
Middleware and Performance Issues for

Computational Finance Applications on Blue Gene/L

Thomas Phan1, Ramesh Natarajan2, Satoki Mitsumori3, and Hao Yu2

1IBM Almaden Research Center, 2IBM T.J. Watson Research Center, 3NIWS Co., Ltd.

Abstract

We discuss real-world case studies involving the implementa-

tion of a web services middleware tier for the IBM Blue Gene/L

supercomputer to support financial business applications. These

programs that are representative of a class of modern financial

analytics that take part in distributed business workflows and are

heavily database-centric with input and output data stored in ex-

ternal SQL data warehouses. We describe the design issues related

to the development of our middleware tier that provides a num-

ber of core features, including an automated SQL data extraction

and staging gateway, a standardized high-level job specification

schema, a well-defined web services (SOAP) API for interoperabil-

ity with other applications, and a secure HTML/JSP web-based

interface suitable for general users. Further, we provide observa-

tions on performance optimizations to support the relevant data

movement requirements.

1. Introduction

Although high-performance computing (HPC) has been
used successfully for scientific applications, there have been
few reports on the applicability of HPC for the financial
business industry. In this paper we provide real-world
case studies and discuss key design issues that arose dur-
ing the development of a middleware tier that we used
to support our customers’ computational finance applica-
tions on the IBM Blue Gene/L (BG/L) supercomputer [2].
These applications fully utilize the higher degree of par-
allelism and faster interprocessor communication network
that BG/L provides over other architectures, such as com-
putational clusters. The main observations we made from
this project are the importance of web services interoper-
ability, SQL data access integration, and performance opti-
mizations for critical data movement.
The financial industry is continuously challenged by in-

creasingly competitive pressure for profits, the emergence
of new financial products, and tighter regulatory require-
ments imposed for capital risk management. The latter con-
cerns have led banks, insurance companies, and other finan-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

cial corporations to develop and deploy computationally-
intensive quantitative applications for financial analytics
[10]. From a computing perspective, a principal challenge
of these applications is the discovery, aggregation, and stag-
ing of the relevant financial data in the analysis.

This paper describes our experience with data manage-
ment and performance issues encountered in case studies
involving proprietary financial applications on BG/L. Al-
though BG/L has been used extensively in scientific com-
puting [6], ours is one of the first attempts to fully leverage
this architecture for computational finance. A larger goal
of this work was to also identify the middleware function-
ality for deploying a broader class of similar business and
scientific applications onto BG/L in a production setting.

In general, the characteristics of modern financial appli-
cations differ from other scientific and engineering applica-
tions in several key ways:

• Financial applications usually require data from ex-
ternal and independent data sources such as SQL
databases, remote files, spreadsheets, web services, or
streaming data feeds. In contrast, scientific applica-
tions usually use pre-staged flat files on the file system
of the computing platform.

• These applications often interact with larger intra-
or inter-company business workflows such as trading
desk, portfolio tracking and optimization, or regula-
tory business monitoring applications.

• High-level services specifications must be separated
from low-level resource allocation so that dynamic
resource provisioning based on quality-of-service or
time-to-completion metrics must be considered.

In this paper we provide our observations from our work
with two proprietary financial applications that both exhibit
the characteristics described above. Unfortunately, the ap-
plications and our customers must remain anonymized due
to nondisclosure agreements. To make our discussion con-
crete, we describe one of our customers’ applications in
sufficient detail in order to explore relevant issues. This

application calculates Value-at-Risk (VaR), a key metric in
making investment decisions for large corporations. (The
second application, while it does not calculate VaR, has the
same computation and communication characteristics.) The
VaR application was a prototype to help determine the fea-
sibility of running computational finance applications on
BG/L, so we have omitted final application performance
details in order to respect our disclosure agreement obliga-
tions; in the future we look to provide more complete mea-
surements once the applications have been deployed in a
production environment.

The input data for the VaR application (consisting of
historic market data for risk factors, simulation data, and
asset portfolio details) is initially extracted from an SQL
database. The finance analytics are floating-point intensive
and run in parallel on BG/L while taking advantage of the
fast interprocessor communication network for distributing
data and collecting results. The output consists of empiri-
cal profit-loss data, which is then stored back into an SQL
database for post-processing and archiving. In Section 2 we
discuss the VaR calculation and its data requirements.

Although the database access and the computing require-
ments of this application appear straightforward, there are
significant inhibitors to its deployment onto existing HPC
platforms. A major difficulty is that many HPC platforms,
including BG/L, are not well-suited for accessing data in
external high-latency data sources. In traditional desktops,
the network and transaction latencies for remote access can
be overlapped with other work by using multithreaded pro-
gramming. In contrast, the BG/L compute nodes do not
allow multithreading, and as a result, the remote access la-
tencies cannot easily be hidden. Also, applications on BG/L
run in a space-sharing rather than a time-slicing mode; i.e.,
each application uses a distinct, physically-partitioned set
of nodes reserved for the application’s duration. Lastly, for
performance reasons on many HPC systems, it is desirable
to stage the program data to and from a specialized file sys-
tem, such as the General Parallel File System (GPFS) [16].
In a typical use case, these data staging requirements lead to
ad hoc solutions with specialized shell scripts dealing with
the data extraction and job submission for individual ap-
plications; any resulting performance optimizations for the
workflow are thus reinvented on a case-by-case basis.

As described in Section 3, we addressed these issues
by developing a middleware layer that executes on BG/L’s
front-end node. This middleware, shown in Figure 1, pro-
vides: (1) a data-staging gateway that stages data from ex-
ternal heterogeneous data servers, such as SQL databases,
to the BG/L file system; (2) a web services (SOAP) API;
(3) a standardized schema for specifying job submission pa-
rameters; and (4) a job-submission wizard using a secure
HTML/JSP interface and a Unix command-line tool.

We found that data movement was particularly impor-
tant: because these programs rely on SQL data extraction,
the pathway between the database server, the BG/L file sys-

Figure 1. Logical view of middleware components between the
users and the BG/L core.

tem, and the compute nodes becomes critical. This issue
is particularly important to the customer, who is spending
money for the HPC platform to do computation, not data
transfer. In Section 4 we describe the last of our case study
observations: the data movement characteristics of these ap-
plications and general I/O optimizations.

2. Background

2.1. Blue Gene/L overview

The BG/L supercomputer [1] [2] is a family of super-
computers designed for highly scalable operationwith thou-
sands of processors, a low-latency, high-bandwidth internal
communication network, low power consumption, and min-
imal floor space requirements compared to equivalent sys-
tems. We performed our work at the 2048-node BG/L in-
stalled at Almaden Research Center in San Jose, California.
Parallel message-passing applications can be developed us-
ing an optimized version of the well-known Message Pass-
ing Interface (MPI) communications library [3] [5].

2.2. Value-at-Risk overview

Value-at-Risk (VaR) [11] [9] is an important metric used
by financial institutions to characterize the market risk ex-
posure of their asset portfolio. The details of VaR are be-
yond the scope of this paper, but here we briefly describe
the most salient and relevant points.

A number of independent software and financial data
providers have developed services for computing VaR, and
many financial services companies have their own propri-
etary methodologies. VaR is based on an estimate of a lower
quantile of a portfolio’s profit-loss distribution over a time

horizon given that the portfolio is dependent on underly-
ing risk factors that are subject to market variations. The
VaR is then the difference between the expected value of
the portfolio and the quantile over the time horizon under
these variations. The portfolios being evaluated may con-
sist of assets such as equities, bonds, and currencies, as well
as other more complex derivative or assets. The underlying
risk factors may include variations in stock prices and eq-
uity indices, interest rates, and currency exchange rates.
From a computational perspective, the most widely used

approach for estimating VaR is Monte Carlo simulation,
which relies on randomly sampling the multivariate risk-
factor distribution to generate as set of independent risk sce-
narios [13]. The asset portfolio is then priced for each risk
scenario, and the results are aggregated to obtain the empir-
ical profit-loss distribution for the portfolio. An example of
a parallel Monte Carlo VaR using idle cycle scavenging on
a grid of computers is described in [21].
From a data engineering perspective, the dynamic nature

of the portfolios is critical. The time horizon for VaR de-
pends on the changes in the portfolio assets and risk factors
and can therefore vary from a few hours at an active trading
desk, to a few weeks for intermediate-termmanaged invest-
ment portfolios, to several months for long-term enterprise-
level regulatory reporting requirements. During the time
horizon the underlying portfolio will be updated repeatedly,
but the computation must be performed with the latest data

from the warehouse when the computation runs. This ap-
proach is unlike the common situation in scientific comput-
ing, where a large data set is uploaded once and computa-
tion is executed by varying parameters [8].

2.3. Application domain of our work

One of the proprietary financial risk applications imple-
mented on BG/L is a Monte Carlo calculation for estimating
VaR as described earlier. The code provided by the cus-
tomer was an evaluation prototype for preliminary porting
and benchmarking. Therefore, our primary objective was to
use this prototype to understand the deployment and perfor-
mance of the generic class of financial risk applications in a
future BG/L production setting.
End-to-end execution proceeds in three phases: data pre-

staging, computation, and data post-staging. Application
input consists of data on portfolio holdings, simulation data
for generating scenarios, and various algorithm parameters
(e.g., the number of scenarios to be evaluated). This input
data is roughly 300 MB across 44 files extracted from a 4
GB database using SQL queries during pre-staging.
We note that this pre-staging phase would not be neces-

sary if the HPC platform could directly and efficiently ac-
cess the external database via a programmatic interface. As
noted earlier, the long latencies and completion uncertain-
ties of remote communication makes it very inefficient for
a space-partitioned, distributed-memory HPC platform like

BG/L to have direct database connectivity.
In the compute phase, the 300 MB of input data is dis-

tributed to each compute node, and independent Monte
Carlo simulations are run. These simulations use samples
from the risk factor distributions to generate market scenar-
ios, which are then used to price the instruments in each sce-
nario’s portfolio. The output is written to disk, and in the fi-
nal post-staging, these results are saved to the SQL database
for archiving and further post-processing and analysis.
This prototype is typical of the intra-day market risk cal-

culations that are routinely performed in large banks. The
application input changes between successive calculations
for variables that are based on market conditions, such as
equity prices, exchange rates, and yield curves. We estimate
that in production settings, a typical large bank might hold
about 250,000 instruments in its portfolio, of which 20%
may need to be priced by Monte Carlo, while the remain-
ing 80% may be priced by closed-form approximations.
Roughly 100,000 scenarios are required in the Monte Carlo
simulations to obtain empirical profit-loss distributions for
estimating the relevant VaR quantiles with the required sta-
tistical confidence.
Finally, we note that although some of the issues outlined

above may seem specific to financial and business comput-
ing applications, they are increasingly becoming true for
scientific computing applications as well. For example, in
[14] Jim Gray advocates using SQL databases for storing
data from scientific instruments and computer simulations
due to the advantages of general-purpose databases, such as
optimized data layout, metadata organization, application
independence, parallelism, scalability, and reliability. An
example of using a commercial DBMS for storing data and
organizing the workflow of a finite element analysis appli-
cation is described in [15]. The use of a DBMS enables
all the steps to be performed without requiring application-
specific data transformation scripts for data selection, trans-
formation, and exchange between different workflow steps.

3. Middleware Architecture

3.1. Specifications

The design of the middleware layer was motivated by re-
quirements that are likely to be encountered across a broad
range of financial computing applications. The require-
ments included the following (the semantics of “must” and
“should” follow the guidelines set in IETF RFC 2119):

1. The middleware must automate the data and dispatch-
ing workflow and provide a framework for application
code organization.

2. The middleware must provide support for accessing a
rich variety of external data sources, including SQL
databases, spreadsheets, flat files, and potentially web

services, so that the client applications can be cus-
tomized to the different data requirements (e.g., for
risk computations with specific trading profiles, or in
response to changing market conditions).

3. The data extraction and migration from external data
sources must be separated from the computational
steps on the HPC platform so that the overall perfor-
mance in a multi-application environment can be opti-
mized by co-scheduling these different steps in con-
junction with the relevant platform-specific resource
schedulers, reservation systems, and administrative
policies on the data and computing platforms.

4. The middleware must provide the capability to invoke
the application via a web service interface, thereby al-
lowing BG/L to participate in external business work-
flows as well as insulating the end-user from the
specifics of the data storage and operational platforms.

5. The middleware should facilitate the use of a fast par-
allel file systems like GPFS for intermediate data stag-
ing to ensure the best I/O performance without tying
up valuable compute time in high-latency, unreliable
I/O operations to remote servers.

6. The middleware should ensure and enhance the mech-
anisms in the data management platforms for data val-
idation, security, privacy, and audit-trail logging by ex-
tending these to the case when the data is used by an
external HPC application in an on-demand mode.

Our primary focus is on the data migration aspects of
the middleware layer, which to our knowledge is not fully
addressed in other platform-specific scheduler systems.

3.2. Overall design

The middleware component for job submission and
monitoring is implemented on the BG/L front-end node,
which is a Linux box physically and logically separated
from the compute nodes and serves as the login point for
users to compile and submit jobs The middleware is written
in Java and runs as a web service, and in our work we have
used both the IBM Websphere and Apache Tomcat/AXIS
application servers. To parse and handle XML, we used the
XMLBeans toolkit.
The end-to-end workflow of the financial application us-

ing our middleware is shown in Figure 2; the sequence of
steps starts with the client invoking the job submission pro-
cedure in step 1 and ends with the archival of the results into
the database in step 11. The database and file sizes shown
were the values for the prototype application; they are only
for illustrative purposes.

• Jobs are specified using the Job Submission Descrip-
tion Language (JSDL) XML schema, which is main-
tained by the JSDL-WG working group in the Global

Grid Forum [17]. This schema and our extensions are
described in Section 3.3.

• The middleware provides two job management inter-
faces: HTML-based forms and a web services SOAP
API. The web services can be used by external pro-
grams, thereby enabling BG/L computation to be part
of larger workflows between collaborating entities,
e.g., using orchestration mechanisms such as the Busi-
ness Process Execution Language (BPEL) [7]. Our
command-line tool for BG/L job management itself
uses the web services API.

• Internally, there are three major subcomponents:

– A job meta-scheduler, which queues incoming
job requests for execution and can also serve as a
front-end to other schedulers.

– A job dispatcher, which interacts directly with
the MPI mpirun command (which in turn inter-
acts with the BG/L nodemanagement and control
system) to allocate a partition and launch pro-
grams on the BG/L nodes.

– A data-staging gateway, which automates the
data migration between the external data sources
and BG/L’s file system. This component allows
users to specify rich data sources (such as SQL
databases) and obviates the need to manually
stage data; it is described in Section 3.4.

3.3. Job specification and submission

The current approach for submitting jobs to BG/L is
through the MPI mpirun Unix command-line program,
which has parameters for specifying the executable file-
name, the number of processors, the processor partition, and
numerous other runtime options. Like most command-line
programs, mpirun can be invoked via shell scripts, but this
approach is problem-specific and ad hoc in nature. We com-
plement the scripting approach by using the JSDL XML
schema, which normalizes parameter syntax and facilitates
the use of cross-platform interaction between BG/L and ex-
ternal clients using web services.
The JSDL file itself is intended to remain opaque to most

users, and an HTML/JSP forms-based wizard allows users
to compose and save new JSDL documents. Alternatively,
users can compose the JSDL file directly using an external
editor of their choice, in which case a password generator
is provided for entering encrypted values for all password
fields into the file. At the end of the process, the user can
either save the resulting JSDL file for future modification
and/or immediately submit the job to the scheduler.
Like any XML schema, the baseline JSDL establishes

a proper syntax, including namespaces and elements (tags).
We extended this schema to include tags formpirun-specific

Figure 2. High-level workflow steps automated by the middleware.

information and for the automated data stage-in and stage-
out; in the future the schema can be further extended to sup-
port other high-level quality-of-service specifications. An
example JSDL file is shown in Figure 3.

Since the JSDL specification may contain user and en-
crypted password information, a secure channel is required
between the user and the middleware. For example, in the
case of middleware access through the HTML pages, the
HTTP server must provide SSL encryption. If the interac-
tion is through the web services API, the security require-
ments as per WS-Security guidelines should be enabled.

The web services API provides a set of remote methods
for job submission and monitoring via the SOAP protocol.
After the user submits a complete JSDL file to the middle-
ware, a 32-byte job identifier token is returned to the user,
which can be used to query the job status, delete the queued
job, or kill a running job. When jobs are submitted, they are
first placed in a meta-scheduler that pre-stages the data, in-
vokes mpirun to load and execute code on the BG/L nodes,
and finally post-stages the results.

Schedulers for job queueing described in [18] include
job priority and node fragmentation issues. Our implemen-
tation uses a FCFS scheduling algorithm, but we will look
into optimized heuristics for simultaneously co-scheduling
the data movement and job dispatching [20] in conjunction
with the existing platform-specific scheduling systems.

3.4. Data-staging gateway

The data-staging gateway automates the data transfer be-
tween external data sources and BG/L’s file system based on
specifications in the JSDL file, thereby replacing the current

practice of performing these data transfers in a manual fash-
ion. The design supports the requirement for running the
same application repeatedly in response to changing market
or portfolio data stored and updated in SQL databases.

The middleware can execute data extraction from
databases using SQL queries and scp file transfers. In the
case of SQL queries, as shown in Figure 4, the informa-
tion following the SQLQueryDataStaging tag includes the
database connection parameters, the SQL query statement,
and the name of the file to which the data is extracted (writ-
ten in a standard CSV format). The ExecutionOrderGroup
tag indicates the statement’s execution thread. The SQLIn-
putFileName parameter gives the input file for a specific
query, which contains the data from a previous stage used
to assign the values to wild card parameters in in prepared
statements. Data stage-out is performed analogously, for
example, with SQL “update” instead of “select” queries.

In the current design, the data-staging gateway is inte-
grated with the other components of the middleware for
simplicity of deployment. However, when the data server
is only accessible over a wide-area network, it is preferable
to optimize the long-haul data transfer by implementing ex-
traction and compression as stored procedures in the data
server itself, with the compressed files being directly trans-
ferred to the BG/L file system. Other potential server-side
data transformations, such as encryption or statistical data
scrambling, can also be implemented to protect data privacy
on the external network and HPC file system.

<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition sid="xxxxxxx" xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/04/jsdl">

<jsdl:JobDescription>

<jsdl:JobIdentification>

<jsdl:JobName>HelloWorld</jsdl:JobName>

<jsdl:Description>This program salutes the world</jsdl:Description>

</jsdl:JobIdentification>

<!-- parameters for the executable -->

<jsdl:Application>

<jsdl:ApplicationName>HelloWorld</jsdl:ApplicationName>

<jsdl:BG_MpirunApplication>

<jsdl:BG_Mpirun_Exe>/bgl/jdoe/bin/helloworld</jsdl:BG_Mpirun_Exe>

<jsdl:BG_Mpirun_Cwd>/bgl/jdoe/bin</jsdl:BG_Mpirun_Cwd>

</jsdl:BG_MpirunApplication>

</jsdl:Application>

<!-- parameters for BG/L resources used by the executable -->

<jsdl:Resource>

<jsdl:StdoutFileName>/tmp/stdout.txt</jsdl:StdoutFileName>

<jsdl:StderrFileName>/tmp/stderr.txt</jsdl:StderrFileName>

<jsdl:BG_MpirunResource>

<jsdl:BG_Mpirun_Partition>M011_32_NE</jsdl:BG_Mpirun_Partition>

<jsdl:BG_Mpirun_Np>32</jsdl:BG_Mpirun_Np>

<jsdl:BG_Mpirun_Verbose>1</jsdl:BG_Mpirun_Verbose>

</jsdl:BG_MpirunResource>

</jsdl:Resource>

<!-- Do data stage-in. The stage-out is similar. -->

<jsdl:PreDataStaging>

<jsdl:SCPDataStaging>

<jsdl:ArrangingOrder>1</jsdl:ArrangingOrder>

<jsdl:Direction>transmit</jsdl:Direction>

<jsdl:RemoteHostName>127.0.0.1</jsdl:RemoteHostName>

<jsdl:RemoteUserId>doej</jsdl:RemoteUserId>

<jsdl:RemotePassword>iluv1bm</jsdl:RemotePassword>

<jsdl:SourceFileName>/users/doej/data/00input.blob</jsdl:SourceFileName>

<jsdl:TargetFileName>/home/jdoe/temp/00temp.file</jsdl:TargetFileName>

</jsdl:SCPDataStaging>

</jsdl:PreDataStaging>

</jsdl:JobDescription>

</jsdl:JobDefinition>

Figure 3. A job submission file using JSDL syntax. Included in this file are sections for job identification, parameters for the executable when
run on BG/L (including the executable name and working directory), parameters for parallel job execution (including the number of compute nodes,
the name of which BG/L node partition to use, and the Unix standard-out and standard-error file names), and data pre-staging with secure file transfer
(including which direction to send the data, the user ID and password for the server from which data is being staged, and the files being transferred).
Not shown is the analogous information for doing data post-staging after the computing is done.

4. Parallel Performance Issues

In this section we discuss the last of our observations
from our case studies, the data movement performance. The
database server’s performance is a critical portion of the
data pathway, but unfortunately, there is tremendous vari-
ability during deployment. The database is under the au-
thority of the customer, who has final say in the DBMS
software and the server’s hardware, OS, and location (for
example, it could be co-located on BG/L’s LAN or on the
other side of the country). This approach is typical in cus-
tomer engagement scenarios. Because the database-side is
out of our control and cannot be reasonably generalized,
here we instead focus on the data pathway that is under our
control, namely the path between the BG/L file system and
the compute nodes. In the future we will provide more de-
tailed system measurements once the middleware has been
deployed into production.

The proprietary financial applications were written in C
using the MPI message-passing library and made use of the
MPI communication calls we discuss here. We further im-
plemented customized versions of the MPI-IO communi-
cation calls in order to improve the data movement perfor-
mance as described in this section.

An important and often overlooked aspect in the running
time for the application is the I/O time for transferring data
between the HPC file-system and the individual processor
nodes. A significant part of this data transfer is in fact a col-
lective communication operation for which the scalable net-
work architecture of BG/L is especially advantageous when
compared to the equivalent switching networks used in clus-
ter systems or blade servers. (For example, BG/L has spe-
cial hardware features such as the deposit bit that enables
efficient broadcast-like operations on the torus network [5].)

We therefore considered the I/O performance in greater
detail, focusing in particular on the sequential blocking
reads of disk-resident files by the individual BG/L compute
nodes, with similar considerations applicable to sequential
disk writes as well. In the proprietary risk application be-
ing benchmarked, we note that the number of disk reads is
large, while the number of disk writes is relatively small.

A naive baseline implementation of sequential disk reads
is for each compute node to independently read the file
data using the POSIX-compliant open and read calls to
the file system. This baseline implementation can be im-
proved by having a single compute node perform the POSIX
open/read sequence followed by a broadcast to the other
nodes using the MPI Bcast call from the MPI library. This

<jsdl:SQLQueryDataStaging>

<jsdl:ExecutionOrderGroup>11</jsdl:ExecutionOrderGroup>

<jsdl:SQLStatement>

<![CDATA[

SELECT DISTINCT A.INOFC_CD, (

(DECIMAL(SUBSTR(A.BAS_YMD,1,4)) - DECIMAL(SUBSTR(B.DEALBASDAY ,1,4))) - 0.0 +

(DECIMAL(SUBSTR(A.BAS_YMD,5,2)) - DECIMAL(SUBSTR(B.DEALBASDAY ,5,2))) / 12.0 +

(DECIMAL(SUBSTR(A.BAS_YMD,7,2)) - DECIMAL(SUBSTR(B.DEALBASDAY ,7,2))) / 365.0

), CASE ’02’ WHEN ? THEN A.REDEMPTION_RATE

ELSE A.REDEMPTION_RATE + A.INTEREST_RATE END

FROM GRID.R02X A, GRID.R10B B WHERE (A.INOFC_CD = ?) AND

((DECIMAL(SUBSTR(A.BAS_YMD,1,4)) - DECIMAL(SUBSTR(B.DEALBASDAY ,1,4))) - 0.0 +

(DECIMAL(SUBSTR(A.BAS_YMD,5,2)) - DECIMAL(SUBSTR(B.DEALBASDAY ,5,2))) / 12.0 +

(DECIMAL(SUBSTR(A.BAS_YMD,7,2)) - DECIMAL(SUBSTR(B.DEALBASDAY ,7,2))) / 365.0) > 0.0

]]>

</jsdl:SQLStatement>

<jsdl:SQLOutputFileName>/bgl/phant/datadir/data/DATA041</jsdl:SQLOutputFileName>

<jsdl:SQLInputFileName>/bgl/phant/datadir/data/DATA041_01</jsdl:SQLInputFileName>

<jsdl:SQLOutputFileCreationFlag>overwrite</jsdl:SQLOutputFileCreationFlag>

<jsdl:SQLInputFileCompression>yes</jsdl:SQLInputFileCompression>

<jsdl:SQLOutputFileCompression>yes</jsdl:SQLOutputFileCompression>

</jsdl:SQLQueryDataStaging>

Figure 4. An example of JSDL syntax for data extraction from SQL database. The SQL query is embedded directly inside of the XML. The
ExecutionOrderGroup tag specifies which thread this query runs in. Other tags provide information on the name of the input file to fill in the wild
cards, the name of the output file the results into which the results are written, and compression flags.

Figure 5. I/O bandwidth in phase 2 for a 128 node BG/L as a
function of number of phase 1 access nodes for the MBC (red) and
ATV (blue) algorithms respectively. The sets of smoothed curves
are for different segment lengths, respectively 1KB, 2KB, 4KB,
8KB and 16KB from bottom to top. The arrows indicate the cross-
over points for the optimal algorithm.

eliminates redundant data transfer on the file-system access
network and uses the optimized MPI Bcast function from
the MPI collective communications library.

An even better approach is to use the MPI I/O standard
interface [19], specifically the MPI File Read All function
call for performing the blocking broadcast reads. (For
broadcast writes, the counterpart MPI File Write All func-
tion call would be used.) Furthermore, just as the default
public domain implementation of MPI can be optimized,
the default MPI-IO library can also be specifically tuned to
take advantage of the BG/L architecture. We implemented
these optimizations while taking into consideration the as-
sociated file I/O subsystem, including processor set (pset)
groupings of BG/L compute nodes that share an associated
dedicated I/O node [4], the use of processor groupings and
customized collective communication functions optimized
to the BG/L networks, and the parallel and buffered I/O ca-
pabilities provided by GPFS [16].

For example, our specifically tuned version of the
MPI File Read All consists of two phases. In phase 1, a
small subset of nodes, termed as access nodes, perform par-
allel reads of distinct, non-overlapping sections of the re-
quired file segment. In phase 2, an MPI collective commu-
nication distributes the individual sections from the access
nodes to the entire partition. The only optimization required
in phase 1 is to distribute the access nodes equally among
the different pset groupings in the partition. The I/O perfor-
mance tends to increase linearly with the number of access
nodes in phase 1, particularly for the so-called ”I/O-rich”
BG/L configurations (which have the best 1:8 ratio of I/O
nodes to compute nodes), although this performance may
level off due to bandwidth saturation on the external file ac-
cess network. The phase 2 implementation will depend on
the file segment length and the number of access nodes used
in phase 1. For example, the two best algorithms for phase
2 are the MBC algorithm in which each of the nodes in the
first phase take turns to broadcast their data to all the re-
maining nodes via a sequence of MPI Bcast calls, and the
ATV algorithm in which the MPI All2all function is used
to directly effect this transfer in one global exchange of
data. As shown in Figure 5 for results on a 128 node parti-
tion, each of these algorithms is better over a range of pa-
rameters, with the MBC algorithm performing better than
ATV for longer segments and fewer phase 1 access nodes.
TheMPI File Read All implementation is parameterized to
pick the best algorithm dynamically when invoked.

The use of optimized MPI I/O functions, such as
MPI File Read All, can be augmented with other user-level
performance optimizations, of which two, user-space mem-
ory buffers and data compression, were implemented as part
of a user-level I/O library. For example, in the individual
node programs of the risk application, the disk files are read

Figure 6. Time taken for a sequential broadcast read of a 256M
file in 256 byte line increments, for varying user-space memory
buffers ranging in size from 16K to 128M.

sequentially line by line on the compute nodes. In order to
reduce the number of I/O operations and to maximize the
data transfer in each such operation, a user-space memory
buffer can be used to hold several input lines, and the ac-
tual disk read/write operations are carried out only when
this buffer space needs to be overwritten and reused. This
explicit buffering is useful even when there is underlying
support in the disk I/O and communication sub-systems for
read-ahead or write-behind operations. Figure 6 describes
results for a situation in which a 256 MB file on the GPFS
file system is read sequentially by all the nodes in 64 and
128 node partitions, in 256 byte line chunks. The results
indicate that a 1MB buffer gives good performance without
imposing an excessive user-space memory overhead on the
node program.

5. Conclusion

In this paper we described our real-world observations
from deploying a middleware architecture on our BG/L in-
stallation to support financial applications. This middle-
ware decouples the data extraction from the computation,
thereby enabling the use of a richer set of external data
sources, such as SQL databases. Furthermore, this decou-
pling makes it possible to optimize the overall workload
in a multi-application environment by taking advantage of
the fact that the sequential but otherwise independent steps
of data movement and computation can be flexibly sched-
uled for each individual application in order to avoid un-
derutilization of the compute nodes while waiting for data.
This middleware contains components for automating the
elements of this application workflow, along with various
supporting tools and interfaces.
In the future, we will provide a more detailed end-to-end

analysis of the applications’ performance. Since the work in
this paper centered on one prototype VaR application, full
end-to-end performance results will be obtained when the
applications have been finally deployed into production.

References

[1] N. Adiga, et al. “An Overview of the Blue Gene Computer,” IBM
Research Report, RC22570, September 2002.

[2] F. Allen, et al. “Blue Gene: A Vision for Protein Science Using a
Petaflop Supercomputer,” IBM Systems Journal, 40(2), 2001.

[3] G. Almasi, et al. “MPI on Blue Gene/L: Designing an Efficient Gen-
eral Purpose Messaging Solution for a Large Cellular System,” IBM
Research Report RC22851, July 2003.

[4] G. Almasi, et al. “An Overview of the Blue Gene/L System Software
Organization,” In Proceedings of Euro-Par, 2003.

[5] G. Almasi, et al. “Architecture and Performance of the Blue Gene/L
Message Layer,” IBM Research Report RC23236, July 2004.

[6] G. Almasi, et al. “Early experience with scientific applications on
the Blue Gene/L supercomputer,” In Proceedings of Euro-Par Par-
allel Processing Conference, 2005.

[7] “Business Process Execution Language for Web Services,”
www6.software.ibm.com/software/developer/

library/ws-bpel.pdf

[8] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. “Heuris-
tics for Scheduling Parameter Sweep Applications in Grid Environ-
ments,” In Proc. of the Heterogeneous Computing Workshop, 2000.

[9] M. Crouhy, D. Galai, and R. Mark. “A Comparative Analyis of Cur-
rent Credit Risk Models,” Journal of Banking and Finance, vol. 24,
2000.

[10] M. Crouhy, D. Galai, and R. Mark Risk Management, McGraw-Hill,
New York, 2001.

[11] D. Duffie and J. Pan. “An overview of value at risk,” Journal of
Derivatives, vol. 4, 1997.

[12] R. Enekel et al. “Custom Math functions for Molecular Dynamics,”
IBM Journal of Research and Development, vol. 49, no. 2, 2005.

[13] P. Glasserman, P. Heidelberger, and P. Shahabuddin. “Efficient
Monte Carlo Methods for Value-at-Risk,” IBM Research Technical
Report RC21812, 2000.

[14] J. Gray, et al. “Scientific Data Management in the Coming Decade,”
SIGMOD Record, vol. 34, 2005.

[15] G. Heber and J. Gray. “Supporting Finite Element Analysis with a
Relational Database Backend; Part I: There is Life beyond Files,”
Microsoft Technical Report MSR-TR-2005-49, April 2005.

[16] IBM. The General Parallel File System, www-03.ibm.com/
servers/eserver/clusters/software/gpfs.html.

[17] “The Job Submission Description Language Specifica-
tion,” https://forge.gridforum.org/projects/

jsdl-wg/

[18] E. Krevat, J. G. Castanos and J. E. Moreira “Job Scheduling for the
Blue Gene/L System,” In Proceedings of Job Scheduling Strategies
for Parallel Processing, 8th International Workshop, 2002.

[19] “MPI-2 Extensions to the Message Passing Interface,” www.

mpi-forum.org/docs/mpi2-report.pdf

[20] T. Phan, K. Ranganathan, and R. Sion. “Evolving Toward the Per-
fect Schedule: Co-scheduling Job Assignments and Data Replica-
tion in Wide-Area Systems Using a Genetic Algorithm,” In Proc. of
the Workshop on Job Scheduling Strategies for Parallel Processing,
2005.

[21] S. Tezuka, et al. “Monte Carlo Grid for financial risk management,”
Future Generation Computer Systems, vol. 21, 2005.

[22] “The Top500 Supercomputer Sites, June 2006,” www.top500.
org/lists/2006/06

