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Abstract

This paper presents a framework based on a user driven
methodology to obtain analytical models of MPI applica-
tions on parallel systems in a systematic and easy to use
way. This methodology consists of two stages. In the first
one, instrumentation of the source code is performed using
CALL, which is a profiling tool for interacting with the code
in an easy, simple and direct way. New features are added
to CALL to obtain different performace metrics and store
the performance information in XML files. Using this infor-
mation, an analytical model of the performance behavior
is obtained in the second stage by means of R, a language
and environment for statistical analysis. The structure of
the whole framework is detailed in this paper, and some se-
lected examples are used to show its practical use.

1 Introduction

We can classify the different approaches to performance
modeling as the combination of three categories: analytical
modeling, simulation modeling and measurement [14, 23].

Analytical models are fast and efficient since the behav-
ior is described through mathematical equations. They have
been less successful in practice for predicting detailed quan-
titative information about program performance. It seems
that simplicity and accuracy are contradictory goals. Mem-
ory hierarchies, asynchronous events and embedded proces-
sor parallelism make it difficult to harmonize them. On high
performance computers which exploit multiprocessor par-
allelism this problem gets even worse, as the performance
of the network and the actual communication patterns of-
ten have a non negligible unpredictable effect [23]. In fact,
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the two currently most used parallel performance analyti-
cal models, BSP [21] and LogP [7] are distributed mem-
ory oriented and simplify the parallel architecture to four or
five parameters. Sometimes instead of a set of analytical
formulas the model provides an algorithm. For example,
Vikram S. Adve and Mary Vernon presented in [1] an al-
gorithmic model that is the high-level component of a two
level hierarchical model for shared memory machines. The
higher level component represents the task level behavior
of the program (task scheduling, execution and termination
and process synchronization). Assuming the existence of a
lower level model component providing the task execution
times, the higher level produces the overall execution time.

Simulation modeling constructs a reproduction not only
of the time behavior of the modeled system but also its
structure and organization. It plays an important role in
architecture design. Simulation modeling can be more ac-
curate than analytical modeling but is more expensive and
time consuming and can be unaffordable for large systems.

Empirical experimentation is an irreplaceable task in any
science. Measurement methods allow us to identify bot-
tlenecks on a real parallel system performance. This ap-
proach is often expensive because it requires special pur-
pose hardware and software. Performance measurement
can be highly accurate when a correct instrumentation de-
sign is carried out for a target machine. As in any science
field, real systems are not always available.

Some approaches [6, 8, 19] combine empirical exper-
imentation, analytical modeling and perhaps some light-
weight form of simulation. The experimentation and simu-
lation is used to characterize the application while the ana-
lytical model is used to predict the performance behavior
in terms of the characterization of the algorithm and the
knowledge of the platform. The work in [6] is represen-
tative of a set of strategies consisting of measuring and (an-
alytically) modeling the sources of overhead in the parallel
program. The sources of overhead are partitioned into mu-



tually exclusive categories that have to be significant to al-
low the programmer to interpret the results in terms of the
program. A further level of abstraction is provided by [8],
where the performance categories can be described using a
performance specification language. The work of Snavely
et al. [19] also combines empirical experimentation, analyt-
ical modeling and simulation.

As systems become more complex, as is the case of mul-
tiprocessing environments or distributed systems, accurate
performance estimation becomes a more complex process
due to the increased number of factors that affect the exe-
cution of an application. As well as relatively static infor-
mation, such as CPU speed, memory size or network ca-
pacity, there are other dynamic parameters, such as CPU
or network loads, that must be taken into account in the
performance estimation. Moreover, most of these dynamic
parameters may not be known until run time [12]. There-
fore, some performance estimations must be performed at
launch time, when the resources on which the program has
to be run are known, and some others must be done at run
time, because assumptions made by the performance esti-
mator must be reconsidered if they are significantly wrong
[9].

This paper describes a framework based on a two stages
methodology to obtain analytical models of MPI applica-
tions on parallel systems. Section 2 introduces a short state
of the art in analytical models for performance analysis.
The methodology to obtain analytical performance models
is described in section 3. This methodology is based on an
enhanced version of the CALL instrumentation tool [3, 5]
and on the R statistical package [18]. Section 4 shows a
case study of the proposed methodology. Finally, Section 5
presents the main conclusions of this work.

2 Analytical Models for Performance Analy-
sis

Performance models can be grouped into three cate-
gories: analytical modeling, simulation modeling and mea-
surement [14, 23]. Each category of models can require sig-
nificant work to develop. Although analytical approaches
are generally less accurate than simulation approaches, they
have the advantage that it is relatively less time consum-
ing than the simulation approach. Analytical models, based
on a concise characterization of the program, are more
amenable to a high level interpretation of the parameters
in the model and to a characterization of the sensitivity of
architectural elements. Besides, parametric models which
allow the study of performance scenarios through extrap-
olation can be produced by analytical approaches. In ad-
dition, analytical model information can be useful in load
balancing strategies [13].

Prophesy, DIMEMAS and PACE are examples of perfor-

mance tools that use analytical models. The Prophesy [20]
infrastructure automates the performance analysis and mod-
eling processes. It includes automated instrumentation, ex-
tensive databases for archiving the performance data, and an
automated analytical performance model builder for paral-
lel and distributed applications. DIMEMAS [2] is an event-
driven simulator that predicts the behavior of MPI applica-
tions. The execution behavior on the target architecture is
obtained from a tracefile and a configuration file that mod-
els the architecture. The tracefile captures the CPU burst
versus the communication pattern information of an execu-
tion of the application on a source machine. PACE [16, 11]
is a performance prediction system that provides quantita-
tive data concerning the performance of application running
on parallel and distributed computing systems. The system
characterizes the application and the underlying hardware
on which the application is to be run, and combines the re-
sulting models to derive predictive execution data.

The proposed modeling framework helps the analyst in
the process of tuning parallel applications and automatically
performs some tedious processes, but it is not intended to
substitute the analyst tasks. Its modular design makes it
possible to introduce new tools in the framework, or even
substitute current functionalities, with a minimal impact on
the rest of the framework. Analytical models are obtained
by a statistical analysis of measurements from real parallel
executions. Therefore, the behavior of an application can
be characterized in terms of parameters such as the problem
size, the number of process or the effective network capac-
ity.

3 The Modeling Framework

A methodology to obtain analytical performance models
of MPI applications is introduced in this section. Figure 1
shows a scheme of this methodology that consists of two
connected stages. The whole process is almost transparent
to the user because of the automatic connection between
both stages. The first one implements the instrumentation of
the source code so that information about the performance
in each execution of the application is gathered and stored.
In the second stage, an analytical model is calculated by
means of a statistical analysis of the performance data ob-
tained from multiple executions of instrumented code.

This methodology is based on two tools: CALL and R.
CALL [3, 5] is a profiling tool to interact with the code in
an easy, simple and direct way. It controls external moni-
toring tools through CALL drivers that implement an appli-
cation performance interface to those external tools. There-
fore, CALL is a modular tool and new drivers are developed
as new monitoring tools are taken into account. This fea-
ture also avoids the dependence of any specific monitoring
tool. R [18] is a language and an environment for statisti-



Figure 1. Methodology scheme.

cal computing and graphics. In our case, it is used to build
analytical models from monitoring data. Some of the ad-
vantages of R are the capability to produce well–designed
publication–quality plots easily, and the large number of R
functions for effective data handling and data analysis. Be-
sides, it is also highly extensible through the use of standard
packages and user programs stored in script files.

3.1 The Instrumentation Stage

The instrumentation of the source code is implemented
using CALL [5]. The user, using pragmas, sets CALL ex-
periments which specify where to take observations about
how the code is performing during its execution and the
events to be observed. Therefore, specific kernels or func-
tions that are relevant for the performance of the application
may be modeled instead of the whole application. The in-
formation of the monitored parameters during the execution
of the instrumented code is gathered and stored in XML
files which verify a specifically designed Document Type
Definition (DTD).

The nature of monitored parameters is quite different as
they can come from different sources such as timers, spe-
cific microprocessor counters or external monitoring tools.
The access to this information is performed by CALL
drivers. In figure 1 some drivers are shown as the NWS,
Ganglia, MPI, PAPI and Paraver drivers. These drivers can
be used together in order to simultaneously obtain perfor-
mance measurements from different sources.

The MPI driver monitors the number of processes, their

process identifier and the elapsed time of CALL experi-
ments in MPI applications. The PAPI driver obtains infor-
mation by means of PAPI [4]. PAPI specifies a standard
application programming interface for accessing hardware
performance counters available on most modern micropro-
cessors. Some events, such as cache misses, float point in-
structions or conditional branch instructions among many
others can be monitored in a CALL experiment using this
driver.

The NWS and Ganglia drivers are intended to be used in
Grid environments where these tools are integrated in the
middleware infrastructure for monitoring purposes. Net-
work Weather Service (NWS) [22] is a distributed tool that
monitors and dynamically forecasts the performance of net-
work and computational resources. Ganglia [10] is a scal-
able distributed monitoring tool for high-performance com-
puting systems such as clusters and Grids. All monitored
parameters by NWS or Ganglia can be obtained through
these CALL drivers. In the experiments, shown in section 4,
the latency and bandwidth of the network were monitored
using the NWS driver. Other parameters, such as CPU or
memory utilization, can be accessed by the Ganglia driver.

Paraver [17] is a flexible performance visualization and
analysis tool that can be used to analyze parallel applica-
tions, hardware counters profile, operating system activity
and many other issues. In a preinstrumentation stage, this
tool can help to identify what parts of the source code are
candidates for being monitored. Paraver traces of a CALL
experiment can be obtained by the Paraver driver. These
traces provide performance information, such as the number



Figure 2. R modules for the performance data manipulation.

of calls of any MPI function or the overlap between commu-
nication and computation, that can be useful in the analysis
stage. The call tree of user functions can be obtained by the
definition of user events so that the information of the trace
can be classified in terms of these user functions.

3.2 The Analysis Stage

The analysis stage is based on R [18]. The final aim
of this stage is to obtain an analytical expression for the
elapsed time of a CALL experiment parameterized by mon-
itored parameters and some features of the code. Instru-
mentation data obtained from multiple executions of the in-
strumented code are loaded in the R environment, and then
suitable data structures for the statistical analysis are auto-
matically generated. Some data process, such as the combi-
nation of several monitored data to obtain derived parame-
ters, can be performed at this point. Using these data struc-
tures, the analytical model is built by specifically designed
R functions. The experimental data are fitted to an equation
that describes the model in terms of the monitored or de-
rived parameters. The user can supply this equation, but if
there is not any knowledge about the behavior of the perfor-
mance of the application, the best approach from a generic
set of equations is selected to be used as the first solution of
an iterative tuning process.

Several R modules were developed to help the perfor-
mance analyst in the process of managing the huge amount
of performace information gathered during the instrumen-
tation state. These R modules are organized to allow the
user to obtain in a few steps graphical information about

the proposed analytical model. In figure 2 we show how the
R modules are organized. It consists of three main modules:
IMPORT, FIT and DRAW. The IMPORT module trans-
forms the XML data from the instrumentation stage into R
structures. The analytical model is obtained by means of
FIT. In order to obtain a fine analysis, the user can incorpo-
rate relevant information into this module like a preliminary
guess formula. Information is extracted from the data (se-
lectData) and the outliers are detected (outliers). Then the
model is performed by an iterative process from the pre-
liminary formula (fit) and relevant information of the model
is print out (print). Finally, the DRAW module automati-
cally builds appropriate figures using the information from
the model. The user can redefine the default views of these
figures like the title or the axis labels.

4 Case Study: Matrix Product

To show the practical use of this framework, three dif-
ferent versions of the parallel matrix product of two N×N
matrix of single-precision floating-point numbers have been
used. The matrix product was chosen because very dif-
ferent implementations can easily be considered, and the
obtained models can be contrasted with the expected be-
havior. Figure 3 shows the pseudocode of these codes.
The distribution of both A and B matrices (MPI_Scatter
and MPI_Bcast) and the number of computations are
the same in all cases. The differences are in the number
and size of the messages in the collection of partial re-
sults (MPI_Gather). Case-1 performs one communica-



MPI Scatter(A)
MPI Bcast(B)
for i in 1:(N/P) {
for j in 1:N {
C(i,j)=0
for k in 1:N {
C(i,j)+=A(i,k)*B(k,j)

}
}

}
MPI Gather(C)
MPI Barrier

(a) CASE 1

MPI Scatter(A)
MPI Bcast(B)
for i in 1:(N/P) {
for j in 1:N {
C(i,j)=0
for k in 1:N {
C(i,j)+=A(i,k)*B(k,j)

}
MPI Gather(C(i,*))
MPI Barrier
}

}

(b) CASE 2

MPI Scatter(A)
MPI Bcast(B)
for i in 1:(N/P) {
for j in 1:N {
C(i,j)=0
for k in 1:N {
C(i,j)+=A(i,k)*B(k,j)

MPI Gather(C(i,j))
MPI Barrier
}

}
}

(c) CASE 3

Figure 3. Pseudocode of the three versions
of parallel matrix product (C=A×B), where all
matrix size is N×N and P is the number of
process.

tion once the partial result is calculated in each process. In
Case-2 there is one global communication for each row of
the resulting matrix. There is one global communication
for each element of partial result in Case-3. In order to
minimize the effects of the overlap between communica-
tion and computation, a MPI_Barrier is executed after
each MPI_Gather call. Therefore, three different scenar-
ios for the same code –from few large messages to many
small massages, with the same number of FLOPs– are taken
into account.

The goal of the experiment is to characterize the differ-
ence of the model if the number and size of communica-
tions increase. Therefore, the state of the network in the

execution of the programs has to be taken into account, spe-
cially in Case-2 and Case-3. The NWS driver of CALL was
used to monitor the network parameters during the execu-
tion of the programs and, simultaneously, the elapsed time
of CALL experiments and the number of cache L2 misses
were measured through the PAPI driver. Different matrix
sizes (100×100, 150×150 and 200×200) have been used.

4.1 Network Monitoring Using NWS

NWS manages a distributed set of performance sensors
(network monitors, CPU monitors, etc.) from which it gath-
ers readings of the instantaneous conditions. For example,
effective latency and bandwidth between nodes of the net-
work where a MPI application is running can be monitored.
The effective latency is defined as the amount of time re-
quired to transmit a small TCP message to a target sensor
and the effective bandwidth as the real speed at which a
TCP message is sent. Both parameters are variable as the
load of network may change during the execution of the ap-
plication, specially on a Grid system. Often, the load of
the network where a MPI application is running may be in-
fluenced by other processes that share the same network.
Therefore, the effective latency and bandwidth of a network
must be taken into account when the performance of paral-
lel applications is analyzed.

The NWS driver provides an easy way to use the NWS
monitoring system. It is assumed that an independent NWS
system is able to monitor the network where the instru-
mented code will be executed. In order to monitor the ef-
fective latency and bandwidth during the execution of the
instrumentation code, the NWS driver reads a configuration
file and a NWS activity is started at the beginning of the
CALL experiment. The NWS activity monitors both the la-
tency and the bandwidth during a CALL experiment. At the
end of the CALL experiment, the NWS activity is stopped
and the monitored values are gathered from the NWS mem-
ory server and stored in an appropriate XML file.

In the analysis stage, the NWS data must be loaded in
the R environment in a special way because there is no con-
nection between each execution of a MPI CALL experiment
and the monitored values of the NWS CALL experiment. A
process to connect the monitored network variables and the
rest of the variables is necessary. The information stored in
CALL output files is essential in this process because some
characteristics, such as the name of the nodes and the initial
timestamp, are stored in CALL output files as attributes. In
our experiments, monitored values of both effective band-
width and latency were used to calculate the bandwith mean
and the latency mean, respectively, for each execution of the
program. Therefore, these two values were used as model
parameters.



4.2 Results

The programs were executed several times in a cluster
of six 3 GHz Intel Xeon biprocessors with a Gigabit Ether-
net. Several noise programs were used to obtain different
network behaviors. In particular, a continuous broadcast of
a vector among the processors was used. The traffic of the
network changes in accordance with the length of this vec-
tor.

The following equation has been used as a first approxi-
mation in the analysis stage:

t = A + B · MAC + C · L2CM

+D · �log2 P� · NC · L̄ + E · �log2 P�SC
B̄

(1)

where t is the estimated time, MAC is the number of
multiply-and-accumulate operations, L2CM the number of
L2 cache misses and P the number of processors. The la-
tency mean and the bandwidth mean are represented by L̄
and B̄, respectively. NC is the number of global commu-
nications, and SC is the size of these communications. In
the three cases, all the communications are collective so a
logarithm factor must be included in the terms related to
network parameters [15]. The coefficients (A, B, C, D and
E) are obtained by R fitting the experimental values to this
equation.

An iterative process was used to obtain the appropriate
model for each case. Negative coefficients were eliminated
because they are incoherent with the physical meaning of
the terms of equation (1). Besides, in this case study, co-
efficients with a standard error greater than 10% were also
eliminated.

The representation of the obtained models is shown in
Figure 4. The figures on the left show the experimental val-
ues (◦) and the model output (×) in each case. The lines
only represent the trend of the model for each matrix size.
On the right hand, the distribution of the residuals of each
model is represented. These graphics provide an estimation
of the accuracy of the models. The obtained model for each
case is the following:

CASE 1:

t(µs) = 280 + 0.0196
N3

P
+ 1.82 · L2CM (2)

CASE 2:

t(µs) = 5000 + 0.0162
N3

P
+ 0.66 · L2CM

+4.9�log2 P�N

B̄
(3)

CASE 3:

t(µs) = 360000 + 0.42
N3

P

+0.42�log2 P�N2

P
L̄ (4)

where B̄ is the mean bandwidth in Mbps, L̄ the mean la-
tency in µs, and N the number of rows of the matrix.

In the first case, the number of communications is small
and the execution time depends almost exclusively on the
number of computations. This fact agrees with the obtained
model where the terms related to network parameters do not
appear. The models of cases 2 and 3 include these param-
eters because of the increase of the number of communica-
tions. In these cases, the communication time has greater
importance in total time than in case 1. In the last case, the
latency has a special prominence because there is a huge
number of communications but the length of the messages is
small. Besides, in this last case, the high number of commu-
nications is responsible for the increase in execution time,
so that the term related to cache misses is overshadowed.

The coefficients of determination (R2) in each case are
shown in table 1. The coefficient of Case-3 is low because
in this case the number of communications is so large that
there are other factors than those characterized by equa-
tion (1), such as network conflicts.

5 Conclusions

A framework based on a methodology to obtain analyti-
cal models of MPI applications on multiprocessor environ-
ments is presented in this paper. The framework consists
of an instrumentation stage followed by an analysis stage,
which are based on the CALL instrumentation tool and in
the R language, respectively.

New drivers for the CALL instrumentation tool are writ-
ten to obtain performance data from NWS and Ganglia sys-
tems. The CALL gathering performance data facilities were
completely redesigned to obtain the data in XML format.
This feature permits easy data manipulation on the analysis
stage.

Some R packages were developed to help the performace
analyst to research in his analytical model, including the fast
generation of graphical performace data for the proposed
model as well as statistical information about the fitting pro-
cess.

As a case study, we present the analysis of the well know
matrix product problem. We show the easy and fast results
obtained using this tools practically without modifying the

Table 1. Coefficients of determination (R2).
Case R2

1 0.9707

2 0.9525

3 0.7721
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Figure 4. Experimental measures and the model.



source code (we only introduce a few pragmas for the in-
strumentation). We also show detailed graphical and statis-
tical information about the fittings for the analytical models
proposed.
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