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Abstract

Broadcasting is a fundamental communication task in
mobile ad hoc networks, and minimizing broadcasting time
(or latency) is crucial to the performance of many applica-
tions. Extensive studies have been conducted on the min-
imization of broadcasting time in the context of radio net-
works, which are usually modeled as general graphs. In this
paper, we consider how to achieve this goal with distributed
algorithms based on a more realistic (and restricted) net-
work model. We propose a randomized algorithm that com-
pletes broadcasting in time, where

is the number of nodes in the network and the eccen-
tricity (maximum distance from the source node to any other
node). Compared with a previous optimal algorithm that
achieves the same result for general networks, our algo-
rithm obviates the need to know the network eccentricity
beforehand. We also propose a deterministic broadcasting
algorithm that works in time, which is in contrast with
the best known result of for general networks.

1 Introduction

In a mobile ad hoc network (MANET), a set of wire-
less mobile nodes communicate with each other using radio
transmission. Without relying on any pre-existing infras-
tructure, nodes in the networks self-organize into a network
for communication. The self-organizing and wireless na-
ture of ad hoc networks introduces a number of challenging
research issues in the design of network protocols. One of
the major challenges comes from the potential interference
caused by the simultaneous transmission of nearby nodes:
if two nodes transmit a message to some common receiv-
ing node at the same time, the message will be corrupted
or lost. In such a case, we say that a collision has occurred
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at the receiving node. This characteristic gives rise to many
interesting problems for some fundamental tasks of network
communication.

In this paper we study the distributed broadcast schedul-
ing problem in ad hoc networks. In broadcasting, a source
node sends a message to all the other nodes in the network.
We want to minimize the broadcast latency, which is defined
as the time taken by the message to reach all the nodes in the
network. A small broadcasting latency is crucial to network
performance in many aspects and is required by a variety
of applications, such as real-time multimedia broadcasting
and military communications based on ad hoc sensor net-
works. We assume that individual nodes have no a priori
knowledge about network topology, as is often the case in
practical self-organized networks.

There have been extensive studies on minimizing broad-
casting latency in the context of radio packet networks.
Most previous work employs a general graph model, based
on which complexity issues are explored and efficient al-
gorithms are designed. However, as highlighted by [13],
the general graph model is not an accurate description of
networks that may arise in real-world settings; the authors
of [13] propose a restricted class of graphs, called planar
point graphs, that prove to be a more accurate model of
ad hoc networks. A planar point graph consists of a set of
points on a plane; each of these points is associated with a
transmission range, and a directed edge exists between two
nodes if the Euclidean distance between the two nodes is
less than or equal to the transmission range of the source
node. As a result of this restriction, some complexity re-
sults concerning the broadcast time on general graphs do
not necessarily hold for the planar point graphs. In this pa-
per we apply a further restriction to the planar point graphs
that reflects the physical characteristics of wireless devices.
In our network model, called the MANET graph, there exists
a maximum transmission range and a minimum trans-
mission range among all the nodes in the network. The
constant is determined by the upper limit of all nodes’
power levels and is therefore greater than zero. Likewise,



the constant corresponds to the lowest power level. In
practice, wireless network interface cards usually provide a
set of discrete power levels [10], thus it is reasonable to as-
sume that . (The nodes with a zero power level do
not function and can be omitted from the network). A simi-
lar network model and assumptions regarding transmission
ranges have been made in [9].

Under the restricted network model, we design broad-
casting algorithms that demonstrate advantages over some
of the best previously known algorithms for general net-
works. Specifically, we propose a randomized algorithm
that completes broadcasting in
time. Compared with a previous algorithm that achieves
the same result for general networks, our algorithm obvi-
ates the need to know the network eccentricity before-
hand; the fastest previously known eccentricity-ignorant al-
gorithm for directed general networks runs in time.
We also propose a deterministic algorithm that works in

time, which is in contrast with the best known result
of for general networks. A simple extension
of the deterministic broadcasting algorithm yields an
time gossiping algorithm.

The remainder of the paper proceeds as follows. Sec-
tion 2 documents related work for both general networks
and restricted networks; Section 3 describes our network
model formally; Section 4 presents the randomized algo-
rithm for broadcasting; Section 5 gives the deterministic al-
gorithm for both broadcasting and gossiping, and Section 6
concludes the paper.

2 Related work

In this section we review related work on broadcast
scheduling for both general networks and restricted net-
works.

There has been a large body of literature on broadcast-
ing in unknown radio networks. One of the earliest pa-
pers is by Chlamtac and Kutten [3], who study the com-
plexity of minimum latency broadcast scheduling with in-
terference and show that the problem is NP-hard for gen-
eral graphs. For randomized solutions for this problem,
Alon et al. [1] show that there exists a network of con-
stant eccentricity for which broadcasting needs
time. Kushilevitz and Mansour [11] provide another lower
bound for -node networks of eccentric-
ity . These two results together establish the well-known
lower bound of . In a seminal pa-
per, Bar-Yehuda et al. [2] propose a broadcasting algorithm
running in time , which is optimal for
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Figure 1. An example of a network topology.

all , but is by a logarithmic factor off from opti-
mal for close to . The gap between the lower and upper
bounds has been closed by Czumaj and Rytter [7]; using
the knowledge of , they carefully construct a “selecting
sequence” that has stronger property than the original uni-
form sequence and improves the broadcasting time to opti-
mum.

The problem of deterministic broadcasting has also been
intensively studied. It is shown by Clementi et al. [6] that
any deterministic broadcasting algorithms for general un-
known network require time. Chlebus et al. [4]
give an algorithm with running time ; Chrobak et
al. [5] design an almost optimal algorithm of running time

; and the best known algorithm is given by Czu-
maj and Rytter which runs in time [7].

Sen and Huson [13] were the first to point out that gen-
eral graphs are not an accurate description of realistic net-
works. They show that a restricted class of graph called
planar point graphs is a better model, and that the broad-
cast scheduling problem remains NP-complete even in this
restricted domain. They further give an algo-
rithm when all the nodes are located on a line. Sen and Hu-
son’s model has been assumed in [9], which adds another
restriction concerning the transmission ranges of nodes, as
mentioned in Section 1. With this extra restriction, the au-
thors in [9] are able to obtain an optimal broadcast latency.
However, their algorithms are centralized and rely on the
knowledge of global network topology. Finally, [8] studies
the broadcasting problem on random graphs.

3 Model and terminology

We model a mobile ad hoc network using a directed
graph on the plane. Each node has



an ordinate pair , and a maximum transmis-
sion range . A directed edge if and only if
is within the of node . We assume that for all ,

, where and
are the minimum and maximum transmission ranges, re-
spectively. We denote by the eccentricity of , which
is equal to the maximum distance from the source to any
other node. Initially, a node does not have any prior knowl-
edge about the network topology or its immediate neigh-
bors; it only knows its coordinates, the transmission range
limits and , and the network size (or a linear
upper bound for ). Notice that our deterministic algo-
rithm does not need any knowledge of . For notational
convenience, we assume, without loss of generality, that

is a power of ; moreover, when we use the expres-
sion , we mean ,
to avoid the case .

In the broadcasting problem, we assume that all nodes in
the network are reachable from the source node. In the gos-
siping problem, we assume that the graph is strongly con-
nected.

Time is divided into discrete time steps. All nodes start
simultaneously and have access to a globally synchronized
clock. A node can be in either transmitting or receiving
mode, but not both. A message is successfully received by
a node at time step (also referred to as node becom-
ing active) if and only if exactly one of ’s in-neighbors
transmits at ; if more than one in-neighbors of transmit
a message simultaneously, then a collision occurs and re-
ceives nothing. As assumed in most models, a node cannot
distinguish between the case of collision and the case of no
in-neighbors transmitting at all.

We partition the plane into equal-sized squares with
side length equal to , where is an inte-
ger constant such that ; each such
square further consists of equal-sized cells, whose side
length is . Within each square, the cells are
consecutively numbered as from bottom left
to top right (see Figure 1 for an example). A node
belongs to a certain cell can calculate its cell number
as: , where

and
. Let the set of nodes within cell

be .
In our broadcasting algorithms, node is allowed to

transmit only at time for .
This rule, together with the properties of wireless transmis-
sion, implies that (1) two nodes in different cells within the
same square are always collision-free; (2) two nodes with
the same cell numbers but in different squares are collision-
free (because their distance is greater than ); and (3)
nodes in the same cell form a complete subgraph and
collisions only occur among these nodes.

Notice that with the above plane partitioning, there gen-
erally exists an idle interval of length at most between
a node’s consecutive actions, including receiving and trans-
mitting. With this idle interval, the total transmission time
from the source to some destination node can be at most

multiplied by the transmission time in a network without
the space partitioning.

4 Randomized broadcasting

In this section, we first develop a method to estimate the
number of nodes in each cell in time. The knowl-
edge of will help us reduce the broadcast time from

, the running time of the original ran-
domized algorithm for general graphs, to

. For succinctness of discussion, in this section we
do not consider the constant factor when calculating
broadcasting time. When we refer to a time step in the con-
text of a certain cell, we mean time steps in the system –
the omitted factor does not affect the complexity results.

Since nodes in different cells have different transmission
times, the approximation of can be done independently
within each cell. We first introduce a simple randomized
algorithm to elect a leader in , which will serve as a co-
ordinator for the estimating procedure. This algorithm es-
sentially uses the idea of Bar-Yehuda et al.’s decay proce-
dure [2]: in consecutive time steps, which we call
a decay round, nodes in the network transmit with prob-
ability at the step ,
respectively. It can be proved that a decay round yields
a successful transmission with a constant probability. Us-
ing this procedure as a building block, Algorithm 1 runs in

time to produce a successful transmission with
probability at least .

After the execution of Algorithm 1, with probability at
least , some node has either received a message
containing its own coordinates or has received no message
at all, while each of the other nodes has received a message
with different content from its own coordinates. Therefore,
an agreement can be reached among all nodes that is the
leader of .

Next, we present an algorithm (Algorithm 2) for the ap-
proximation of . With the leader elected, we need to
estimate the number of remaining nodes . For
notational convenience, we assume that or

. (The trivial case of can be easily
identified by the leader.)

Theorem 1. Algorithm 2 runs in time and gives
an approximation for that satisfies .



Algorithm 1 Simple Randomized Leader Election Algo-
rithm in Cell

Input: Complete graph .
/* decay rounds */
for to do

for to do
Each node executes the following procedure
independently with probability
if has never received a message then

transmits ;
else if has already received some message

then
transmits .

end if
end for

end for

Proof. From Algorithm 2 we can see that a total of
decay rounds are run, requiring time.

Now suppose that at a certain time step, the leader orders
the nodes in to transmit with probability . Let S de-
note the event that exactly one node transmits. Then we
have S . Now,

S S

S

S S

S

Let random number denote the number of suc-
cessful transmissions for during the

decay rounds. Then the second inequality above
implies . Us-
ing the Chernoff bound, we have

Algorithm 2 Approximation Algorithm for
1: Input: Complete graph and leader node ; array

with all elements initialized to 0.
2: /* decay rounds */
3: for to do
4: for to do
5: orders each other node to transmit with proba-

bility
6: if transmission succeeded then
7: ;
8: end if
9: end for

10: end for
11: for to do
12: if

then
13: return as the approximation of
14: end if
15: end for
16: if all elements in are 0 then
17: return as the approximation of
18: end if

On the other hand,
, and hence

This means that in the loop of Line 11, Algorithm 2,
if the sum of four consecutive ’s is for the first time
greater than , then with a high probability, falls
between . It follows that

; taking as the approximation of
leads to , as desired.

After the execution of Algorithm 2, the leader notifies
all the other nodes in of , and then all nodes in
obtain an approximation for that satisfies

.

Since nodes in each cell transmit independently, we only
have to look at the transmission scheduling within a single
cell. Upon becoming active, a node in cell waits until
the next time step ( ), when it
executes a decay round. The procedure is shown in Algo-
rithm 3.



Algorithm 3 Randomized Broadcasting Algorithm for node
in Cell
if node becomes active then

waits until the next time step ,
where .
for to do

for to do
transmits independently with probability .

end for
end for

end if

Theorem 2. Let be an -node MANET
network of eccentricity , then with probability at least

, Algorithm 3 completes broadcasting in in
time.

Proof. We only have to show that for any sin-
gle node , if we take a shortest path

from the source node to
, then node will be active after time

with probability at least . Since there are nodes
in the network, the union bound will imply the theorem:

all nodes in become active after time

Before we proceed, we first introduce a lemma that gives
some properties of the path and the nodes on it.

Lemma 1. Let be the set of cells
associated with all the nodes on , then
(1) ;
(2) any contains at most two nodes on .

Consider a node on path , and let the
random variable denote the time between the activation
time of ’s proceeding node, , and the activation time
of . Clearly, are independent of each other.
So the time it takes to successfully deliver the message from
the source to node is From the proof of
Theorem 1, a decay round yields a successful transmission
with probability at least , so for a single time step at ,
the probability of successful transmission is at least

We consider two cases separately:
and .

Case 1. It can be seen that the prob-
ability that the transmission from succeeds after ex-
actly time steps, .
Let be a random variable having geometric distribu-
tion with parameter , then we have

. Define and we have
becomes active after time step

. Now, if we can show that with a high probabil-
ity, for some constant , we can estab-
lish the theorem. To do so, we use the following result that
characterizes the tail distribution of the sum of geometrical
random variables [7]:

Lemma 2. [7] Let be a sequence of indepen-
dent integer-valued random variables, each being ge-
ometrically distributed with a parameter .
For every , let , and assume that all

are from a set , that is, . If
, then for every positive real number ,

First we establish an upper bound for . Using the
properties of geometric random variables, we have

(Theorem 1)

(Lemma 1)

(Lemma 1)

Next, we want to show that is highly concentrated
around its mean using lemma 2. Let

, and . It is
easy to see that . Applying lemma 2
yields for and some constant ,

becomes active after

This inequality, combined with our argument at the be-
ginning of the proof, proves the theorem for the case

.



Case 2. For networks of “small” eccen-
tricities, we can prove the theorem by showing that our al-
gorithm can achieve broadcasting time
(the same as that of the algorithm in [2]), which is asymp-
totically equal to .

The analysis is similar to the first case. Let ,
then for every , . Let
be random variables having identical geometric distribution
with parameter , then we have

. Define and we have
. Using lemma 2 and noting that

, we can obtain that with probability at least ,
.

Combining the two above cases yields the proof of theo-
rem 2.

Finally, the results of theorems 1 and 2 indicate that
our broadcast scheme comprising the two stages (cell size
approximation and broadcasting) requires a total time of

.

5 Deterministic broadcasting and gossiping

In this section, we first assign distinct labels
to the nodes in cell . The labels help

to serialize the transmissions within a cell; coupled with
the time division mechanism of the grids, the distributed
broadcast can be easily scheduled. We then extend the
broadcast algorithm to a simple gossiping algorithm that
works in time , which is optimal.

The problem of assigning labels to nodes in a cell has
been investigated in [12] in terms of network initialization
for single-hop radio networks. In their work, Nakano et al.
assign IDs to nodes by gradually partitioning the node set to
singletons. More specifically, their protocol partitions the
original node set into non-empty subsets and . In
turn , is partitioned into two non-empty subsets and

. In general, is partitioned into non-empty subsets
and . This procedure is repeated until, at some

stage, some contains a single node. This node is as-
signed the ID of 1 and quits the protocol. After that, the
same partitioning procedure is applied to and so on.
This is repeated until all nodes have been assigned IDs from

. According to the analysis in [12], the pro-
cess of assigning labels succeeds in time with high
probability.

Let the label of a node in cell be . Node can
determine its transmission time as follows: upon receiving
the message for the first time, waits until the next time
step , where ,
and then transmit the message. This way, the transmissions
of nodes within a cell will not interfere with each other;

moreover, due to the time division mechanism, all trans-
missions in the network are collision-free. Since it takes at
most for the nodes in cell to complete transmis-
sion, the total broadcasting time in the network is at most

. Adding the time for label assigning
to the broadcasting time, we conclude that the total time
to schedule the broadcast is with probability at least

.

Gossiping is another classical problem of disseminating
information in networks. In gossiping, each node in the
network initially owns a message , and we wish to dis-
tribute each message to all nodes in the network. Gos-
siping is not simply simultaneous broadcasts, because
nodes can collect many messages and encapsulate them in
one big packet that can be sent at a single time step. (It is
commonly assumed that the message size is so small that a
single packet can contain all messages.) The fastest gos-
siping algorithm for general networks works in
time [7].

With our model, the procedure of deterministic broad-
casting can be directly applied to the gossiping problem.
Upon receiving some new message(s), waits until the next
time step , where ,
and then transmits a packet containing all new messages re-
ceived during the waiting period. Since each message
can be broadcast in time, the gossiping can be com-
pleted in time.

6 Conclusion

In this paper, we investigate distributed broadcast
scheduling in mobile ad hoc networks based on a restricted
network model. By considering the inherent properties of
practical wireless transmission, our model gives a more
accurate description of network topologies that may arise
from realistic settings compared with a traditional radio net-
work model. The model exhibits a number of properties that
yield some interesting results. We propose a randomized al-
gorithm that completes broadcasting in

time. Compared with a previous algorithm that
achieves the same result for general networks, our algorithm
does not rely on the knowledge of ; and the previously
fastest eccentricity-ignorant algorithm for general directed
networks runs in time. We also propose a determinis-
tic broadcasting algorithm that works in time, which
is in contrast with the best known result of for
general networks. A simple extension of the deterministic
broadcasting algorithm yields an time gossiping algo-
rithm.
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