
Average-Case Performance Analysis of Online Non-clairvoyant Scheduling of
Parallel Tasks with Precedence Constraints

Keqin Li
Department of Computer Science

State University of New York
New Paltz, New York 12561, USA

lik@newpaltz.edu

Abstract

We evaluate the average-case performance of three ap-
proximation algorithms for online non-clairvoyant schedul-
ing of parallel tasks with precedence constraints. We
show that for a class of wide task graphs, when task sizes
are uniformly distributed in the range [1..C], the online
non-clairvoyant scheduling algorithm LL-SIMPLE has an
asymptotic average-case performance bound of

M/(M − (3− (1 + 1/C)C+1)C − 1),

where M is the number of processors. For arbitrary prob-
ability distributions of task sizes, we present numerical and
simulation data to demonstrate the accuracy of our general
asymptotic average-case performance bound. We also re-
port extensive experimental results on the average-case per-
formance of online non-clairvoyant scheduling algorithms
LL-GREEDY and LS. Algorithm LL-GREEDY has better
performance than LL-SIMPLE by using an improved algo-
rithm to schedule independent tasks in the same level. Al-
gorithm LS produces even better schedules due to break of
boundaries among levels.

1 Introduction

Assume that we are given a list of N parallel tasks
L = (T1, T2, ..., TN) with precedence constraints. Each
task Ti is specified by its execution time τi and its size πi

(i.e., the number of processors requested by Ti). There are
M identical processors and any πi processors can be al-
located to Ti. Among the N tasks, there is a partial or-
der ≺ which specifies the precedence constraints, that is, if
Ti ≺ Tj , then task Tj cannot start its execution until task
Ti is finished. The problem addressed here is to find a non-
preemptive schedule (i.e., once a task starts to execute, it

1-4244-0910-1/07/$20.00 c©2007 IEEE.

runs without interruption until it completes) of L such that
its makespan (i.e., the total execution time of the N tasks)
is minimized. The problem can be regarded as a schedul-
ing problem with resource constraints [2, 4] and precedence
constraints, where the resource is a set of processors.

The problem is NP-hard, since it includes many classi-
cal NP-hard problems as special cases [5, 6, 9]. One prac-
tical and effective way to solve this parallel task schedul-
ing problem is to design and analyze approximation algo-
rithms that produce near-optimal solutions. Let A(L) be
the makespan of the schedule generated by an algorithm A
for L, and OPT(L) be the makespan of an optimal schedule
of L. The worst-case performance ratio RA for algorithm
A is defined as

RA = inf{r ≥ 1 : A(L) ≤ rOPT(L) for all lists L}.

If there exists a constant α such that A(L) ≤ αOPT(L)
for all L, then RA ≤ α and α is called a worst-case per-
formance bound for algorithm A. When task sizes, exe-
cution times, and precedence constraints are random vari-
ables, both A(L) and OPT(L) become random variables.
The average-case performance ratio for algorithm A is

R̄N
A = inf{r ≥ 1 : E(A(L)) ≤ rE(OPT(L))

for all L with N tasks},

where E(·) stands for the expectation of a random variable.
The asymptotic average-case performance ratio for algo-
rithm A is R̄∞A = limN→∞ R̄N

A . Of course, R̄∞A depends on
the probability distributions of task sizes, execution times,
and precedence constraints. If there exists a constant β such
that E(A(L)) ≤ βE(OPT(L)) for all L, as N → ∞, then
R̄∞A ≤ β, and β is called an asymptotic average-case per-
formance bound for algorithm A.

In many applications, the execution time of a task is
not available until the task is executed and completed. In
this paper, we are interested in non-clairvoyant schedul-

ing of precedence constrained parallel tasks in parallel sys-
tems with identical processors, where it is assumed that
the execution times of the tasks are not known a priori. A
non-clairvoyant scheduling algorithm only knows the sizes
π1, π2, ..., πN of the tasks and the precedence constraints
among the tasks, but has no access to information about the
execution times τ1, τ2, ..., τN of the tasks it is to schedule.
The execution time of a task is known only when it is com-
pleted.

A list of N precedence constrained parallel tasks can be
represented by a task graph. In some applications, the N
tasks together constitute a single parallel computation. A
task graph which represents a parallel computation is ex-
panded gradually and dynamically during the course of the
computation. An online scheduling algorithm is only given
tasks which are ready for execution (that is, whose prede-
cessors are all completed) and is not aware of their succes-
sors. For instance, a task graph can be divided into levels
(see Section 2 for detailed discussion), and an online al-
gorithm may schedule the tasks level by level (LL). When
scheduling tasks in level l, an online algorithm does not
know any information (sizes, execution times, and prece-
dence constraints) of the tasks in levels l+1, l+2, ..., since
these tasks are not generated or not ready yet.

Therefore, an online non-clairvoyant scheduling algo-
rithm receives tasks at different times without prior knowl-
edge of the future tasks and the execution times of the tasks
that are not yet completed. However, the performance of an
online non-clairvoyant scheduling algorithm is compared
with an optimal offline clairvoyant scheduling algorithm
which knows all the information of task sizes, execution
times, and precedence constraints in advance.

It is still on open problem on whether there is an approx-
imation algorithm A with finite worst-case or average-case
performance ratio for clairvoyant scheduling parallel tasks
with precedence constraints. It has been proven in [3] that
no non-clairvoyant scheduling algorithm, online or offline,
has worst-case performance ratio less than M . However,
when task sizes do not exceed qM , where 1/M ≤ q ≤ 1,
the simple online non-clairvoyant list scheduling (LS) algo-
rithm can achieve a worst-case performance bound of

RLS ≤
(2− q)M

(1− q)M + 1
,

for non-clairvoyant scheduling of parallel tasks with prece-
dence constraints [7]. The special case of online non-
clairvoyant scheduling of precedence constrained parallel
tasks with identical execution times was investigated in
[1, 10].

In this paper, we analyze the average-case perfor-
mance of algorithm LL-SIMPLE for online non-clairvoyant
scheduling of parallel tasks with precedence constraints.
Algorithm LL-SIMPLE is extended from algorithm SIM-

PLE designed for non-clairvoyant scheduling of indepen-
dent parallel tasks [8]. Algorithm LL-SIMPLE schedules
tasks level by level and schedules independent tasks in the
same level by using algorithm SIMPLE. We show that for
a class of wide task graphs, algorithm LL-SIMPLE has the
same asymptotic average-case performance bound M/PM

of algorithm SIMPLE, where PM (to be defined in Section
2) can be obtained easily for arbitrary probability distribu-
tion of the πj’s by using a method developed in [8]. In
particular, when task sizes are uniformly distributed in the
range [1..C], we have

R̄∞LL-SIMPLE ≤
M

M − (3− (1 + 1/C)C+1)C − 1
.

The above asymptotic average-case performance bound
achieves its maximum value when C = M , which is ap-
proximately 1/(e − 2) = 1.3922112 for large M . We
present numerical and simulation data to demonstrate the
accuracy of the bound M/PM .

We also report extensive experimental results on
the average-case performance of online non-clairvoyant
scheduling algorithms LL-GREEDY and LS. Algorithm
LL-GREEDY has better performance than LL-SIMPLE by
using an improved algorithm GREEDY [8] to schedule in-
dependent tasks in the same level. Algorithm LS pro-
duces even better schedules due to break of boundaries
among levels. Although the online non-clairvoyant schedul-
ing algorithms LL-GREEDY and LS cannot achieve finite
worst-case performance ratios, algorithm LL-GREEDY can
achieve an average-case performance ratio very close to
optimal for large wide task graphs, and algorithm LS can
achieve an average-case performance ratio very close to op-
timal even for small to moderate wide task graphs.

2 Algorithm LL-SIMPLE

A list L of parallel tasks with precedence constraints
≺ can be represented by a task graph which is a directed
acyclic graph (dag) (L,≺), where each task Tj is repre-
sented by a node and there is an arc (Ti, Tj) in the task
graph if Ti ≺ Tj . A task graph can be decomposed into lev-
els L1, L2, ..., Lv , where v is the number of levels and each
level Ll is a sublist of L, 1 ≤ l ≤ v. Tasks with no pre-
decessors (called initial tasks) constitute the first level L1.
Generally, a task Tj is in level Ll if the number of nodes
on the longest path from some initial task to Tj is l. Let
Nl = |Ll| be the number of tasks in Ll, where 1 ≤ l ≤ v.
Note that all tasks in the same level are independent of each
other, and hence, they can be scheduled by any algorithm
for scheduling independent parallel tasks.

The online non-clairvoyant scheduling algorithm LL-
SIMPLE schedules tasks in L level by level in the order
L1, L2, ..., Lv . Tasks in Ll+1 cannot start their execution

until all tasks in Ll are completed. For level Ll, we use
algorithm SIMPLE to generate its schedule.

Algorithm SIMPLE for scheduling a list L =
(T1, T2, ..., TN) of independent parallel tasks works as fol-
lows. Let the N tasks be executed in the time interval
[0, SIMPLE(L)]. The N tasks T1, T2, ..., TN are divided
into (k + 1) groups, Gb = {Tib−1+1, Tib−1+2, ..., Tib

},
1 ≤ b ≤ k+1, where i0 = 0, ik+1 = N , and the value k and
the indices i1, i2, ..., ik are to be defined below. Let Tj1 , Tj2 ,
..., Tjk

, ... be the sequence of tasks finished in a schedule
produced by algorithm SIMPLE, where Tjb

is completed at
time sb, 1 ≤ b ≤ k, and at that time tasks in Gb+1 are sched-
uled for execution together with those tasks not completed
yet. Hence, the time interval [0, SIMPLE(L)] is divided into
(k+1) subintervals [s0, s1), [s1, s2), [s2, s3), ..., [sk−1, sk),
[sk, sk+1], where s0 = 0 and sk+1 = SIMPLE(L). For
0 ≤ b ≤ k, the set of active tasks running during time subin-
terval [sb, sb+1] is G1∪G2∪· · ·∪Gb+1−{Tj1 , Tj2 , ..., Tjb

}.
Initially, at time 0, tasks in G1 are scheduled for exe-

cution, where i1 is defined such that the total number of
processors used by the N1 = i1 tasks executed during the
time subinterval [s0, s1] is p1 = π1 + π2 + · · ·+ πi1 ≤ M ,
but p1 + πi1+1 = π1 + π2 + · · · + πi1 + πi1+1 > M .
In other words, we schedule as many tasks as possible
for simultaneous execution. In general, for 2 ≤ b ≤ k,
when task Tjb−1 is completed, tasks in Gb are scheduled
for execution, where ib is defined such that the total num-
ber of processors used by the Nb = Nb−1 − 1 + ib − ib−1

tasks executed during the time subinterval [sb−1, sb] is pb =
pb−1 − πjb−1 + πib−1+1 + πib−1+2 + · · · + πib

≤ M , but
pb + πib+1 = pb−1 − πjb−1 + πib−1+1 + πib−1+2 + · · · +
πib

+ πib+1 > M . Again, algorithm SIMPLE schedules as
many tasks as possible for simultaneous execution. Finally,
when task Tjk

is completed, tasks in Gk+1 are scheduled
for execution. Hence, k is the smallest value such that when
Tjk

is completed, all the remaining tasks in L can be sched-
uled and there may be room to accommodate more tasks.
The number of tasks scheduled for execution at time sk is
Nk+1 = Nk−1+N−ik, and the number of processors used
at time sk is pk+1 = pk −πjk

+πik+1 +πik+2 + · · ·+πN .
Note that the number of processors used during the time
subinterval [sk, SIMPLE(L)] decreases as more and more
tasks are finished but there is no more task to be scheduled.

As a special case, there might be several tasks com-
pleted at the same time, say, Tjb

, Tjb+1 , ..., Tjb+r
are fin-

ished simultaneously, where r ≥ 1. According to the
description of SIMPLE, we have r null time subintervals
[sb, sb+1), [sb+1, sb+2), ..., [sb+r−1, sb+r), where sb =
sb+1 = sb+2 = · · · = sb+r.

Let cj = πjτj be the cost of task Tj , where 1 ≤ j ≤ N ,
and

C(L) =
N∑

j=1

cj =
N∑

j=1

πjτj

be the total cost of the N tasks. Let tb = sb − sb−1 be the
length of the time subinterval [sb−1, sb], where 1 ≤ b ≤
k + 1. Since there are pb processors used during the time
subinterval [sb−1, sb], where 1 ≤ b ≤ k, we have

C(L) ≥
k∑

b=1

pbtb,

by ignoring the cost during [sk, SIMPLE(L)].
To conduct probabilistic analysis of the average-case

performance of algorithms SIMPLE and LL-SIMPLE, we
assume that π1, π2, ..., πN are i.i.d. discrete random vari-
ables with a common probability distribution in the range
[1..M], and τ1, τ2, ..., τN are i.i.d. continuous random vari-
ables. The probability distribution of the πj’s is indepen-
dent of the probability distribution of the τj’s. Let π̄ be
the expected task size and τ̄ be the expected task execution
time.

It is clear that Nb, pb, and tb are all random variables,
and we have

E(C(L)) ≥
k∑

b=1

E(pbtb).

Note that tb is the minimum remaining execution time of
the Nb tasks scheduled at time sb−1. Furthermore, the
Nb’s, pb’s, and tb’s are all correlated random variables. This
makes the evaluation of E(pbtb) very difficult. To make our
average-case analysis feasible, we make the following as-
sumption.

Approximation 1. pb and tb are independent of each other
for all 1 ≤ b ≤ k.

By using the above approximation, we get

E(C(L)) ≥
k∑

b=1

E(pb)E(tb).

To further evaluate E(pb), let us consider the following
model. Assume that there is a bag with capacity M and N
objects of sizes π1, π2, ..., πN which are i.i.d. (not neces-
sarily discrete) random variables with a common probabil-
ity distribution. Objects are packed into the bag as many as
possible, i.e., we find index i such that π1 +π2 + · · ·+πi ≤
M , but π1 + π2 + · · · + πi + πi+1 > M . The total size
of the objects packed into the bag is a random variable. We
use P (N,M) to represent its mean. It is not hard to see
that at times s0, s1, s2, ..., sk, tasks are scheduled exactly in
the same way as objects are packed. In particular, we have
E(pb) = P (N − b + 1,M), where 1 ≤ b ≤ k + 1.

The above discussion gives rise to

E(C(L)) ≥
k∑

b=1

P (N − b + 1,M)E(tb).

It is clear P (N,M) converges rapidly to its limit PM =
limN→∞ P (N,M). In fact, if the πj’s are discrete inte-
ger random variables, we have PM = P (N,M) for all
N ≥ M , since the bag can accommodate at most M ob-
jects. When N is large, we make the following assumption.

Approximation 2. P (N−b+1,M) ≈ PM for all 1 ≤ b ≤
k.

The above approximation yields

E(C(L)) ≥ PM

k∑
b=1

E(tb).

Since

SIMPLE(L) =
k∑

b=1

tb + tk+1,

we have

E(SIMPLE(L)) =
k∑

b=1

E(tb) + E(tk+1)

≤ E(C(L))
PM

+ E(tk+1).

We notice that tk+1 is a very sophisticated random vari-
able, which is the maximum execution time of Nk+1 tasks.
Among these tasks, Nk − 1 of them are partially executed
and N − ik of them are just scheduled for execution, where
Nk and ik themselves are mysterious random variables. For
ease of analysis, we make the following assumption which
does not affect our asymptotic analysis.

Approximation 3. E(tk+1) ≈ τ̄ .

It is clear that the level-by-level schedule produced by
algorithm LL-SIMPLE yields

E(LL-SIMPLE(L)) =
v∑

l=1

E(SIMPLE(Ll)).

From the above discussion, we know that for all 1 ≤ l ≤ v,

E(SIMPLE(Ll)) ≤
E(C(Ll))

PM
+ τ̄ .

The above equation implies that

E(LL-SIMPLE(L)) ≤ E(C(L))
PM

+ vτ̄ .

Since

OPT(L) ≥ C(L)
M

,

we obtain

E(LL-SIMPLE(L)) ≤ M

PM
E(OPT(L)) + vτ̄ .

Because

E(OPT(L)) ≥ E(C(L))
M

,

and E(C(L)) = Nπ̄τ̄ , we get

E(LL-SIMPLE(L))
E(OPT(L))

≤ M

PM
+
(

M

π̄

)(
v

N

)
.

A class of task graphs are called wide task graphs if v/N →
0 as N →∞. For fixed M and π̄, we have

R̄∞LL-SIMPLE = lim
N→∞

E(LL-SIMPLE(L))
E(OPT(L))

≤ M

PM
,

for wide task graphs. Though the above asymptotic
average-case performance bound M/PM for algorithm LL-
SIMPLE is derived by using Approximations 1–3, we will
later justify that the bound is highly accurate.

In [8], a recurrence relation was found to calculate
P (N,M), the expectation of the total size of the objects
(taken from N objects of sizes π1, π2, ..., πN) packed into
a bag of capacity M , for arbitrary probability distribution
of object sizes. Let rm be the probability that the size of
an object is πj = m, where m = 1, 2, 3, The following
recurrence relation characterizes P (N,M):

P (N,M)

=

M∑

m=1

mrm, if N = 1;

M∑
m=1

rm(m + P (N − 1,M −m)), if N > 1.

Furthermore, when object sizes have a uniform distribution
in the range [1..C], i.e., rm = 1/C for all 1 ≤ m ≤ C, a
closed form approximation for PM = limN→∞ P (N,M)
was derived, namely,

PM ≈ M −

(
3−

(
1 +

1
C

)C+1)
C − 1.

We conclude that when task sizes π1, π2, ..., πN are i.i.d.
discrete random variables with a uniform probability distri-
bution in the range [1..C], we get

R̄∞LL-SIMPLE ≤
M

M − (3− (1 + 1/C)C+1)C − 1
.

When C is large, we have (1 + 1/C)C ≈ e, and PM ≈
M − (3− e)C + (e− 1), and

R̄∞LL-SIMPLE ≤
M

M − (3− e)C + (e− 1)
.

This implies that for large M , the asymptotic average-case
performance bound gets its maximum value approximately
1/(e− 2) = 1.3922112 when C = M .

3 Algorithms LL-GREEDY and LS

The online non-clairvoyant scheduling algorithm LL-
GREEDY schedules tasks in L level by level in the order
L1, L2, ..., Lv . Tasks in Ll+1 cannot start their execution
until all tasks in Ll are completed. For level Ll, we use
algorithm GREEDY to generate its schedule [8].

Algorithm GREEDY is an improved version of SIMPLE
which can be described in a way similar to that of SIMPLE.
Let Tj1 , Tj2 , ..., Tjk

be the sequence of tasks finished in a
schedule produced by algorithm GREEDY. The difference
is that at time sb, i.e., when task Tjb

is completed, where
1 ≤ b ≤ k, each of the remaining tasks not scheduled
yet is tested to see whether it can be scheduled for execu-
tion, i.e., whether there are enough processors for the task.
Thus, Gb+1 in GREEDY may include more tasks than that
of SIMPLE.

It is clear that algorithm GREEDY improves processor
utilization. In terms of our object packing model, all the N
objects are considered for possible packing into the bag and
an object is packed if there is enough room. The expectation
P ∗(N,M) of the total size of the objects packed into a bag
is given by the following recurrence relation:

P ∗(N,M)

=

M∑
m=1

mrm, if N = 1;

M∑
m=1

rm(m + P ∗(N − 1,M −m))

+

(∑
m>M

rm

)
P ∗(N − 1,M), if N > 1.

When N is large, the chance to fully pack the bag is high.
Let P ∗M = limN→∞ P ∗(N,M). If r1 6= 0, we have P ∗1 =
1. One can then prove by induction on M that P ∗M = M
for all M ≥ 1. This implies that all the M processors are
used, especially in the beginning of the schedule.

The well known online non-clairvoyant list scheduling
(LS) algorithm further improves performance by breaking
the boundaries among levels. The list scheduling algorithm
was originally proposed in [5] for scheduling sequential
tasks that demand for only one processor, i.e., πi = 1, for all
1 ≤ i ≤ N . A list schedule is based on an initial ordering of
the tasks L = (Tj1 , Tj2 , ..., Tjn

), called a priority list. Ini-
tially, at time zero, the scheduler instantaneously scans list
L from the beginning, searching for tasks that are ready to
be executed, i.e., which have no predecessors under ≺ still
waiting in L. The first ready task Tji in L is removed from
L and sent to an idle processor for processing. Such a search
is repeated until there is no ready task or there is no more
processor available. In general, whenever a processor com-
pletes a task, the scheduler immediately scans L, looking

for the first ready task to be executed. If such a ready task is
not found, the processor becomes idle and waits for the next
finished task. As running tasks complete, more precedence
constraints are removed and more tasks will be ready.

The extension of the method to scheduling parallel tasks
is straightforward [7]. When the scheduler finds a ready task
Tji , the scheduler checks whether there are at least πji idle
processors. If so, task Tji is allocated πji processors and
executed nonpreemptively on these processors. Otherwise,
the ready task Tji

still needs to wait in L until other run-
ning tasks complete. Therefore, initially and later whenever
a task is completed, each of the remaining tasks not sched-
uled yet is examined to see whether it can be scheduled for
execution, i.e., whether all its predecessors are completed
and there are enough processors for the task.

In the above description, algorithm LS is allowed to scan
the entire list of tasks to be consistent with Graham’s orig-
inal algorithm. It should be noticed that during each scan,
tasks not ready for execution are simply skipped without
further examination of their processor requirements. There-
fore, when a list scheduler is only provided with ready tasks
for online scheduling, it generates exactly the same sched-
ule, since the LS algorithm does not need any information
of tasks not ready for execution.

4 Simulation Data

Extensive simulations have been conducted to validate
the asymptotic average-case performance bound for algo-
rithm LL-SIMPLE and to demonstrate the average-case per-
formance of the three approximation algorithms for non-
clairvoyant scheduling of parallel tasks with precedence
constraints. The following task graphs are considered in
our experiments.

• Tree-Structured Computations. For simplicity, we con-
sider CT(b, h), i.e., complete b-ary trees of height h.
There are v = h + 1 levels numbered as 0, 1, 2,
..., h, and Nl = bl for 0 ≤ l ≤ h, and N =
(bh+1 − 1)/(b− 1).

• Partitioning Algorithms. A partitioning algorithm
PA(b, h) has v = 2h+1 levels numbered as 0, 1, 2, ...,
2h, where Nl = N2h−l = bl, for all 0 ≤ l ≤ h − 1,
Nh = bh, and N = (bh+1 + bh − 2)/(b− 1).

• Linear Algebra Task Graphs. A linear algebra task
graph LA(v) with v levels has Nl = v − l + 1 for
all 1 ≤ l ≤ v, and N = v(v + 1)/2.

• Diamond Dags. A diamond dag DD(d) contains v =
2d−1 levels numbered as 1, 2, ..., 2d−1, where Nl =
N2d−l = l, for all 1 ≤ l ≤ d−1, Nd = d, and N = d2.

Since each task graph has at least one parameter, we are
actually dealing with classes of task graphs. It is easily ver-
ified that all the four classes of task graphs are wide task
graphs.

Now, we present numerical and simulation data for the
above task graphs. We make the following parameter set-
ting in our simulations.

• The number of processors is M = 128. (The choice of
M does not affect our observations and conclusions.)

• The probability distribution of task sizes is a uniform
distributions in the range [1..C], i.e., rm = 1/C for all
1 ≤ m ≤ C, where C is chosen such that (C +1)/2 =
π̄, i.e., C = 2π̄ − 1.

• Task execution times are uniformly distributed in the
interval [0, 10] with τ̄ = 5.

• For complete trees and partitioning algorithms, we set
b = 2.

Tables 1–4 display our numerical and simulation data
for the five types of task graphs. The asymptotic average-
case performance bound M/PM for algorithm LL-SIMPLE
is given as the last line of Tables 1a–4a, where PM is
calculated using the recurrence relation in Section 2 with
N = M . Each simulation datum is the average of rep
(given in each table) schedule lengths generated by algo-
rithm A, A ∈ {LL-SIMPLE, LL-GREEDY, LS}, divided
by a lower bound for E(OPT(L)), namely, E(C(L))/M ,
where E(C(L)) is the mean cost E(C(L)) = Nπ̄τ̄ , The
99% confidence interval of our simulation data is given in
each table.

It is observed from Tables 1a–4a that as N increases, the
performance bound obtained from simulation improves and
approaches the analytical bound. When N is large, the per-
formance bound obtained from simulation is slightly larger
than but still very close to the analytical bound, primarily
due to the under-estimation of E(OPT(L)) and loss of effi-
ciency caused by boundaries among levels. These simula-
tion data justify the high accuracy of our analytical asymp-
totic average-case performance bound M/PM for algorithm
LL-SIMPLE in scheduling precedence constrained parallel
tasks.

It is also observed from Tables 1b–4b and 1c–4c that
algorithm LL-GREEDY has better performance than LL-
SIMPLE by using an improved algorithm GREEDY to
schedule independent tasks in the same level. Algorithm
LS produces even better schedules than algorithm LL-
GREEDY due to break of boundaries among levels. Al-
gorithm LL-GREEDY can achieve an average-case perfor-
mance ratio very close to optimal for large wide task graphs.
Algorithm LS can achieve an average-case performance ra-
tio very close to optimal even for small to moderate wide
task graphs.

5 Conclusions

We have analyzed the average-case performance of al-
gorithm LL-SIMPLE for online non-clairvoyant scheduling
of parallel tasks with precedence constraints. Our extensive
numerical and simulation data demonstrate that the analyt-
ical asymptotic average-case performance bound for algo-
rithm LL-SIMPLE is highly accurate and that algorithms
LL-GREEDY and LS can produce high quality schedules,
especially for large wide task graphs.

References

[1] S. Bischof and E. W. Mayr, “On-line scheduling of
parallel jobs with runtime restrictions,” Theoretical
Computer Science 268, 67-90, 2001.

[2] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan,
“Scheduling subject to resource constraints: classifi-
cation and complexity,” Discrete Applied Mathematics
5, 11-24, 1983.

[3] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng,
“Optimal on-line scheduling of parallel jobs with de-
pendencies,” Journal of Combinatorial Optimization
1, 393-411, 1998.

[4] M. R. Garey and R. L. Graham, “Bound for multi-
processor scheduling with resource constraints,” SIAM
Journal on Computing 4, 187-200, 1975.

[5] R. L. Graham, “Bounds on multiprocessing timing
anomalies,” SIAM J. Appl. Math. 2, 416-429, 1969.

[6] D. S. Johnson, et al., “Worst-case performance
bounds for simple one-dimensional packing algo-
rithms,” SIAM Journal on Computing 3, 299-325,
1974.

[7] K. Li, “Analysis of the list scheduling algorithm
for precedence constrained parallel tasks,” Journal of
Combinatorial Optimization 3, 73-88, 1999.

[8] K. Li, “An average-case analysis of online non-
clairvoyant scheduling of independent parallel tasks,”
Journal of Parallel and Distributed Computing 66,
617-625, 2006.

[9] J. D. Ullman, “NP-complete scheduling problems,”
Journal of Computer and System Science 10, 384-393,
1975.

[10] D. Ye and G. Zhang, “Online scheduling of paral-
lel jobs with dependencies on 2-dimensional meshes,”
Lecture Notes in Computer Science, vol. 2906, 329-
338, 2003.

Table 1a: Simulation Data for LL-SIMPLE on
Complete Trees.

(rep = 200, 99% confidence interval = ±1.43271%)

h π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

6 2.68375 1.76032 1.49632 1.39524 1.34164 1.34402

7 1.94714 1.44954 1.31151 1.26233 1.25059 1.26836

8 1.53624 1.26962 1.20721 1.20423 1.21151 1.23381

9 1.30376 1.17122 1.14915 1.16408 1.18362 1.21508

10 1.17545 1.11466 1.11734 1.13768 1.16711 1.20497

11 1.10276 1.08517 1.10216 1.12820 1.15897 1.19647

12 1.06623 1.06960 1.09198 1.12208 1.15446 1.19298

13 1.04599 1.06057 1.08636 1.11782 1.15287 1.19130

1.02128 1.04918 1.07865 1.10992 1.14277 1.17845

Table 1b: Simulation Data for LL-GREEDY on
Complete Trees.

(rep = 200, 99% confidence interval = ±1.62384%)

h π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

6 2.66068 1.72388 1.45190 1.33743 1.27057 1.24246

7 1.92790 1.40719 1.25836 1.20189 1.16702 1.17122

8 1.51620 1.23138 1.15159 1.12388 1.10738 1.12594

9 1.27892 1.13181 1.08691 1.07729 1.06527 1.09217

10 1.15408 1.07292 1.05294 1.05010 1.04561 1.06739

11 1.08348 1.04181 1.03064 1.03130 1.03069 1.05434

12 1.04505 1.02448 1.01754 1.01993 1.01842 1.04205

13 1.02358 1.01347 1.01029 1.01191 1.01223 1.03294

Table 1c: Simulation Data for LS on
Complete Trees.

(rep = 200, 99% confidence interval = ±1.70777%)

h π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

6 2.02364 1.36391 1.22982 1.16528 1.13485 1.14323

7 1.42756 1.17242 1.12064 1.08516 1.09269 1.09260

8 1.21703 1.08882 1.06126 1.05738 1.05292 1.06660

9 1.11257 1.04877 1.03660 1.03544 1.03366 1.04632

10 1.05627 1.02581 1.02287 1.02017 1.02301 1.03194

11 1.02969 1.01288 1.01041 1.01337 1.01274 1.02162

12 1.01556 1.00869 1.00565 1.00798 1.00986 1.01429

13 1.00807 1.00474 1.00339 1.00501 1.00584 1.00914

Table 2a: Simulation Data for LL-SIMPLE on
Partitioning Algorithms.

(rep = 200, 99% confidence interval = ±1.23513%)

h π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

6 3.11308 1.94281 1.60902 1.45977 1.39894 1.35943

7 2.18663 1.54686 1.38394 1.31629 1.29715 1.29296

8 1.67087 1.33092 1.24932 1.22782 1.22710 1.24541

9 1.38301 1.20482 1.17145 1.17496 1.19399 1.22306

10 1.21776 1.13485 1.12906 1.14629 1.17302 1.20644

11 1.12904 1.09574 1.10744 1.13152 1.16328 1.19956

12 1.07894 1.07517 1.09407 1.12359 1.15602 1.19416

13 1.05191 1.06344 1.08801 1.11941 1.15331 1.19266

1.02128 1.04918 1.07865 1.10992 1.14277 1.17845

Table 2b: Simulation Data for LL-GREEDY on
Partitioning Algorithms.

(rep = 200, 99% confidence interval = ±1.08233%)

h π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

6 3.08224 1.90332 1.55633 1.39734 1.32375 1.28893

7 2.16210 1.50806 1.31779 1.24008 1.20405 1.19899

8 1.64784 1.28733 1.18547 1.14542 1.12633 1.13730

9 1.35868 1.16469 1.10952 1.09143 1.08237 1.09911

10 1.19490 1.09042 1.06378 1.05777 1.05463 1.07593

11 1.10646 1.05234 1.03639 1.03534 1.03438 1.05933

12 1.05859 1.02850 1.02185 1.02329 1.02193 1.04664

13 1.03133 1.01601 1.01365 1.01464 1.01455 1.03627

Table 2c: Simulation Data for LS on
Partitioning Algorithms.

(rep = 200, 99% confidence interval = ±1.41154%)

h π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

6 2.29793 1.47990 1.28494 1.19601 1.17318 1.15455

7 1.62619 1.24501 1.14791 1.10882 1.09633 1.09496

8 1.31601 1.12894 1.07991 1.06029 1.05345 1.05578

9 1.15920 1.06567 1.04489 1.03647 1.03590 1.04064

10 1.08141 1.03214 1.02496 1.02119 1.02153 1.02735

11 1.04015 1.01798 1.01276 1.01495 1.01393 1.01716

12 1.01923 1.00913 1.00754 1.00760 1.00906 1.01161

13 1.01003 1.00471 1.00453 1.00492 1.00539 1.00760

Table 3a: Simulation Data for LL-SIMPLE on
Linear Algebra Task Graphs.

(rep = 50, 99% confidence interval = ±1.00533%)

v π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

50 2.13478 1.52077 1.35943 1.30048 1.28257 1.28829

100 1.55604 1.28031 1.21590 1.20584 1.21323 1.23449

150 1.37183 1.20130 1.16763 1.17270 1.19043 1.22071

200 1.28188 1.16370 1.14732 1.15934 1.18263 1.21476

250 1.23063 1.13971 1.13534 1.15010 1.17524 1.20823

300 1.19498 1.12555 1.12383 1.14141 1.17043 1.20597

350 1.17041 1.11302 1.11777 1.13883 1.16782 1.20273

400 1.15110 1.10650 1.11434 1.13621 1.16509 1.20084

1.02128 1.04918 1.07865 1.10992 1.14277 1.17845

Table 3b: Simulation Data for LL-GREEDY on
Linear Algebra Task Graphs.

(rep = 50, 99% confidence interval = ±0.95177%)

v π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

50 2.08580 1.45961 1.29074 1.21872 1.19388 1.19373

100 1.52154 1.23555 1.16070 1.13469 1.12382 1.13674

150 1.34401 1.15788 1.11015 1.09957 1.09509 1.11625

200 1.25672 1.12190 1.08726 1.08137 1.07962 1.10232

250 1.20502 1.09980 1.07423 1.07180 1.06933 1.09418

300 1.17076 1.08403 1.06379 1.06292 1.06213 1.08767

350 1.14605 1.07376 1.05621 1.05757 1.05537 1.08342

400 1.12831 1.06455 1.05055 1.05334 1.05154 1.07979

Table 3c: Simulation Data for LS on
Linear Algebra Task Graphs.

(rep = 50, 99% confidence interval = ±1.13900%)

v π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

50 1.51834 1.13785 1.07327 1.06015 1.06364 1.07162

100 1.13175 1.04123 1.02993 1.03579 1.03937 1.04903

150 1.05896 1.02260 1.02150 1.02489 1.03138 1.03957

200 1.03392 1.01472 1.01733 1.02133 1.02606 1.03442

250 1.02237 1.01119 1.01432 1.01738 1.02304 1.03103

300 1.01577 1.00979 1.01174 1.01683 1.01996 1.02876

350 1.01222 1.00865 1.01178 1.01447 1.01934 1.02699

400 1.01006 1.00706 1.01027 1.01420 1.01840 1.02377

Table 4a: Simulation Data for LL-SIMPLE on
Diamond Dags.

(rep = 50, 99% confidence interval = ±0.68027%)

d π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

50 2.13710 1.51999 1.35453 1.30154 1.28078 1.28755

100 1.55982 1.28053 1.21408 1.20307 1.21413 1.23973

150 1.37236 1.20095 1.17058 1.17331 1.19362 1.22067

200 1.28410 1.16172 1.14600 1.15864 1.18195 1.21276

250 1.23094 1.13992 1.13251 1.14942 1.17503 1.20860

300 1.19522 1.12629 1.12450 1.14297 1.17132 1.20552

350 1.17054 1.11486 1.11856 1.13996 1.16600 1.20335

400 1.15108 1.10637 1.11326 1.13626 1.16606 1.20142

1.02128 1.04918 1.07865 1.10992 1.14277 1.17845

Table 4b: Simulation Data for LL-GREEDY on
Diamond Dags.

(rep = 50, 99% confidence interval = ±0.73151%)

d π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

50 2.10918 1.47164 1.29543 1.23047 1.19317 1.19377

100 1.52502 1.23589 1.15804 1.13594 1.12234 1.13961

150 1.34448 1.15996 1.11264 1.10006 1.09416 1.11811

200 1.25587 1.12185 1.08772 1.08372 1.07933 1.10391

250 1.20434 1.09968 1.07440 1.06979 1.06909 1.09523

300 1.17061 1.08340 1.06391 1.06417 1.06118 1.08989

350 1.14623 1.07303 1.05692 1.05771 1.05604 1.08429

400 1.12823 1.06493 1.05122 1.05309 1.05212 1.08009

Table 4c: Simulation Data for LS on
Diamond Dags.

(rep = 50, 99% confidence interval = ±0.73406%)

d π̄ = 5 π̄ = 10 π̄ = 15 π̄ = 20 π̄ = 25 π̄ = 30

50 1.49805 1.12749 1.07633 1.06616 1.06490 1.07154

100 1.12508 1.04232 1.03061 1.03342 1.04085 1.04809

150 1.05898 1.02073 1.02052 1.02522 1.03266 1.04001

200 1.03282 1.01480 1.01708 1.01992 1.02701 1.03474

250 1.02220 1.01154 1.01393 1.01894 1.02450 1.03068

300 1.01642 1.01022 1.01236 1.01654 1.02223 1.02682

350 1.01235 1.00830 1.01175 1.01519 1.02031 1.02577

400 1.00959 1.00711 1.01057 1.01457 1.01818 1.02447

