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Abstract

This study examined the interplay among processor
speed, cluster interconnect and file I/O, using parallel ap-
plications to quantify interactions. We focused on a com-
mon case where multiple compute nodes communicate with
a single master node for file accesses. We constructed a
predictive model that used time characteristics critical for
application performance to estimate the number of nodes
beyond which further performance improvement became
unattainable. Predictions were experimentally validated
with NAMD [12, 14], a representative parallel application
designed for molecular dynamics simulation. Such predic-
tions can help guide decision making to improve machine
allocations for parallel codes in large clusters.

1. Introduction

Many computationally demanding scientific applications
are being ported to commodity clusters to exploit the broad
availability of inexpensive commodity components. How-
ever, performance rarely scales linearly with the number of
processors, due to a combination of algorithmic and proces-
sor limitations, communication bandwidth constraints, and
bounded I/O parallelism. I/O parallelism is a particularly
pernicious constraint, as many applications rely on a ”sin-
gle I/O master, multiple compute nodes” paradigm where
all worker nodes converge onto a single master node for file
I/O. Although parallel file systems (e.g., GPFS and Lustre)
are now emerging, applications designed for portability nor-
mally eschew dependence on a parallel file system in favor
of application managed I/O. For these applications, cluster
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architectures that distribute I/O nodes in proportion to com-
pute nodes (e.g., one I/O server for every twenty compute
nodes) cannot help improve performance.

In addition, determining node allocations that can max-
imize both application performance and job throughput re-
mains an outstanding problem for large clusters. For exam-
ple, when improvement in application performance from a
256-node allocation is small compared to a 128-node allo-
cation, how many additional nodes beyond 128 but far less
than 256 should be used? The remaining nodes can be re-
leased to other jobs for throughput increase.

To address the above issues, we constructed a per-
formance model that analyzed the overlapping interplay
among three critical characteristics – computation time used
to solve a target problem, end-to-end data transmission de-
lay, and file I/O duration. We applied the model to pre-
dict an estimate on node allocations beyond which further
performance improvement could not be achieved. Finally,
we validated model predictions via a case study using the
NCSA (National Center for Supercomputing Application)
TeraGrid cluster and NAMD [12], a representative parallel
application.

The remainder of this paper is organized as follows. We
begin in Section 2 by constructing a model to examine the
interactions among different time parameters. Section 3
describes the characteristics of the NAMD code and ex-
periments with the APOA1 benchmark. In Section 4, we
present experimental results and model validation. Section
5 describes related work and Section 6 concludes this paper
with ideas for future directions.

2. The Model

We focused on a prevalent I/O architecture in which one
I/O master serves I/O requests from all compute nodes in
a cluster, as shown in Figure 1. This “single I/O master,
multiple compute nodes” paradigm, despite its scalability
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Figure 1. I/O control via a single master node.

problem, is being adopted by a large class of scientific par-
allel applications including NAMD – a molecular dynamics
simulation code [12] at the University of Illinois, ESCAT –
an electron scattering code [16] at Caltech, and CACTUS –
a gravitational physics code [2] at the Max Planck Institute.

For this I/O paradigm, applications commonly use a
master task to receive and assemble data packets sent by
various compute nodes. The final assembled data are writ-
ten to local disks without further network intervention. Par-
allel computations are overlapped with parallel data trans-
fers to reduce execution times. Below, we present a model
that captures and examines this overlapping interplay.

2.1. Model Parameters and Construction

Figure 2 illustrates key components used to model over-
lapping interactions between the I/O master and a represen-
tative compute node, assuming homogeneous nodes. Defin-
ing a transaction as a set of operations used to produce a set
of results, our model identifies four metrics per transaction:
1. Total computation time which includes result computa-
tion time and communication software overhead for trans-
mitting results in messages to the I/O master.
2. Message transmission delay which is composed of all
the delays incurred in transmitting a message across the net-
work (i.e., propagation latency + packet delay + router delay
+ any other delay) and processing overhead incurred at the
I/O master for message reception and assembly. In large
clusters, such overhead increases with the number of mes-
sages sent by compute nodes.
3. Duration of file I/O at the I/O master’s local disks.
4. Computation improvement ratio – if an application dis-
tributes its workload uniformly and effectively, we can as-
sume that computation time of a representative compute
node decreases exponentially when the number of nodes
doubles [4]. However, in general, this improvement ratio
is below 2:1 depending on applications’ implementations.

Our model is based on a known observation that when
the total computation time is smaller than message trans-
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Figure 2. Interactions between I/O master and
a compute node in a k-node configuration.

mission delay, it is no longer beneficial to further divide a
workload. Denoting Ck as the total computation time at a
compute node in a k-node configuration, and R as the as-
sociated improvement ratio, the computation time Cn for a
n-node configuration can be derived as:

Cn =
C1

Rlog2(n)
=

Ck × Rlog2(k)

Rlog2(n)

Cn = Ck × Rlog2(k/n) (1)

Similarly, if message transmission delay also improves
exponentially when doubling the number of nodes, but at a
smaller ratio (r), the delay for a n-node configuration is:

Dn =
D1

rlog2(n)

Comparing computation time with message transmission
delay and assuming R > r, we have:

C1

Rlog2(n)
≤ D1

rlog2(n)

n ≥ 2
loge(C1/D1)

loge(R/r) (2)

Equation 2 provides an estimate on the number of nodes
needed if the improvement ratio r for transmission delay is
known. However, depending on the job mix and network
traffic in a cluster, transmission delays can be highly vari-
able, and r often does not scale with the number of nodes.
Instead of r, we propose using the actual message transmis-
sion delay ds and file I/O duration df to predict the number
of nodes n:

C1

Rlog2(n)
≤ ds + df
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log2(n) ≥ loge(C1/ds + df )
loge(R)

n ≥ 2
loge(C1/ds+df )

loge(R) (3)

3. Experiments with NAMD

NAMD is a molecular dynamics code designed for the
simulation of molecules on high performance computing
platforms. NAMD allows researchers to investigate vari-
ous aspects associated with bio-macromolecules – effects
of temperatures and forces, interactions among proteins,
lipids, water molecules, and nucleic acids. It achieves good
performance and scalability via several mechanisms, the
most notable of which are:

• Spatial decomposition and parallelization of a simu-
lation problem into patches (representing some units
of work) which are distributed to different processors
for calculations. To improve communication locality,
neighboring patches are assigned to the same proces-
sor. To achieve fast calculations of full electrostatics
interactions, NAMD uses a parallel version of the par-
ticle mesh Ewald method [7].

• Overlapping of computation with network communi-
cation. NAMD uses the Charm++/Converse object-
based parallel libraries and runtime systems [11] to
support non-blocking message communication and
load balancing [5] among processors.

3.1. Target Components

This study focused on a portion of NAMD 2.5’s archi-
tecture that supports collection of simulation results, trans-

mission and output of results to disks for future visualiza-
tion. Figure 3 highlights the architectural components we
targeted and the flow of simulation results between these
components, from a compute node to the I/O master. Each
node may be equipped with a single or multiple processors.

As noted earlier, simulation is divided into patches and
distributed to various compute nodes for execution. De-
pending on the grid size mapped to a simulation problem,
there can be more than one patch assigned to a processor, if
the number of patches exceeds the number of processors.

Activities in a compute node are coordinated by a se-
quencer object thread. In the sequencer pathway, partially
shown in Figure 3, a collection manager object gathers
and integrates simulation results on atom coordinate posi-
tions and/or velocities calculated by various patches. Re-
sults are then packaged into two separate messages (one
for positions, the other for velocities) to be MPI-sent asyn-
chronously by a proxy collection master to the I/O master.

In the I/O master, NAMD uses a controller object thread
to manage data flow. The collection master of the controller
receives, queues, and assembles messages into buffers
which are finally written to two separate files – position and
velocity. If there are more patches than processors, the I/O
master will also participate in simulation computation via a
sequencer object. Simulation results are sent locally to the
controller, trading network bandwidth for processor cycles.

3.2. Experiment Benchmark

We experimented with the APOA1 benchmark provided
by NAMD. APOA1 models the dynamics of a high den-
sity lipoprotein, known to protect against the accumulation
of platelets in blood vessels [1]. The benchmark simulates
over 92K atoms of proteins, lipids and water. During simu-
lation start-up, about 7 MB of position data, 13 MB of atom
structure information (bonds, angles, hydrogen donors and
acceptors, etc.) and three small parameter files are sequen-
tially fetched into memory by the I/O master.

Based on the above inputs, NAMD spatially decomposes
APOA1 into a 6 × 6 × 4 grid, creating 144 patches to be
uniformly distributed among cluster nodes. For a n-node
cluster, each node receives 144/n neighboring patches. Each
patch has ≈ 640 atoms (92K/144) on average.

We ran APOA1 for 5000 time steps, varying node config-
urations from 4 to 255 nodes, doubling the number of nodes
each time. For each configuration, the benchmark was exe-
cuted three times and measurements were averaged over the
three experiments. Position and velocity data were written
to files every four time steps, resulting in 1250 transactions.
We focused on file writes that occurred after startup because
they represented the major bulk of I/O in APOA1.



Nodes Execution Time (sec) Improvement Ratio
4 3661 –
8 1994 1.84

16 1017 1.96
32 586 1.74
64 313 1.87
128 192 1.63
255 146 1.32

Table 1. APOA1’s overall execution times.

3.3. Computing Platform

The APOA1 benchmark was run on the NCSA Teragrid
cluster (phase I). At the time of our experiments, the clus-
ter had 256 nodes of Itanium-2, each equipped with 1.3
GHz dual processors of 64-bit addressing and 3 MB L3
cache/processor. Half of the nodes had 14 GB of main
memory; the other half 12 GB. Jobs were submitted via
the PBS scheduling system [10] with machine allocations
pre-specified by users.

The cluster was interconnected via Myrinet and Gigabit
Ethernet. Each node was installed with a Myrinet 2000-
fiber/PCI interface card, linked to a Myrinet switch via
2Gb/sec fiber cables. It also had two internal SCSI disks
providing 18 and 73 GB of local storage respectively. Each
disk, with an 8 MB buffer cache, transferred at a peak exter-
nal burst data rate of 320 MB/sec and a maximum sustained
rate (disk surface transfer rate) of 98 MB/sec.

4. Experimental Results and Analysis

4.1. Overall Execution Time

NAMD achieved significant performance improvement
for applications executing on clusters via workload parti-
tioning, overlapping computation with network I/O and file
I/O. Table 1 summarizes APOA1’s total execution times
for various node configurations. Improvement ratios be-
tween consecutive execution times averaged ≈ 1.8:1 when
the number of nodes was doubled from 4 to 64. However,
the speedup was smaller for configurations of 128 nodes and
beyond.

In the next section, we will present measurements of
APOA1’s time parameters – computation time, message
transmission delay, and file write duration – followed by
analysis and validation of model prediction.

4.2. Computation Time of Simulation

We timestamped messages containing simulation results
before they were sent by sequencers to the I/O master.
Timestamp differences between two consecutive messages
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Figure 4. Overlap of data transmissions and
file writes.

represented a transaction’s (four time steps) simulation time
and message transmission overhead. Mean computation
times, shown in Column 2 of Table 2, were averaged over
three runs. Computation improvement ratios, displayed in
Column 3, were comparable to those obtained for APOA1’s
overall execution times (Table 1).

Because NAMD partitioned APOA1’s simulation into
144 patches, there were more patches than nodes for con-
figurations ranging from 4 to 128 nodes. For example, 36
patches were assigned to each node in a 4-node configura-
tion, including the I/O master. In contrast, any configuration
beyond 145 nodes (144 compute nodes + 1 I/O master) has
more machines than needed with one patch per machine. In
a 255-node configuration, only 145 nodes were used, ex-
plaining the smaller improvement ratios observed.

4.3. Message Size and Transmission Delay

Table 3 shows that, for configurations of 4 to 128 nodes,
doubling the number of nodes reduced message sizes for
both position and velocity by a ratio of ≈ 2:1. However,
the 255-node configuration had a ratio of ≈ 1:1 due to node
over-allocation.

Message transmission delay measured the interval be-
tween the time a message was sent and the time when it
was ready for output to disks. Figure 4 illustrates the over-

Position Velocity Combined
Mean Mean Mean

Msg Size Msg Size Msg Size
Nodes (KB) Ratio (KB) Ratio (KB)

4 360.9 631.5 992.4
8 180.4 2 315.7 2 496.1

16 80.7 2.2 141.1 2.2 221.8
32 40.3 2 70.5 2 110.8
64 19.8 2 34.6 2 54.4

128 10.1 1.9 17.7 1.9 27.8
255 9.7 1 17.0 1 26.7

Table 3. Message sizes.



Nodes Mean Computation Mean Aggregate Mean Aggregate Mean Combined Delay
Computation Improvement Message Write Duration Combined / Computation
Time (sec) Ratio Transmission (sec) Delay Time (%)

k Ck R Delay (sec) (sec)
4 2.918 – 0.092 0.029 0.103 3.5
8 1.585 1.84 0.187 0.024 0.198 12.5

16 0.804 1.97 0.132 0.025 0.143 17.8
32 0.460 1.75 0.074 0.031 0.088 19.2
64 0.240 1.92 0.060 0.022 0.072 30.0

128 0.141 1.70 0.048 0.023 0.059 41.8
255 0.104 1.36 0.061 0.022 0.073 70.2

Table 2. Time characteristics of APOA1’s transactions.

lapping transmissions of position and velocity messages for
which two files were simultaneously served by the I/O mas-
ter. Based on this observation, we computed mean ag-
gregate message transmission delays using: velocity-ready
timestamp − send-position timestamp. Column 4 of Table 2
displays these delays for APOA1, averaged over three runs.

Figure 7 presents a 3D plot associating mean aggregate
delays with node configurations and the combined sizes of
position and velocity messages. Overall, these delays did
not reduce commensurately with message sizes. To better
understand this unexpected behavior, we examined the ac-
tual transmission delays and their distributions for entire ex-
ecutions of APOA1, shown in Figures 5 and 6 respectively.

In configurations of 128 and 255 nodes, message trans-
mission delays, aggregated for position and velocity, were
mostly uniform with the exception of a few outliers. This
uniformity could be attributed to the absence of perturba-
tions from other applications as the entire cluster was dedi-
cated to APOA1. In contrast, transmission delays in smaller
configurations were highly variable and bi-modally dis-
tributed. Two possible causes may have contributed to this
fluctuating behavior: a) perturbations introduced by other
jobs that competed for network resources causing routing
delays and b) context switchings between computation of
simulation and message processing at the I/O master.

4.4. File Write Duration

During a transaction, APOA1 wrote 1.05 MB of simu-
lation data (3 coordinates for x,y,z × 4 bytes/coordinate ×
92224 atoms) to each of the position and velocity files, pro-
ducing ≈ 1.3 GB per file (1250 transactions × 1.05 MB).
According to Figure 4 which depicts overlapping interac-
tions between file I/O and data transmissions, APOA1’s
combined write durations were calculated as:

(position-written timestamp − position-ready timestamp) +
(velocity-written timestamp − velocity-ready timestamp) (4)

Column 5 of Table 2 presents APOA1’s mean aggregate
write durations which varied between 22 to 31 msec for 2.1
MB (2 × 1.05) of data. As result, write throughput was ≈
70-85 MB/sec for configurations of 4 to 32 nodes and 95
MB/sec for others. The higher throughput observed with
large configurations was due to fewer simulation patches
assigned to the I/O master, releasing processor cycles for
file writes.

In a n-node configuration where only (n-1) nodes sent
messages over the network to the I/O master,

write efficiency =
1.05 (MB)

(n − 1) × message size (MB)
× 100

Using message sizes compiled in Table 3, the average write
efficiency was ≈ 85% for position data, but only 50% for
velocity data. The highest efficiency, 99% for position, 57%
for velocity, was associated with the 4-node configuration
which had the largest message sizes. Inevitably, smaller
messages generated by larger configurations required more
overhead for message packaging and metadata processing.
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4.5. Combined Message Delay

Combining file write duration with message transmis-
sion delay gives the total delay. Again, Figure 4 provides
the logic for computing a transaction’s total delay. Column
6 of Table 2 summarizes measurements of mean combined
delays which, in general, followed a trend set by transmis-
sion delays because the latter were at least twice longer than
file writes.

combined message delay = velocity-written timestamp −
send-position timestamp (5)

Comparing computation times with combined delays
(Columns 2 and 6, Table 2) indicated that, as the number of
nodes increased, total message delays constituted a larger
fraction of computation times – up to 70% for 255 nodes
(Column 7, Table 2). Figure 8 reaffirmed that when mes-
sage delays exceeded computation times, further partition-
ing a workload would not improve performance.

Our measurements also indicated that the ratios (r) be-
tween consecutive mean combined delays did not improve
exponentially – a characteristic that our model has consid-
ered. In fact, r was only 1.22 when the number of nodes
was increased from 32 to 64, and from 64 to 128.

4.6. Model Prediction Validation

To validate node predictions generated by equation 3,
values for model parameters were retrieved from Table 2.
To avoid data skewing, the 255-node configuration was not
selected because it did not reflect the general behavior of
APOA1 relative to other configurations.

Nodes 1-Node Equivalent
Computation Time (sec)

k Ck × Rlog2k = C1

4 2.918 ×1.8362 = 9.836
8 1.585 ×1.8363 = 9.809

16 0.804 ×1.8364 = 9.136
32 0.460 ×1.8365 = 9.597
64 0.240 ×1.8366 = 9.193

128 0.141 ×1.8367 = 9.916
mean(C1) = 9.581

Table 4. Computation times equivalent to
one-node configuration.

For configurations of 4 to 128 nodes, computation times
had a mean improvement ratio R = 1.836 along with a
mean value for C1 = 9.581, calculated in Table 4 from
times equivalent to one-node configuration via equation 1.
The mean combined delay averaged across configurations
was 0.110. Thus, an estimate for the number of nodes re-
quired by APOA1 was predicted as:

n = 2
loge(9.581/0.110)

loge(1.836) ≈ 27.35 ≈ 163

As mentioned earlier, APOA1 had only 144 computation
patches and the number of nodes to be allocated should be
145 (144 compute nodes + 1 node for I/O). Comparing our
predicted estimate with 145 yields a prediction accuracy ≈
87% ([1 − 163−145

145 ] × 100). Furthermore, allocating 163
nodes instead of 255 would make available over 90 nodes
for other jobs in the cluster.

5. Related Work

There have been many studies on analysis and modeling
of parallel systems for performance improvement on par-
allel machines. Early works focused mostly on processor
allocation, utilization, and performance [3, 9, 15]. Later,
network communication was recognized to be a major per-
formance limiting factor in parallel and distributed systems
[8].

Cremonesi et al. [6] used single class queuing networks
to model application performance on parallel machines and
clusters of workstations. Similar to many extant queuing
models, their studies assumed that communication delays
were exponentially distributed. In practice, this assumption
may not be valid for many applications, including NAMD
(see Figure 6).

Sevcik examined static (non-preemptive) scheduling
strategies [15] that made processor allocation decisions
based on average parallelism ratio – execution time on a
single processor over time on an unlimited number of pro-
cessors. Allocation can be further fine-tuned by adjusting



this ratio to the overall system load and the number of pro-
cessors. Our model extended this concept by examining in-
teractions between execution time improvement ratios, net-
work communication, and I/O delays.

Natarajan and Iyer [13] presented a measurement and
simulation study to characterize performance bottlenecks
and throughput limits in configurations with multiple I/O
nodes and compute nodes. Their analysis compared I/O per-
formance using remote I/O nodes to that using disks local to
the compute nodes. In contrast, our study investigated I/O
issued from multiple compute nodes to a single I/O master.

6. Conclusions and Future Directions

We have designed a model that analyzed the temporal
interplay between computation, data communication, and
network I/O for parallel applications running on large PC
clusters. No assumption of exponentially distributed com-
munication delays was needed. It has been known that there
is a limit to the advantages of partitioning a computation
load among cluster nodes. Our model exploited this knowl-
edge to provide a closed form equation to predict node al-
locations for a large class of parallel codes that use a mas-
ter node for aggregating file I/O. Model predictions were
validated with NAMD resulting in a prediction accuracy
≈ 85%.

Our experiments with NAMD showed that, to avoid erro-
neous counting, special attention must be given to measur-
ing model parameters when interactions among these pa-
rameters overlap. Experimental results have demonstrated
that overly aggressive workload distribution will transform
a computationally intensive task into one that is network
and I/O intensive.

Future research directions include validation of the
model against other parallel scientific applications and in-
corporation of model predictions into performance monitor-
ing and/or instrumentation software. The goal for the latter
effort is to provide guidance for automatic node allocations
on large clusters.
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