
A Probabilistic Approach to Measuring Robustness in Computing Systems

Behdis Eslamnour and Shoukat Ali

University of Missouri-Rolla
Dept. of Electrical and Computer Engineering

Rolla, MO 65409-0040 USA
{ben88, shoukat}@umr.edu

Abstract

System builders are becoming increasingly interested in

robust design. We believe that a methodology for generat-

ing robustness metrics will help the robust design research

efforts and, in general, is an important step in the efforts

to create robust computing systems. The purpose of the

research in this paper is to quantify the robustness of a

resource allocation, with the eventual objective of setting

a standard that could easily be instantiated for a particu-

lar computing system to generate a robustness metric. We

present our theoretical foundation for a robustness metric

and give its instantiation for a particular system.

1 Introduction

System builders are becoming increasingly interested in

robust design. The following are some examples of this in-

terest. The goal of the DOE’s SciDAC (Scientific Discov-

ery through Advanced Computing) program’s Scalable Sys-

tems Software project is “to fundamentally change the way

future high-end systems software is developed to make it

more cost effective and robust” [17]. One goal of DARPA’s

“High Productivity Computing Systems” program is to sub-

stantially improve robustness and reliability of computing

systems [1]. The Robust Network Infrastructures Group

at the Computer Science and Artificial Intelligence Labo-

ratory at MIT takes the position that “... a key challenge is

to ensure that [the network] can be robust in the face of fail-

ures, time-varying load, and various errors.” The research

at the User-Centered Robust Mobile Computing Project at

Stanford “concerns the ‘hardening’ of the network and soft-

ware infrastructure to make it highly robust.” The Workshop

on Large-Scale Engineering Networks: Robustness, Veri-

fiability, and Convergence (2002) concluded that the “Is-

sues are ... being able to quantify and design for robustness

1-4244-0910-1/07/$20.00 c©2007 IEEE.

...” There are many other projects of similar nature at other

schools and organizations (including IBM and Raytheon).

We believe that a methodology for generating robustness

metrics will help all of the research efforts given above, and,

in general, is an important step in the efforts to create robust

computing and communications systems.

To date, no major research effort has addressed the sci-

ence of design of a robust resource management system in

a comprehensive, systematic manner. We believe that it is

not sufficient to speak of developing yet another resource

management system. Instead, such systems need to be “de-

signed” for robustness. This research contributes to the sci-

ence underlying the design of a robust resource manage-

ment system.

A resource allocation is defined to be robust with respect

to specified system performance features against perturba-

tions in specified system parameters if degradation in these

features is limited when the perturbations occur within a

certain range. The high link and node counts of some high-

end systems (many with more than 1000 processors) intro-

duce a complexity that makes robustness of these systems a

critical and challenging issue. This research will be directly

helpful to such programs by providing theoretical underpin-

nings for robustness, and by developing a methodology for

generating robustness metrics for a variety of systems.

The purpose of the research in this paper is to quantify

the robustness of a resource allocation, with the eventual ob-

jective of setting a standard that could easily be instantiated

for a particular computing system to generate a robustness

metric.

The rest of the paper is organized as follows. A sum-

mary of some related work is given in Section 2. Section 3

presents our theoretical foundation for a robustness metric,

and a formulation of the theoretical framework for a partic-

ular example of heterogeneous computing system. Some

simulation experiments and their results are discussed in

Section 4. Section 5 concludes this paper.

2 Related Work

Reliability, dependability and fault-tolerance of distrib-

uted systems have been addressed in several works [5, 6, 7,

10, 11, 13, 14, 15, 19, 20]. [5] presents a bi-criteria schedul-

ing heuristic for distributed systems according to two cri-

teria, minimization of the schedule length and maximiza-

tion of the system reliability. [6] gives a definition of reli-

able broadcast and presents a hybrid model for asynchro-

nous distributed systems with Byzantine faults, crashes and

recoveries. [7] proposes a methodology for quantifying the

effect of denial of service (DoS) attacks on a distributed sys-

tem. In [10], an accrual failure detector is presented which

assigns a real value (a suspicion level of failure) to each ap-

plication, instead of the traditional binary information (trust

vs. suspect). As defined in this paper, the suspicion level of

a “faulty” process monotonically increases, while the sus-

picion level of a “correct” process is bounded. Accrual fail-

ure detectors can serve multiple applications with different

quality of service requirements. In [11], given some distri-

bution constraints, some indications on application execu-

tion times and link communication times, a number of fail-

ures that the system must tolerate, and some real-time con-

straints, a fault-tolerant distributed static scheduling heuris-

tic is produced that schedules a source algorithm on the tar-

get architecture. [13] introduces a resource location and dis-

covery algorithm, MPIL, for distributed systems which is

both perturbation-resistant and overlay-independent. Prob-

abilistic QoS guarantees for supercomputing systems are

proposed in [14]. The proposed system enables the system

and users to negotiate a mutually desirable risk strategy, and

makes probabilistic guarantees on QoS such that “job j can

be completed by deadline d with probability p.” A metric

for QoS is presented in this paper, and using this metric, the

scheduler tries to maximize the QoS. In [15], the reliability

of embedded computer-based systems is addressed by pre-

senting a modular technique for evaluating sensitivity for

dynamic fault trees. To improve dependability in distrib-

uted embedded systems, [19] proposes the alternative func-

tionality mechanism, in which a lost feature is replaced with

another existing function that can substitute for the lost ser-

vice. [20] proposes a fault detecting protocol for duplicated

processes and enhances a roll forward recovery scheme.

3 Probabilistic Robustness Metrics

Overview: One way of arriving at a robustness metric [2]

is to start with the quantitative description of the require-

ment that makes the system robust. Based on this robust-

ness requirement, one can determine the QoS performance

features that should be limited in variation to ensure that the

robustness requirement is met. Let φi be one certain perfor-

mance feature, and let the bounds of the tolerable variation

in φi be given by
〈

βmin
i , βmax

i

〉

. Then one can identify all

of the system and environment parameters (called the per-

turbation parameters) whose values may impact the value

of the performance feature φi. Mathematically, let Π be the

set of perturbation parameters. It is assumed that the ele-

ments of Π are vectors. Let πj be the j-th element of Π.

In the next step, one needs to determine, for every φi ∈ Φ,

the relationship φi = fij(πj), if any, that relates φi to πj .

In this expression, fij is a function that maps πj to φi. Let

rµ(φi, πj) be defined as the robustness of resource allo-

cation µ with respect to the performance feature φi against

the perturbation parameter πj , and is given as the smallest

collective variation in the values of perturbation parameters

that will cause the performance feature φi to violate its ac-

ceptable variation. This will be the degree of robustness of

the given resource allocation. Figure 1 sums up this discus-

sion. Mathematically, the robustness metric defined above

is calculated as following [2].

rµ(φi, πj) = min
πj : (fij(πj)=βmax

i
)∨(fij(πj)=βmin

i
)
‖πj−π

init
j ‖2.

(1)

λ
init

init

ππ

ππ

(φi)

j

j

rµ(φi, j)ππ

j| fij(j) =ππ{ππ βmax}i

*

2

πj1

πj2

Figure 1. Some possible directions of
increase of the perturbation parameter
πj , and the direction of the smallest in-
crease. The curve plots the set of points,
{πj|| fij(πj) = βmax

i }. The set of boundary
points,

{

πj|| fij(πj) = βmin
i

}

is given by the
points on the πj1-axis and πj2-axis.

With the robustness definition in Equation 1, all points

with the same distance from π
init
j are located on a spheroid.

This means that all components of an observation π con-

tribute equally to the Euclidean distance of π from π
init
j . In

addition, it assumes that πj components are not correlated.

However, in real world the variables (i.e., the elements of

each perturbation vector) can have different variances and

be correlated. In such cases, the smallest distance to the vi-

olation boundary may not be as shown in Figure 1. Consider

a point C(x0, y0) whose distance from a boundary b1 is re-

quired. Geometrically, the Euclidean distance form point

C to boundary b1 is the radius of the largest circle that can

be drawn such that it is centered on C and just touches the

boundary. All points on this circle have the same Euclidean

distance from C. Now consider the case where the variables

x and y have different variances; for example, variable x has

a higher variance than that of y. In that case, the shortest

distance to the boundary will actually have a greater com-

ponent of x than that of y. This converts the circle to an

ellipse, Such an ellipse is centered on C and touches the

boundary, and the ratio of the principal axes of the ellipse is

the same as the ratio of the standard deviations of x and y.

So the robustness is now the distance from the center of the

ellipse to the point where it touches the boundary instead

of the Euclidean distance. Any boundary that is tangential

to the ellipse is actually at the same probabilistic distance

from C.

Going one step further, if correlation between x and y

is considered, the ellipse mentioned above would rotate

according to the correlation. In fact when x and y are

positively correlated, the probabilistic distance of C from

b1 is smaller than that when they are negatively correlated.

Incorporating Parameters Variances: To account

for different variances of the components, a scaling with

respect to each component’s standard deviation can be

applied. Assume two points x = [x1 x2 · · ·xn] and

y = [y1 y2 · · · yn] in an n-dimensional space. Let

σ1, σ2, · · · , σn be the standard deviations for the compo-

nents of each dimension, respectively. The scaled vectors

would be u = [x1

σ1

, · · · , xn

σn
] and v = [y1

σ1

, · · · , yn

σn
]. The

“variance-aware” distance between x and y would be

dvar =
√

(x1−y1

σ1

)2 + · · · + (xn−yn

σn
)2. The subscript

“var” stands for variance. It can be noticed that dvar is

dimensionless because xi, yi and σi have same units. In

general, let scaling matrix D be a diagonal matrix such

that D = diag(σ2
1 , · · · , σ2

n). Then, dvar can be rewritten

as
√

(x − y)D−1(x − y)T, where (x − y)T is the vector

transpose of (x − y).
With this definition, perturbation parameters with higher

variances receive smaller weights [21] in the robustness cal-

culations, i.e., for the perturbation parameters with higher

variances, the distance to the constraint surface would be

smaller. This makes sense as less certain a measurement,

the more conservative should be the estimate about how far

it is from a boundary surface. The points with the same dis-

tance dvar from π
init
j will be located on an ellipsoid. The

axes of this ellipsoid are the same as the spheroid’s axes

- however they are scaled by the standard deviations of the

variables. Using dvar instead of Euclidean distance in Equa-

tion 1, the robustness rµ(φi, πj) would be defined as

min
πj : (fij(πj)=βmax

i)∨

(fij(πj)=βmin

i)

√

(πj − π
init
j)D−1(πj − π

init
j)T. (2)

Incorporating Parameters Correlations: Correlation

means that there are associations between the variables.

These associations will cause a rotation in the ellipsoid

mentioned above. The more correlated the variables are,

the larger will be the rotation of the ellipsoid.

We propose to use the Mahalanobis distance [21, 4] in-

stead of Euclidean distance to take into account both the

variances of variables and the correlations between vari-

ables. Let

Σ =







σ2
1 · · · σ1n

...
. . .

...

σn1 · · · σ2
n






, (3)

where σij is the covariance of the ith and jth variables.

Then, Mahalanobis distance between two points x and y,

where Σ is the covariance matrix of the variables, equals
√

(x − y)Σ−1(x − y)T. Using Mahalanobis distance

instead of Euclidean distance in Equation 1, the robustness

rµ(φi, πj) would be defined as

min
πj : (fij(πj)=βmax

i)∨

(fij(πj)=βmin

i)

√

(πj − π
init
j)Σ−1(πj − π

init
j)T. (4)

With this new definition of the robustness, both the vari-

ance of each perturbation parameter and the correlation be-

tween perturbation parameters are taken into account. Note

that the scaling part of the probabilistic approach eliminates

the dimension.

Using Mahalanobis distance instead of Euclidean dis-

tance is valid as long as the underlying parameters follow a

normal distribution. According to the central limit theorem

(simplified form) a random variable will be normally

distributed if it is the sum of many small, independent

“disturbances.” This (multivariate normality) is a very

good assumption in most situations, and in fact underlies

the use of linear models throughout all of statistics. The

assumption will not apply in cases where it is patently

known to be false, e.g., categorical random variables.

Instantiation Of the Theoretical Metric: In this

section, the robustness of a particular computing system

is investigated, where a set of independent applications

are mapped onto heterogeneous computing machines. By

independent it is meant that there is no communication

between the applications; yet they can be correlated.

One performance measure of such a computing system is

makespan, which is the completion time for the entire set

of applications. Assume that in this example system, it is

required that the makespan be robust against errors in task

execution time estimates.

A brief description of the system model is now given. A

set A of applications is to be mapped onto a set M of ma-

chines so as to minimize the makespan. Each machine ex-

ecutes one application at a time. Let C init
i be the estimated

time to compute for application ai on the machine where

it is mapped. Let Ci be equal to the actual computation

time value (C init
i plus the estimation error). It is assumed

that C init
i values are known for all i. Let C be the vector of

the Ci values such that C = [C1 C2 · · ·C|A|]. Similarly,

Cinit = [C init
1 C init

2 · · ·C init
|A|]. The vector C is the perturba-

tion parameter for this analysis. Also let Fj be the time at

which mj finishes executing all of the applications mapped

on it. Now the performance feature Fj can be expressed as a

function of perturbation parameters (i.e., computation times

- in this example) as Fj(C) =
∑

i: ai is mapped to mj

Ci.

Assuming that there is only one boundary limit, βmax
i , to

the makespan, the Mahalanobis robustness of Fj against C

can be derived from Equation 4.

rµ(Fj , C) = min
C: Fj(C)=βmax

i

√

(C − Cinit)Σ−1(C − Cinit)T.

(5)

where Σ is the covariance matrix of the perturbation para-

meter vector, C.

The right hand side of Equation 5 can be interpreted as

the Mahalanobis distance from the point Cinit to the con-

straint plane p : Fj(C) = βmax
i . Plane p can be expressed

as vector p = [1 1 · · · 1 βmax
i] in linear space. Note that

vector p has n+1 elements, where n is the number of appli-

cations allocated to mj . Mahalanobis distance from a given

point Cinit to plane p can be calculated as following [16].

Determine the singular value decomposition (SVD) of the

symmetric covariance matrix Σ, i.e., determine R and D

such that Σ = RTDR. The matrix D is the component

that transforms the spheroid into an ellipsoid and the matrix

R is the component that causes the ellipsoid to rotate. Re-

call that D = diag(σ2
1 , · · · , σ2

n) is a diagonal matrix with

σ2
1 , · · · , σ2

n as its diagonal elements. Let Ah be a diagonal

matrix such that Ah = diag(σ1, · · · , σn, 1). Also let

Rh =

[

R 0

0T 1

]

,and Th =

[

I 0

−Cinit 1

]

,

where 0 is a column vector [0 0 0 · · · 0]T with a length of

n.

Then, plane q is the transformation of plane p such that

q = AhRhThp. Note that in n-dimensional space both p

and q have n+1 elements. Then the probabilistic robustness

dM, is the Mahalanobis distance from point Cinit to plane p.

That is,

rµ(Fj , C) = dM(Cinit) =
qn+1

√

∑n

i=1
q2
i

. (6)

Let rµ(C) be the overall robustness of the system. It is

simply the minimum taken over all machines.

rµ(C) = min
j

rµ(Fj , C) (7)

Note that for this formulation, the performance feature

must be a linear function of the perturbation parameters.

Also plane q is the transformation of plane p as described

above, and qn+1 is the transformed βmax
i .

4 Simulation Experiments

Overview: Experiments were performed for a system with

five machines and 20 applications. A total of 500 resource

allocations were generated by assigning a randomly chosen

machine to each application, and then these resource alloca-

tions were evaluated for the makespan, load balance index,

Euclidean robustness and Mahalanobis robustness.

The system was characterized by using the expected ex-

ecution times of the applications on the different machines

present in the system. This information is arranged in an

“expected time to compute” (ETC) matrix as a model of the

given system, where the entry(i, j) is the expected execu-

tion time of application i on machine j. The ETC matrix

is used to express the heterogeneity among the estimated

application computation times, and among the machines in

the system. The variation along a row (as measured by the

ratio of standard deviation to mean) is referred to as the

machine heterogeneity; this is the degree to which the ma-

chine execution times vary for a given application. A sys-

tem’s machine heterogeneity is based on a combination of

the machine heterogeneities for all tasks (rows). Similarly,

the variation along a column of an ETC matrix is referred

to as the task heterogeneity; this is the degree to which the

application execution times vary for a given machine. A

system’s task heterogeneity is based on a combination of

the task heterogeneities for all machines (columns).

The ETC values for tasks were generated by sampling a

Gamma distribution [2]. For all experiments, the mean was

arbitrarily set to 10. Machine heterogeneity and task het-

erogeneity of the system were selected to be 0.7 and 0.7,

respectively. In this study, the heterogeneity of a set of

numbers was measured by the ratio of standard deviation

to mean. A detailed description of the method used for gen-

erating data with given values of the mean and heterogene-

ity can be found in [3]. Thirty different sets of ETC values

were randomly generated using this method.

In all experiments, the same set of 500 resource allo-

cations was used as well as the same value of βmax
i . The

value of βmax
i was set to the maximum makespan in these

experiments (224 time units) found among all resource

allocations in all experiments. Note that a robustness value

x of a resource allocation means that the resource allocation

can tolerate any combination of ETC errors without the

makespan exceeding βmax
i as long as the norm (Euclidean

or Mahalanobis) of the errors is less than x.

Generation of Correlation Matrices with Respect

to Condition Number: To examine the Mahalanobis ro-

bustness, covariance matrix of the perturbation parameters

is needed. Different methods have been developed for

generating random covariance and correlation matrices

(e.g., [9, 12]). We used a method based on the condition

number, κ, of the correlation matrix for generating the

correlation matrix. Condition number of a matrix is defined

as the ratio of its maximum eigenvalue to its minimum

eigenvalue [8]. That is, κ = λmax

λmin

.

A condition number of 1 means that there is no correla-

tion between the elements of the correlation matrix [8]. As

the condition number of the correlation matrix increases,

the correlation between the variables increases as well.

Therefore, by choosing different values for the condition

number and generating the correlation matrix based on the

condition number, the range of the correlations can be con-

trolled. To generate a correlation matrix with respect to con-

dition number the following steps were done.

1) A set of eigenvalues λi’s was randomly generated while

satisfying the constraints λ1 + λ2 + · · · + λn = n and κ =
λn

λ1

, where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, and n is the number

of eigenvalues.

2) Using the eigenvectors generated in the previous step and

the “gallery” function of MATLABr, a random correlation

matrix R is generated.

R =











1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n

...
...

...

ρn1 ρn2 · · · 1











, (8)

where ρij is the correlation between two random variables

xi and xj , and ρij = ρji. It must be noted that for κ equal

to 1, ρij’s would be equal to zero, and as κ increases, the

absolute value of ρij’s increases as well, and both positive

and negative values of correlation coefficients can be found

in the generated correlation matrix.

The next step after generating the correlation matrix was

to generate the covariance matrix. Then, provided every σ2
i

is nonzero, σij = σiσjρij [18]. The covariance matrix, Σ,

can be expressed as

Σ =











σ2
1 σ1σ2ρ12 · · · σ1σnρ1n

σ2σ1ρ21 σ2
2 · · · σ2σnρ2n

...
...

...

σnσ1ρn1 σnσ2ρn2 · · · σ2
2











. (9)

Correlation matrices were generated for two values of

condition number, 2 and 500, to represent cases of low and

high correlations. For each value of condition number, 30

different correlation matrices were randomly generated.

The standard deviations of the computation time values

were generated by setting σi to HC init
i , i.e., a coefficient

of variation equal to H was assumed for the distribution of

each Ci value on each machine. In our simulations, H was

set to two values of 0.2 and 0.8 to represent low and high

variation, respectively.

Results: Simulations were performed for two values

of κ and two values of H . Within each category, 30 ETC

matrices were used and for each ETC matrix, 30 different

correlation matrices were generated with respect to the

desired condition number. Simulations were done for each

ETC-correlation matrix using the same set of 500 map-

pings. Therefore, 900 simulations were performed for each

category and resource allocations were evaluated for their

makespan, load balance index and Mahalanobis robustness.

Having the results of the simulations, the makespan range

was divided into 10-sec bins, then the minimum robustness,

maximum robustness and the robustness spread (maximum

robustness − minimum robustness) within each bin was

recorded for each simulation. Then the average of these

three values over 900 simulations of each category were

calculated for each bin. Figures 2(a) and 2(b) show the

maximum robustness, minimum robustness and the spread

of robustness for the 10-sec bins for four categories of κ

and H .

Figures 2(a) shows that as the makespan of resource al-

locations decreases, Mahalanobis robustness and its spread

increases. Comparing Figure 2(a) to 2(b), it can be seen

that when the computation times are more correlated, the

spread of robustness for the resource allocations with the

same makespan is even larger. One can see that just by in-

terpreting the makespan measure of a resource allocation, it

is not possible to predict its robustness. Makespan cannot

serve as a good indicator of robustness and resource allo-

cations can be found that have the same makespan but very

different robustness. Figures 2(a) and 2(b) show the results

for when H = 0.2. Results for H = 0.8 were similar.

Two such resource allocations have been shown in detail

in the two bar charts in Figure 3. It also shows the robust-

ness results for one experiment. Each “*” represents one of

the 500 resource allocations. Each colored box shows one

application, and each vertical bar shows one machine. One

can see that makespans are nearly identical but resource al-

location B has a much worse robustness. Incidentally, re-

source allocation B also has a much worse load balance (ra-

tio of minimum finishing time to the maximum finishing

time among all machines). One could argue that resource

allocation B ended up with bad robustness because it had

such bad load balance. However, this research shows that

even load balance and makespan taken together cannot pre-

50 100 150 200
0

10

20

30

40

50

60

70

80

makespan (sec)

M
a
h
a
la

n
o
b
is

 r
o
b
u
s
tn

e
s
s

κ = 2, H = 0.2

Average maximum robustness

Average spread of the robustness

Average minimum robustness

(a)

50 100 150 200
0

10

20

30

40

50

60

70

80

makespan (sec)

M
a
h
a
la

n
o
b
is

 r
o
b
u
s
tn

e
s
s

κ = 500, H = 0.2

Average maximum robustness

Average spread of the robustness

Average minimum robustness

(b)

Figure 2. Comparison of the probabilistic and non-probabilistic distances of point C from boundary
b1.

dict the robustness of a resource allocation. Figure 4 illus-

trates this fact.

In Figure 4 two different resource allocations, C and D,

are shown. These allocations have very similar makespan

(∼= 60) and very similar load balance values (∼= 0.45). How-

ever, C and D are very different in their robustness values

(27.04 and 15.26, respectively). Therefore, one can see that

even by considering both makespan and load balance mea-

sures of a resource allocation at the same time, one may not

be able to predict its robustness. This paper contends one

needs an explicit measure of robustness like the one pro-

posed here.

Actually, using load balance and makespan to predict ro-

bustness could be quite misleading. For example, by ob-

serving the load balance charts for resource allocations E

and F, shown in Figure 5, one is likely to select resource

allocation F because it is definitely very well-balanced in

load, and has a better makespan. However, Figure 5 also

shows that resource allocation E is much better in its ro-

bustness value.

We have used Figures 3, 4, and 5 to illustrate how either

makespan or load balance or both can fail to be predictors

of robustness. What causes an improved robustness in

each of Figures 3, 4, and 5? Let robustness machine be

the machine that determines the minimum in Equation 7.

Then, here are some observations.

(1). For resource allocation A in Figure 3, the robust-

ness machine has five applications on it, with two pairs of

negatively correlated applications. In contrast, for resource

allocation B in Figure 3, the robustness machine has seven

applications on it, and all of them are positively correlated.

(2). For resource allocation C in Figure 4, the robust-

ness machine has six applications on it, with three pairs of

negatively correlated applications. In contrast, for resource

allocation D in Figure 4, the robustness machine has five

applications on it, and all of them are positively correlated.

(3). For resource allocation E in Figure 5, the robust-

ness machine has nine applications on it, with three pairs of

negatively correlated applications. In contrast, for resource

allocation F in Figure 5, the robustness machine has three

applications on it, and all of them are positively correlated.

It can be see that for each pair of allocations in Fig-

ures 3, 4, and 5, the less robust allocation is the one that has

all positively correlated applications on it. A less obvious

fact is that, in the absence of correlated applications,

the larger the number of applications on the robustness

machine, the larger the robustness. Our intuitive explana-

tion is that, given two resource allocations with the same

makespan, if there is a larger number of applications on the

last to finish machine, the elements of the diagonal matrix

in Equation 2 are smaller, and therefore the robustness

is larger. Recall that, in this study, the heterogeneity

of execution times was given by the ratio of standard

deviation to mean. So the larger the execution time of a

task, the larger its contribution towards the variance. A

detailed mathematical and statistical investigation of this

observation will be carried out in a future research effort.

5 Conclusions

Parallel and distributed heterogeneous computing and

communication systems may operate in dynamic environ-

ments that undergo unpredictable changes causing certain

system performance features to degrade. Such systems need

robustness to guarantee limited degradation despite fluctu-

ations in the behavior of their component parts or environ-

ment. In this paper, the research was focused on a prob-

Figure 3. Mahalanobis robustness (with respect to makespan), where correlation is high (κ = 500).
Each * represents one of the 500 randomly chosen resource allocations.

Figure 4. Mahalanobis robustness (with respect to makespan), where correlation is high (κ = 500).

abilistic approach to measuring robustness in distributed

computing systems. In this approach, variance and correla-

tion of the parameters were taken into account. Robustness

evaluations for several configurations of an example system

were performed, where a set of independent applications

were mapped onto a set of heterogeneous computing ma-

chines. The results show that the Mahalanobis robustness

measure offers more insight than the Euclidean measure,

and two other popular measures, makespan and load bal-

ance index.

For systems in which the computation time values are

highly correlated, resource allocations can be found which

have very similar makespans and load balance values, but

very different robustness values. It was also observed that

for such a highly heterogeneous and correlated system, even

considering both makespan and load balance index cannot

predict robustness. Actually, it can be quite misleading. A

more balanced resource allocation with a good makespan

can have a very small robustness value. Therefore, for

such a system, neither makespan nor load balance index can

serve as a robustness indicator, and the need for the robust-

ness measure proposed in this research is more acute.

Acknowledgments: The authors thank Dr. David Drain for

his valuable comments.

References

[1] High Productivity Computing Systems, http://www.

darpa.mil/ipto/programs/hpcs/index.htm.

Figure 5. Mahalanobis robustness (with respect to makespan), where correlation is high (κ = 500).

[2] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Mea-

suring the robustness of a resource allocation. IEEE Trans.

on Parallel and Distributed Systems, 15(7):630–641, July

2004.

[3] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and

S. Sedigh-Ali. Representing task and machine hetero-

geneities for heterogeneous computing systems. Tamkang

J. of Science and Engineering, 3(3):195–207, invited, Nov.

2000.

[4] T. Anderson. An Introduction to Multivariate Statistical

Analysis. John Wiley & Sons, New York, NY, 1984.

[5] I. Assayad, A. Girault, and H. Kalla. A bi-criteria schedul-

ing heuristic for distributed embedded systems under relia-

bility and real-time constraints. In The 2004 Int’l Conf. on

Dependable Systems and Networks (DSN 2004), pages 347–

356, July 2004.

[6] M. Backes and C. Cachin. Reliable broadcast in a com-

putational hybrid model with Byzantine faults, crashes, and

recoveries. In The 2003 Int’l Conf. on Dependable Systems

and Networks (DSN 2003), pages 37–46, June 2003.

[7] G. Badishi, I. Keidar, and A. Sasson. Exposing and elim-

inating vulnerabilities to denial of service attacks in secure

gossip-based multicast. In The 2004 Int’l Conf. on Depend-

able Systems and Networks (DSN 2004), pages 223–232,

July 2004.

[8] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diag-

nostics. John Wiley & Sons, New York, NY, 1980.

[9] P. I. Davies and N. J. Higham. Numerically stable genera-

tion of correlation matrices and their factors. BIT Numerical

Mathematics, 40(4):640–651, Dec. 2000.

[10] X. Défago, P. Urbán, N. Hayashibara, and T. Katayama. De-

finition and specification of accrual failure detectors. In The

2005 Int’l Conf. on Dependable Systems and Networks (DSN

2005), pages 206–215, June-July 2005.

[11] A. Girault, H. Kalla, and M. Sighireanu. An algorithm for

automatically obtaining distributed and fault-tolerant static

schedules. In The 2003 Int’l Conf. on Dependable Systems

and Networks (DSN 2003), pages 159–168, June 2003.

[12] M. Hirschberger, Y. Qi, and R. E. Steuer. Ran-

domly generating portfolio-selection covariance

matrices with specified distributional character-

istics. http://www.terry.uga.edu/˜rsteuer/PDF-

Links/Simulation.pdf, 2004.
[13] S. Y. Ko and I. Gupta. Perturbation-resistant and overlay-

independent resource discovery. In The 2005 Int’l Conf. on

Dependable Systems and Networks (DSN 2005), pages 248–

257, June-July 2005.
[14] A. J. Oliner, L. Rudolph, R. K. Sahoo, J. E. Moreira, and

M. Gupta. Probabilistic QoS guarantees for supercomputing

systems. In The 2005 Int’l Conf. on Dependable Systems and

Networks (DSN 2005), pages 634–643, June-July 2005.
[15] Y. Ou and J. B. Dugan. Sensitivity analysis of modular dy-

namic fault trees. In The IEEE Int’l Computer Performance

and Dependability Symp. (IPDS 2000), pages 35–43, March

2000.
[16] K. Schindler and H. Bischof. On robust regression in pho-

togrammetric point clouds. In 25th DAGM Pattern Recogni-

tion Symp. (DAGM’03), 2003.
[17] SciDAC Scalable Systems Software Team. What are the

system software challenges for SciDAC? White paper,

available at http://www.csm.ornl.gov/˜geist/

cgi-bin/enote.cgi?nb=system&action=

view&page=-41, Feb. 2005.
[18] S. R. Searle. Matrix Algebra Useful for Statistics. John

Wiley & Sons, New York, NY, 1982.
[19] C. P. Shelton and P. Koopman. Improving system depend-

ability with functional alternatives. In The 2004 Int’l Conf.

on Dependable Systems and Networks (DSN 2004), pages

295–304, July 2004.
[20] P. Sobe. Reaching efficient fault-tolerance for cooperative

applications. In The IEEE Int’l Computer Performance

and Dependability Symp. (IPDS 2000), pages 48–57, March

2000.
[21] M. Stastny. Mahalanobis distance. http:

//www.wu-wien.ac.at/usr/h99c/h9951826/

distance.pdf, 2001.

