world appli-
cation (profiling) to tune the codebase from Stage One.

In order to generate cross-platform code, the HSPC code
generator ran on seven different UNIX/Linux platforms,
representing three different types of shared memory multi-
processor machines: Chip Multi-Processors (CMP), Shared
Memory Multi-Processors (SMP) and Simultaneous Multi-
Threaded processors (SMT) (SMT is also known as hyper-
threading).

G5 CMP: A dual-core 2 GHz PowerPC G5

Opt64 CMP: A dual-core 1.8 GHz Opteron 64

Opt64 SMP: A dual processor 1.8 GHz Opteron 64

Xeon SMP: A dual processor 3.2 GHz Xeon

Alpha SMP: A four processor 500 MHz AlphaEV6.7

Xeon SMT: A hyperthreaded 3.2 GHz Xeon

P4 SMT: A hyperthreaded 3 GHz Pentium 4

3. Stage One Code Generation

Stage One of the process to generate HSPC code is to
generate interference-free code. Interference-free means a
producer and consumer pair that will run in parallel as fast
as the baseline would run by itself. In other words, the
presence of a running consumer will not affect the run-time
of the producer. If we can achieve this, we can claim per-
fect balancing for an HSPC pair. We found that we could
achieve perfect balancing for all CMP and almost all SMP
architectures.

We encountered three broad types of interference: Si-
multaneous-Execution, Shared-Buffer, and Synchroniza-
tion. Simultaneous-Execution Interference (SEI) occurs
when an orthogonal thread running in parallel with the pro-
ducer slows it down. The actual presence of the running
thread, even though there is no communication between the
two, causes interference. Shared-Buffer Interference (SBI)
occurs when the producer and consumer start sharing the
same buffers when run together. Synchronization Interfer-
ence (SI) occurs when the producer and consumer start syn-
chronizing so that events are delivered reliably and in-order.

To develop interference-free code, we experimentally
evolved a codebase. Starting with a baseline, we evolved the
code until it reached a perfectly balancing HSPC. At each

step, we either added a feature (that typically caused inter-
ference and slowed down the code) or hand-tuned some pa-
rameters (striving to eliminate interference from a recently
added feature). This process was followed across multiple
platforms to ensure the work was portable.

The process to develop the codebase was as follows:

1. Determine the Baseline: Run the producer as fast
possible, generating single-byte events into a 1K buffer,
and time it (similarly, independently run and time the con-
sumer). In this case, there is absolutely no synchronization
or interference because there is no parallel thread generating
interference.

2. Determine and Eliminate Simultaneous-Execution In-
terference: Run the baseline consumer in parallel with the
baseline producer. At this point, the consumer does not
share any buffers or synchronize in any way with the pro-
ducer. Hand-tune the producer and consumer code at this
step to eliminate as much of the SEI effect as possible.

3. Determine and Eliminate Shared-Buffer Interference:
With SEI eliminated, we introduce a buffer that the pro-
ducer and consumer share, but with no synchronization for
accessing that buffer. We now run the producer and con-
sumer together, tuning the producer and consumer to elimi-
nate SBI.

4. Determine and Eliminate Synchronization Interfer-
ence: With SEI and SBI eliminated, we introduce synchro-
nization so the consumer reads events in order and reliably.
We hand-tune the codebase to eliminate SI.

This four-step process allowed us to develop
interference-free code for the HSPC. Figure 1 shows
the roadmap of the process, with timings and descriptions
at each step. Each column of Figure 1 represents one of
the seven testbed architectures. Each row represents a
particular phase of the evolving codebase. The following
sections detail the four steps.

All code described in this paper is writ-
ten in C++ and is available for download at
http://www.amalgama.us/hspc.html. The producer
and consumer each run in a separate POSIX kernel thread
(called “system scope” by the POSIX specification).

Most instances of slowdown of the HSPC pair occurred
because of some form of false sharing: false sharing[4, 9]
occurs when two threads access distinct memory addresses
that map to the same cache line. Managing the cache from
concurrent memory accesses degrades performance. The
false sharing took different forms. Local Adjacency is when
two variables are spatially next to each other so as to share
the same cache line. Modulo Adjacency is when variables
are spatially distant from each other, but because their mem-
ory locations map to the same place in the cache (the cache
may be direct-mapped), they share the same cache-line.

bp
bc
p0
p1
p2
p3
p4
p5
p6
p7
p8
p9
pf

G5-CMP
43.55

51.89
67.64

53.05
131.79

52.07
52.04
54.66
55.38

73.03
74.68

54.45
52.60

Opt64-CMP
15.28
15.61
15.62
14.68

79.95
14.94
15.02
17.71
17.17
21.08
20.62

15.10
15.32

Opt64-SMP
15.97
15.65

42.92
15.05

103.95
14.93
15.00
18.39
17.51
20.51
19.56

15.00
15.29

Alpha-SMP
49.75

42.59
113.82

50.29
134.56

53.85
54.13
55.83
56.51

74.44
76.09

54.48
54.87

Xeon-SMP
14.93
17.18

80.35
15.39

77.82
15.67
15.90
16.67
17.43
19.43
19.05

16.11
16.13

Xeon-SMT
14.68
17.28

94.23
21.84

176.86
21.24
21.71

51.43
24.08
26.44

32.85
21.94
21.52

P4-SMT
16.54
18.62

58.11
22.92

129.35
36.57

22.66
48.82

24.44
30.08
30.12

22.86
22.86

bp = Baseline producer
bc = Baseline consumer
p0 = p0_ADD_parallel
p1 = p1_singlealloc

p2 = p2_ADD_shareddatastructure
p3 = p3_rmfalsesharing
p4 = p4_adjuststack
p5 = p5_ADD_sharedbuffer

p6 = p6_rmfalsesharing
p7 = p7_ADD_sync
p8 = p8_rmfalsesharing
p9 = p9_adjustbufferlen
pf = Final auto-gen code

Figure 1. Roadmap of Stage One Code Generation across seven platforms. The horizontal bars
represent the execution time (in seconds) of the particular codebase—the actual value is annotated
on each bar. Dashed lines represent the baseline for that platform, and dotted lines represent the
SMT baseline (see Section 3.2) for that platform. Darkened bars represent the addition of a feature.

At this step, we ran the producer by itself (see the row
labeled Baseline producer in Figure 1) and timed it. This
is the ideal: it is the fastest a producer can run. There is
no interference, as there are absolutely no threads/processes
competing for resources. This time served as the baseline:
HSPC aspires to run as fast as the baseline producer. Simi-
larly, we ran the consumer by itself and timed it.

Interestingly, for most cases, the consumer ran slower
than the producer (see the row labeled Baseline consumer
in Figure 1). When this happened, the consumer was the
bottleneck rather than the producer; thus we defined the
consumer to be the baseline for those cases.

The producer/consumer code remained invariant through
the Stage One process: only the HSPC buffers and data
structures were changing.

To start the process, the baseline producer and baseline
consumer were run in parallel. This is captured in test case
p0 add parallel in Figure 1. Immediately, Simultaneous-
Execution Interference appeared as the SMP and SMT cases
were 2.7–5.4 times slower than the baseline (curiously, the
CMP cases weren’t as affected).

The first problem is buffer layout: the producer and con-
sumer each allocate their own (non-shared) buffer sepa-
rately via malloc. Unfortunately, this meant there was
no control over where the buffers were laid-out in mem-
ory, causing potential modulo adjacency issues. To com-

bat unpredictable buffer layouts in memory, we allocated
the producer and consumer buffers in a single allocation
next to each other; thus the cache-line interference of each
buffer relative to the other could be controlled. The code-
base p1 singlealloc contains the fix for this problem and
brings us back to baseline times (except for SMT, see be-
low).

The codebase p2 ADD shareddatastructure is only an
organizational change as the data structure for the producer
and the consumer were merged: this merging introduced
two instances of false sharing (we see the slowdown in p2
times). The first instance was that the read and write buffer
pointers were locally adjacent causing massive interference.
The second instance was that the write buffer pointer was
locally adjacent to the front of one of the buffers (the en-
tire data structure was allocated in a single allocation to
avoid the buffer layout issues discussed above). Both in-
stances of false sharing were fixed by adding some padding
between the offending variables to force them into separate
cache lines. The effects of adding the padding are shown
in Figure 1 at p3 rmfalsesharing. On most platforms, we
returned to baseline times (except SMT, see below).

The P4-SMT platform had an additional platform-
dependent complication related to stack layout affecting
its scalability. It has been noted in the literature[4, 9, 11]
and is called the 64-kilobyte Aliasing Problem: it is essen-
tially modulo adjacency. To fix this problem, we introduced
padding on the producer’s stack so that the producer and
consumer stack data didn’t overlap in the 64-kilobyte area.
This corresponds to p4 adjuststack. This step brought P4-
SMT down back down to its baseline (except SMT, but see
below).

SMT Scalability. Although we eliminated
Simultaneous-Execution Interference for CMP and SMP ar-
chitectures, we had difficulty doing so for SMT. This seems
to be a fundamental limitation of the current hardware for
HSPC. Our findings are consistent with other recent work
demonstrating limitations[7, 11] of SMT parallelism.

The work in [11] suggests that memory bandwidth is-
sues might be the problem. Xeon-SMP and Xeon-SMT,
however, are the same machine (with different CPUs ac-
tivated) with the same main-memory subsystem, and the
Xeon-SMP load-balances perfectly well. Note that run-
ning the machine in Xeon-SMT mode splits the level 1 data
cache between the two SMT processors and running the ma-
chine in Xeon-SMP mode gives each full CPU its own full
level 1 data cache. A possible problem is that the level 1
data cache is too small on SMT platforms. Since filling
those caches still relies on the same memory subsystem on
both Xeon-SMP and Xeon-SMT, that problem seems less
likely, especially since everything should fit in those caches
at this stage (the tests use very small 1024 byte buffers until
the very last step). Memory bandwidth does not seem to be
the issue, as both Xeon-SMP and Xeon-SMT would suffer.

The problem is uncovered early when investigating the
Simultaneous-Execution Interference. This suggests the
complication with SMT is that the execution units inside the
chip are in high demand by both the producer and consumer,
so the execution units cannot be used completely in paral-
lel. Attempting other mitigation techniques from Stage Two
(processor affinity, different synchronization primitives, dif-
ferent data structures) at this step had no effect on the SMT
scalability; there seems to be an intrinsic limit. There
may be techniques to reduce this execution unit interference
(looking at hardware registers on-chip, rewriting assembly
code to avoid execution-unit sharing or other compiler tech-
niques), but these are beyond the scope of this paper.

We cannot eliminate all Simultaneous-Execution Inter-
ference for the SMT case, but we do show that we can elim-
inate all shared-buffer and synchronization interference (in
the steps below). Recognizing that we cannot eliminate all
SEI, the codebase for p1 singlealloc becomes the baseline
for SMT (note that it is about 1.25x the execution time of
the original baseline).

At this step, we introduced buffers that both the pro-
ducer and consumer shared. There was no synchronization.
The producer puts events to the buffer that the consumer
gets (but not necessarily in order). Note that we also intro-
duced triple buffering at this step because we know we need
double/triple buffering1 eventually (see next section). The

1Double, triple or –buffering means round-robin through buffers.

three shared buffers were allocated with a single allocation
to avoid the buffer layout problems from Section 3.2.

Consider p5 ADD sharedbuffer: adding the shared
buffers drops us about 1.2x–2.3x off the baseline. The prob-
lem is the false sharing occurred between the edges of the
buffers: if the start of a buffer overlapped the cache line
with the end of another buffer, false sharing could occur.

We fixed this problem by adding padding between the
buffers so that the buffer edges started at different cache
lines. Consider p6 rmfalsesharing: this fix made a
tremendous difference on SMT platforms and a reasonable
difference on most other platforms.

Strictly speaking, though, we did not eliminate all SBI
at this step. We further refine the buffer sizes as part of the
next step to bring us back to the baseline numbers.

This step introduced synchronization so that the con-
sumer would read all events reliably and in order.
For synchronization, we used portable POSIX condition
variables[2].

It was impractical to use a single buffering scheme at
this step; a producer and consumer would serialize behind
each other as one waits for the other to finish. In order for
the producer and consumer to proceed in parallel, we had to
use double or triple buffering. Synchronization happens at a
per-buffer level: a buffer is locked once, then multiple reads
(writes) proceed until the buffer is emptied (filled), at which
point the buffer is unlocked. In this way, synchronization
occurred only when a complete buffer was used.

Consider p7 ADD sync: adding the synchronization
degraded performance, running about 30% slower than
baseline in each case. This was partially caused by locally
adjacent POSIX condition variables.

To eliminate that false sharing, we added padding
to the HSPC data structure so that no condition vari-
ables were in the same cache line.2 The results are in
p8 rmfalsesharing.

The final fix was to adjust the size of the buffers. The
size and number of buffers is important: if the buffers
are too small, synchronization overhead becomes excessive
as the producer and consumer synchronize frequently; if
the buffers are too large, there are known instances (See
Xeon-SMP at Stage Two) where we fall out of cache and
degrade performance. Consider p9 adjustbufferlen: by
hand-tuning the buffer sizes and number of buffers, we were
able to achieve most baseline run times.

For the CMP machines, we achieved nearly perfect in-
terference-free code. For the SMP machines the results

2This is especially important for Stage Two, when we need to make
sure spinlocks stay local[10].

were almost as good. The machine Opt64-SMP balanced
perfectly. The Xeon-SMP baseline consumer is actually
slower than the baseline producer, so the consumer was the
bottleneck. We did better than the baseline consumer, if not
quite as good as the baseline producer. The Alpha-SMP
case was slightly disappointing, but close.

Unfortunately, for the SMT machines, we were never
able to eliminate all interference, specifically SEI. For P4-
SMT, the work offloaded is . For
Xeon-SMT, it is . Thus we were lim-
ited to offloading only about 33–35% of the work (com-
pared to perfect balancing, offloading 50% of the work).
The p1 singlealloc time became the SMT baseline as we
eliminated all shared-buffer and synchronization interfer-
ence.

The Stage One process produced an interference-free
HSPC codebase (or as close as could be reached on the
hardware under test). All relevant parameters contributing
to interference had been discovered and mitigated, but their
values were tuned by hand. For portability, the ideal values
for these parameters should be determined automatically.
These parameters are cache line padding, stack layout off-
set, number of buffers, and buffer sizes. To determine the
values, we take a SuperOptimizer[8] type approach where,
without changing the codebase, many possible parameter
values are tested and timed to determine which values pro-
duce the shortest run times.

Testing all combinations of all relevant parameters is
computationally expensive, and in this case, unneces-
sary. The cache line padding value and stack layout
offset value can be determined independently, and we
know experimentally that ideal values exist. We deter-
mine a reasonable cache line padding value by running
p3 rmfalsesharing codebase in isolation. With that, we
have a value that we know contributes no interference, and
we use it in determining the stack layout offset, by running
p4 adjuststacklayout. See Figure 2. Note that we only
cycle through powers of two in loops 1 and 2: the idea is
that we are just looking for a value to cross the cache line or
stack offset boundary. There may be slightly better values,
but we are trying to limit code-generation time.

Finding the right buffer size values is more time con-
suming. With the ideal cache line padding and stack layout
offset numbers known, we ran the p9 adjustbufferlen code
baseline with all reasonable permutations of buffer size and
number of buffers. The “reasonable” buffer sizes were dis-
covered through experience when tuning the many different
platforms (for example, small buffer sizes were useful on
some platforms: it was hopeful that on CMP and SMT plat-
forms, with the smaller level 1 caches, that data would fit

for cache_line_padding (1 2 4 8 16 32 64 128 256)
time and run p3_rmfalsesharing /* loop 1 */

for stack_layout_offset (32 64 128 256 512 1024)
time and run p4_adjuststacklayout /* loop 2 */

for number_of_buffers in (2,3,4,5)
for buffer_size in (256 512 768 1024 1200 1600

2000 2048 2200 2500 3000 3500 4096
4500 5000 5500 6000 7000 8192 10000
16384 32768 65536 1000000 1500000)

time and run p9_adjustbufferlen

Figure 2. Stage One Code Generation

inside the cache and avoid going off chip to perform cache
coherence). This part of the process typically takes a few
hours.

In pseudo-code, Stage One code generation looks some-
thing like the code in Figure 2. The automatically generated
codebase always found parameter values comparable to the
hand-tuned values: see the Final Autogen code row in Fig-
ure 1.

4. Stage Two Code Generation

Stage Two generation is probably more accurately called
“tuning for an application.” By plugging in an appropriate
producer and consumer that do real work, we refined the
codebase from Stage One to be more appropriate for the ap-
plication in question. Despite the fact that we generated
interference-free code in Stage One, real applications do
real work in addition to the synchronization and communi-
cation of HSPC code, and that real work caused application-
specific interference. We introduce portable techniques (be-
low) to mitigate interference by the producers and con-
sumer.

Shrink the Event Size: This technique is very application
specific and may not be applicable, but reducing the mem-
ory footprint of the event limits memory interference. Re-
ducing the Python profiler event from 128 bytes to 24 bytes
allowed us to achieve scalability much more quickly.

Code with Thread-Neutral Data Structures: Container
libraries such as the C++ Standard Template Library are
silent on the issue of threads. By using the OpenContain-
ers library[12], a portable and thread-neutral library, we can
proceed in confidence that heap contention (multiple con-
current calls to malloc being serialized) will not cause ex-
cessive interference. Replacing STL’s map with an Open-
Container’s HardHashT improved the Python profiler run-
time performance by 20%. Issues related to this are dis-
cussed in [9] and [12].

Use Processor Affinity: Although we didn’t need pro-
cessor affinity in Stage One (because we could generate

interference-free code without it), locking a producer to one
CPU and locking the consumer to another CPU does seem
to mitigate interference from the OS (as processes/threads
migrate). In general, this seemed to give about a 5%
speedup overall.

In Stage One, we used POSIX condition variables for
synchronization. Switching to other primitives significantly
improved scalability on certain platforms. By staying with
POSIX synchronization primitives, we also can have a large
degree of portability. We used three different types of
POSIX synchronization: condition variables, mutexes[2]
and spinlocks[1, 10] with three different variations on the
spinlock:

Standard: Use as provided by POSIX implementation
Local spinlock: The local spinlock does a POSIX try-

lock and if it cannot get the lock, it does exponential backoff
spinning on the local variable to stay off the bus. This local
spinlock is completely portable.

Hyperthread-aware spinlock: Similar to the local spin-
lock. Instead of spinning on the local variable, it executes
the Intel pause instruction, while continuing the exponen-
tial backoff strategy. The Intel documentation[4] hints that
a pause instruction is SMT friendly and will get better per-
formance for spinlocks on SMT machines. This is a very
non-portable construct, but is provided (hopefully) to miti-
gate severe SMT interference.

The previous minor techniques helped us mitigate in-
terference, but tuning the buffer sizes (because event sizes
have changed from Stage One) and varying synchronization
primitives were by far the most useful techniques.

Spinlocks added considerable overhead, taking a full
CPU when running, but allowed most tests in Stage Two
to reach varying degrees of scalability with smaller buffer
sizes. Our local spinlocks and hyperthread-aware spinlocks
made little difference for the HSPC. Condition variables
and mutexes were much less intrusive to a system overall,
but typically needed large buffers to balance well. Spin-
locks thus appear to be more suited to low-latency appli-
cations, while condition variables and mutexes are more
suited to applications that must conserve processing re-
sources.

Figures 3–8 show the results of varying the buffer size
and synchronization primitives across the different architec-
tures. In all of these test cases, the producer computes (in
Python) a recursive Fibonacci function and generates events
(each function call enter and return) that a consumer (in an-
other thread) consumes, computing profiling information.
We are sending on the order of half a million events per
second. In all cases, the producer runs taking a full CPU,

 40

 50

 60

 70

 80

 90

 100

 110

2^202^192^182^172^162^152^142^132^122^112^102^92^8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Buffer Length (bytes)

 Opteron 64 (CMP): Producer: 100% CPU, Consumer 41.0% CPU

POSIX CVs (3 buffers)
Mutexes (3 buffers)

spinlocks (3 buffers)
local spinlock (3 buffers)

Optimal (no profiling)
Achievable (empty profiling)

Upper bound (inplace profiling)

Figure 3. CMP: Dual Core Opteron

usually 100%. In most cases (except where noted), the con-
sumer takes about 41% of a CPU consuming events and
computing profiling information. This is an estimate from
observing CPU usage as reported by top. 3

In each figure, we show three limit lines:
The Optimal line is how fast the test case (Python com-

puting recursive Fibonacci numbers) can compute without
profiling. It is the execution time of the best we can do.

The Achievable line shows the cost of generating the
minimal profiling information and putting the event into
an empty buffer. We aspire to the Achievable line, and we
claim perfect balancing if we reach that.

The Upper bound line is the execution time of the test
case where all computing (both the recursive fibonacci work
and the profiling work) is done in a single thread (in other
words, no consumer and producer threads running). If we
cannot do better than Upper bound, there is no reason to
even try to offload profiling work to another processor: it is
faster just to do the profiling work inplace.

Chip Multi-Processors. Consider Figure 3 for the CMP
machine: Opt64-CMP. As buffers got larger, the timings
for all the synchronization primitives tended to converge.
The dual-core Opteron machine performed well with large
buffer sizes. Although very large buffers gave the best re-
sults and asymptotically approached Achievable, the spin-
locks with much smaller buffers (2048 and 4096 bytes) gave
acceptable performance with much better latency.

The Opt64-CMP machine load-balanced well. Unfortu-
nately, we only had access to one CMP machine (G5-CMP
was not available at this stage), but it seemed to perform
well in all of our tests. But this is to be expected, as shared

3In the spinlock cases, the consumer appears to take 100% of a CPU,
but is only actually doing 41% of a CPU of work (the remaining 59% is
the spinlock time).

 40

 50

 60

 70

 80

 90

 100

 110

2^202^192^182^172^162^152^142^132^122^112^102^92^8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Buffer Length (bytes)

 Opteron 64 (SMP): Producer: 100% CPU, Consumer 41.0% CPU

POSIX CVs (3 buffers)
Mutexes (3 buffers)

spinlocks (3 buffers)
local spinlock (3 buffers)

Optimal (no profiling)
Achievable (empty profiling)

Upper bound (inplace profiling)

Figure 4. SMP: Two Processor Opteron

 60

 80

 100

 120

 140

 160

 180

 200

2^202^192^182^172^162^152^142^132^122^112^102^92^8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Buffer Length (bytes)

Tru64 4-CPU Es45 Alpha (SMP): Producer: 100% CPU, Consumer 20.0% CPU

POSIX CVs (3 buffers)
Mutexes (3 buffers)

spinlocks (3 buffers)
local spinlocks (3 buffers)

Optimal (no profiling)
Achievable (empty profiling)

Upper bound (inplace profiling)

Figure 5. SMP: Four processor Alpha EV6.7

caches are very tightly integrated on-chip, and there are no
shared execution units (unlike the SMT case).

Shared Memory Multi-Processors. As hinted at by
Stage One, SMP load-balanced reasonably well. Both
Opt64-SMP (Figure 4) and Alpha-SMP (Figure 5) were
able to get nearly perfect balancing. The Alpha-SMP did
best with small buffers and local spinlocks, but still very
well at large buffers. The Opt64-SMP does best with large
buffers (and in fact, looks very similar to Opt64-CMP).
Both Opt64-SMP and Alpha-SMP were able to offload all
of the producer’s work, balancing almost perfectly.

Although Xeon-SMP balanced well in Stage One code
generation, it performed poorly here (see Figure 6). Xeon-
SMP still achieved some parallelism, but by no means ap-
proached perfect balancing. We believe the problem here is

 50

 60

 70

 80

 90

 100

 110

 120

 130

2^202^192^182^172^162^152^142^132^122^112^102^92^8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Buffer Length (bytes)

Xeon (SMP): Producer: 100% CPU, Consumer 41.0% CPU

POSIX CVs (3 buffers)
Mutexes (3 buffers)

spinlocks (3 buffers)
local spinlocks (3 buffers)

Optimal (no profiling)
Achievable (empty profiling)

Upper bound (inplace profiling)

Figure 6. SMP: Two processor Xeon

the memory subsystem is overloaded (similar to [11]).

Simultaneous Multi-Threaded Processors. Our results
showed little parallelism. On both the Xeon-SMT(Figure 7)
and the P4-SMT(Figure 8) machines, there was almost no
work offloaded, even with the hyperthread-aware spinlock.

We expected because SMTs have tightly integrated
caches that HSPCs would perform well for small buffer
sizes. That was not the case, but some recent work corrob-
orates our findings for SMT machines. [11] discusses how
poorly SMT works on real network servers: they found (for
their context) that the best you can expect is about 30%-50%
speedup, but a slowdown is possible as well.

5. Related Work

FFTW[3] is the inspiration for much of the HSPC work.
The codelets FFTW generates are similar to Stage One
codebase samples. HSPC’s idea of parameterizing, running
and timing code came from [3], but similar work has been
done by others[8, 16]. The ATLAS[16] work discusses op-
timizing buffer sizes in real software. The SuperOptimizer
work [8] explores the entire state space of a problem, al-
though it tends to be looking for surprising possibilities in
code.

The work in [9] is directly related: many of the issues
discussed there we revisit in the context of HSPC, especially
the issues we have with SMT architectures.

The [7, 11] papers were an important sanity check, cor-
roborating difficulties of SMT scaling on real hardware.

 50

 60

 70

 80

 90

 100

 110

 120

 130

2^202^192^182^172^162^152^142^132^122^112^102^92^8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Buffer Length (bytes)

Xeon (SMT): Producer: 100% CPU, Consumer 41.0% CPU

POSIX CVs (3 buffers)
Mutexes (3 buffers)

spinlocks (3 buffers)
local spinlock (3 buffers)

HT spinlock (3 buffers)
Optimal (no profiling)

Achievable (empty profiling)
Upper bound (inplace profiling)

Figure 7. SMT: Hyperthreaded Xeon

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

2^202^192^182^172^162^152^142^132^122^112^102^92^8

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Buffer Length (bytes)

Pentium 4 (SMT): Producer: 100% CPU, Consumer 41.0% CPU

POSIX CVs (3 buffers)
Mutexes (3 buffers)

spinlocks (3 buffers)
local spinlock (3 buffers)

HT spinlock (3 buffers)
Optimal (no profiling)

Acheievable (empty profiling)
Upper bound (inplace profiling)

Figure 8. SMT: Hyperthreaded P4

6. Conclusion

This paper described the steps taken to optimize HSPC
code on CMP, SMP and SMT architectures and showed that
doing so can dramatically reduce the overhead associated
with synchronization and communication. Demonstrating
further limits of SMT systems[11], we discovered that lim-
ited availability of functional units in SMT systems prevents
perfect speedup when adding threads; the CMP/SMP results
imply that this failure is specific to SMT architecture and
not due to the nature of the HSPC problem.

Although the HSPC results were derived from a Python
profiling system, they can easily be applied to other sys-
tems software because the producer/consumer relationship
is so fundamental. By keeping the HSPC codebase portable,

other systems can use and tune an HSPC for its particu-
lar needs (optimizing event latency, reducing memory foot-
print) without having to rediscover all issues presented here.

References

[1] T. E. Anderson. The performance of spin lock alternatives
for shared-money multiprocessors. IEEE Trans. Parallel
Distrib. Syst., 1(1):6–16, 1990.

[2] D. R. Butenhof. Programming with POSIX threads.
Addison-Wesley, Boston, MA, 1997.

[3] M. Frigo. A fast fourier transform compiler. In Conf. on
Programm. Lang. Design and Impl., pages 169–180, 1999.

[4] R. Gerber and A. Binstock. Programming with Hyper-
Threading Technology. Intel Press, 2004.

[5] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A
call graph execution profiler. In SIGPLAN ’82: Proceedings
of the 1982 SIGPLAN symposium on Compiler construction,
pages 120–126, New York, NY, USA, 1982. ACM Press.

[6] C. L. Jeffery. Program Monitoring and Visualization: An
Exploratory Approach. Springer-Verlag, NY, 1999.

[7] D. Kim, S. S. wei Liao, P. H. Wang, J. del Cuvillo, X. Tian,
X. Zou, H. Wang, D. Yeung, M. Girkar, and J. P. Shen.
Physical experimentation with prefetching helper threads on
intel’s hyper-threaded processors. In 4th Symposium on
Code generation and optimization, page 27, Washington,
DC, USA, 2004. IEEE.

[8] H. Massalin. Superoptimizer: a look at the smallest pro-
gram. In 2nd Conference on Architectual support for pro-
gramming languages and operating systems, pages 122–
126, Los Alamitos, CA, USA, 1987. IEEE.

[9] L. K. McDowell, S. J. Eggers, and S. D. Gribble. Improv-
ing server software support for simultaneous multithreaded
processors. In 9th Symposium on Principles & Practices of
Parallel Programm., pages 37–48, 2003.

[10] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiproces-
sors. ACM Trans. Comput. Syst., 9(1):21–65, 1991.

[11] Y. Ruan, V. S. Pai, E. Nahum, and J. M. Tracey. Evaluat-
ing the impact of simultaneous multithreading on network
servers using real hardware. In ACM SIGMETRICS Con-
ference on Measurement and modeling of computer systems,
pages 315–326, 2005.

[12] R. T. Saunders. Opencontainers: A portable, thread-neutral
library. www.amalgama.us/oc.html.

[13] R. T. Saunders, C. L. Jeffery, and M. Wilder. Python profil-
ing and visualization. In PyCon DC 2005, 2005.

[14] H. Sutter. A fundamental turn toward concurrency in soft-
ware. Dr. Dobbs Journal, 30(3), Mar 2005.

[15] G. van Rossum and F. L. Drake. Extending and embedding
the python interpreter, release 2.3.4. python.org, May 2004.

[16] R. Whaley, A. Petitet, and J. Dongarra. Automated empiri-
cal optimizations of software and the atlas project. Parallel
Comput., 27(1-2):3–35, 2001.

