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Abstract 

 
There are two popular parallel programming 

paradigms available to high performance computing 
users such as engineering and physics professionals: 
message passing and distributed shared memory. It is 
interesting to have a comparative evaluation of these 
paradigms to choose the most adequate one. In this work, 
we present a performance comparison of these two 
programming paradigms using a Computational Physics 
problem as a case study. The self-gravitating ring model 
(Hamiltonian Mean Field model) for N particles is 
extensively studied in the literature as a simplified model 
for long range interacting systems in Physics. We 
parallelized and evaluated the performance of a 
simulation that uses the symplectic integrator to model an 
N particle system. From the obtained results it is possible 
to observe that message passing implementation of the 
symplectic integrator presents better results than 
distributed shared memory implementation.  
 
1. Introduction 
 

In Physics and Engineering, there are several 
simulation problems that require High Performance 
Computing to be executed. In Astrophysics and 
Cosmology, the many-body self-gravitating systems are of 
great importance. Typical examples of those systems are 
globular clusters and elliptical galaxies recognized as self-
gravitating stellar systems.  
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In this work, an experimental model representing an N-
body self-gravitating system is used. In this model, it is 
simulated the circular movement of particles of mass m, 
speed v in a radius r having a spherical mass distribution 
and constant density. A mathematical tool that can be 
employed in the simulation is the symplectic integrator. 

The symplectic integrator is best suited for mechanical 
conservative systems described by Hamilton equations, 
since they preserve the volume in phase space and can be 
put in an explicitly reversible form. Very large simulations 
are not possible to run using a sequential implementation 
of a symplectic integrator algorithm, though it is necessary 
to parallelize the solution. 

There are several ways to parallelize a sequential code 
and various parallel programming paradigms that could be 
used to implement the parallel algorithm. Message passing 
and Distributed Shared Memory – DSM – are two well 
known parallel programming paradigms designed to fit in 
distributed architectures like personal computer clusters. 
During the last decades, cluster computing has shown an 
enormous growth and is an interesting low cost alternative 
of parallell computational system. 

Our goal in this work is to compare the performance of 
the message passing and the DSM parallel programming 
models used to implement the symplectic integrator 
applied to solve an N-Body problem. The algorithm 
chosen is the fourth order integrator described by 
Omelyan et al. [1]. Our code is applied to a self-
gravitating ring model for N particles, extensively studied 
in the literature as a simplified model for long range 
interacting systems in Physics [2, 3, 4, 5, 6, 7]. The 
interaction potential in this system leads to some 
simplification in the numerical implementation such that 
the CPU time scales linearly with N. The message passing 
implementation chosen to be used is the MPICH 1.2.6 and 
for DSM we employed a middleware called JIAJIA.  



 

 

In this work, we present the results obtained from the 
execution tests of the message passing and the DSM 
implementations of the symplectic integrator, and from 
these results we concluded that the message passing 
implementation has better performance results than the 
DSM one for this particular application. We also present 
the application behavior obtained by tracing points placed 
into the MPICH source code, using a hardware assisted 
tool called PM2P. 

 
2. Parallel programming paradigms 
 

There are two most used parallel programming 
paradigms for parallel systems based on clusters of 
computers: message passing and distributed shared 
memory [8], thus it is interesting to compare them and 
evaluate their performance in a real case. 

In the message passing paradigm data is exchanged 
among remote tasks basically by send/receive operations 
and any process interaction is made by the explicit 
message passing. The message passing is typical for 
programs running on computational systems each with its 
own private memory and connected by a communication 
network. Due to possible communication overheads, the 
use of this programming paradigm is only profitable when 
the application granularity is bigger than the 
communication cost involved. Message passing libraries 
allow efficient parallel programs to be written for 
distributed memory systems, providing routines to initiate 
and configure the messaging environment as well as 
sending and receiving packets of data. 

The two most popular high-level message-passing 
systems for scientific and engineering application are: 
Message Passing Interface – MPI – defined by the MPI 
Forum [9] and the Parallel Virtual Machine – PVM – 
from Oak Ridge National Laboratory [10]. PVM has 
several features that MPI lacks to offer [11], leading to 
conclude that this would be the best choice for the 
implementation of a parallel application. However, these 
features offered by PVM have a cost that appears in the 
application performance as observed in [12], where one 
same application was implemented using MPI and PVM, 
and performance of implementation MPI showed superior 
performance results. Therefore, in the present work, MPI 
was the message passing model chosen for the 
implementation of the application. 

Distributed Shared Memory – DSM – is the extension 
of the shared memory programming model on systems 
without physically shared memory, in this model the 
shared data space is accessed through normal read and 
writes operations encapsulated by a middleware that still 
uses message passing. In contrast to the message passing 
paradigm, in a DSM system a process that wants to fetch 
some data does not need to know its location, it is the 

DSM middleware that will find and fetch the data 
automatically. In most DSM systems, shared data may be 
replicated to enhance the parallelism and the efficiency of 
the applications. There are many implementations of DSM 
middleware, e.g., Quarks [13], JIAJIA [14, 17], 
TreadMarks [15], and DSM-PM 2 [16]. In this work we 
use JIAJIA middleware. 

 
3. Code instrumentation 
 

Instrumentation is done by the insertion of specific 
code instructions to detect and record the program events. 
Each event record contains at least the type of the event, 
the date, and the identification of what process performed 
the event. Performance tuning, debugging, and testing all 
require instrumentation to provide information about the 
execution. Information about the use of architectural 
features, for example, is required for performance tuning, 
while detailed information concerning the global state of 
the computation is essential for testing and debugging 
[18]. 

Code instrumentation is one way to collect data about a 
program and there are many ways to do this 
instrumentation. One can choose to insert it into the 
application source code directly or to let the compiler 
automatically do this job [19]. Another way to instrument 
the code is to use runtime libraries, or even to modify the 
linked executable. 

In this work, we are interested in collecting finer 
grained information about our application, and due to this 
fact, we decided to use direct instrumentation of the 
application because when it is compared to kernel or 
library instrumentation it is known that this is the best way 
to collect information in this granularity [18]. For 
example, loop level or basic block data can only be 
collected with the direct instrumentation technique. 

To instrument our code, we tested five ways to capture 
time information: MPI_WTIME, jia_clock, Gettimeofday, 
RDTSCdll, and rdtsc. Our experiments showed that the 
assembly instruction rdtsc is the less costly and 
consequently the less intrusive way to gather time results. 
This assembly instruction returns the number of clock 
cycles elapsed since the last reboot of the machine and 
due to its machine’s clock precision and minimal 
execution time, it gives better execution time information 
when compared to the functions gettimeofday of the C 
language or to mpiwtime of the MPI library that gives 
only microsecond precision [20]. 
 
4. Hardware assisted tracing 
 

There are three basic techniques for tracing: Hardware, 
Hybrid and Software tracing [18, 21]. Each of those has 



 

 

positives and negatives points. Software tracing is the 
cheapest and most portable technique, but it is difficult to 
obtain high quality traces due to the lack of global clocks 
and to the intrusions caused by the tracing activity itself. 
Hardware tracing requires the development of specific 
hardware what can be very costly. On the other hand, it is 
the less intrusive way of tracing, what means that it tends 
not to interfere into the code execution to make the trace. 

Hybrid tracing combines the software and hardware 
tracing approaches. This kind of hardware assisted tracer 
is triggered by application level instructions, the program 
being monitored initiates event recording by making a 
request to the hardware collector, and its generated 
information is written on dedicated hardware ports 
connected to monitoring hardware by a separate bus or 
interconnection network, what maintains the monitoring 
intrusion in a very low level. This approach provides the 
event visibility of an application direct instrumentation 
with the low overhead of dedicated hardware collectors. 

To obtain precise measures of execution time, it is 
necessary to synchronize the clocks of the machines where 
the program is executed. However, in Beowulf class of 
computer clusters, clock synchronization is one of the 
problems that constantly appear. The individual clock of 
each node is sensitive to external conditions such as 
temperature and suffers the effect of different constant 
drifts, making it difficult to maintain [22] a unified clock 
view. Many software, hardware and hybrid [18] approach 
have been proposed to enhance clock synchronization 
between the nodes of the clusters, but problems like 
network delays do not permit a perfect view of an unified 
reference clock [22, 23]. Due to this fact, that local clocks 
of the machines are asynchronous, it is necessary to have 
an external way to obtain the time measures of application 
events. 

One very interesting approach to this choice is the use 
of the parallel port to send signals to a machine which is 
responsible for collecting the data of all the machines 
executing the program. In [24], it is presented PM2P, a 
tool for use in clusters of personal computers that provides 
a graphic visualization of the temporal execution of 
distributed applications that use the MPI standard for 
message passing. The tool uses an approach involving the 
parallel port to read the time of events that occur in all 
different machines of a cluster. In the present work, we 
used PM2P to observe the behavior of the MPI 
implementation in a cluster environment. 
 
5. Symplectic parallel algorithm  
 

In astrophysics and cosmology, many-body gravitating 
systems are of great importance. Typical examples of 
these kinds of systems are globular clusters and elliptical 
galaxies, which are recognized as self-gravitating stellar 

systems. In this work, we used a toy model representing 
an N-body self-gravitating systems: the circular motion of 
particles of mass m in a spherical mass distribution with a 
constant density. The core values involved in this model 
are: position, velocity, mass and force. In our tests, the 
mass of all the particles of the system was considered to 
be unitary. In the algorithm implementation, the values of 
position, velocity and force are represented by three 
distinct vectors: p, r and f respectively. Each element of 
these vectors corresponds to the information about each 
system particle. 

The mathematical tool used to solve the equations 
modeling the simulation is the symplectic integrator, 
which is best suited for mechanical conservative systems 
described by Hamilton equations, since they preserve the 
volume in phase space and can be put in an explicitly 
reversible form. The sequential algorithm chosen is the 
fourth order integrator described by Omelyan et al. [1]. 
This algorithm works as follows: in the initialization step 
of the algorithm, random values are given to each element 
of the vectors r and p, and the initial energy of the system 
is calculated. After the initializing step, there is an 
iteration loop that represents system time elapsing. Inside 
this loop, four different steps are followed to calculate the 
values of force, velocity, and position for each particle of 
the system. The computation continues until the time 
previously set by the loop condition finishes. Figure 1 
shows the expressions for the single-step propagation of 
position and velocity from time t to t+h of the symplectic 
sequential algorithm. 

 
rI = r(t) + ξhf[p(t)]/m 
pI = p(t) + (1-2λ)hrI/2 
rII = rI + χhf[pI]/m 
pII = pI + λhrII 
rIII = rII + (1-2(χ+ξ))hf[pII]/m 
pIII = pII + λhrIII 
rIV = rIII + χhf[pIII]/m 
p(t+h) = pIII + (1-2λ)hrIV/2 
r(t+h) = rIV + ξhf[p(t+h)]/m 

 
Figure 1. Single-step propagation of 
position and velocity from time t to t+h for 
a single particle 
 
For the algorithm parallelization, we adopted a simple 

approach which consists in the equally distribution of the 
system particles among the computational tasks, therefore, 
each task is responsible for a subset of particles. In the 
message passing implementation, reduction operations are 
responsible for the aggregation of values calculated for 
each particle subset by the responsible task and for the 
posterior broadcast of the total values to all tasks. In the 



 

 

shared memory implementation, global values are directly 
written into shared variables using the appropriate 
synchronization mechanisms. Figure 2 shows the pseudo-
code of the parallel symplectic algorithm implementation 
for each subset of system particles, it is also shown the 
communication that occurs among the existing tasks and it 
is possible to observe the tracing points introduced into 
the code. Our code is applied to a self- gravitating ring 
model (Hamiltonian Mean Field model) for N particles, 
extensively studied in the literature as a simplified model 
for long range interacting systems in physics. The 
interaction potential in this system leads to some 
simplification in the numerical implementation such that 
the CPU time scales linearly with N. This property is 
particularly useful for testing the parallel code for a large 
number of particles (typically 108). As mentioned before, 
a reason for using parallel computing is putting together 
several processors in parallel to solve a problem should 
help obtain the solution more quickly. Moreover, 
distributing a problem onto several processors can help 
solve a problem that is very large for a single serial 
machine. In our experiment, we observed that the 
sequential code maximum number of particles is limited to 
50 millions, when we increased this number of particles, 
the system answers with a lack of memory message. 
Though, the parallel execution seems to be the solution 
for a larger number of particles simulations. 

 
while (time < finalTime)
{

// 1º step

for (i=0;i<vectorSize;i++)
{

tracing_point1
Force_calculation
Position_calculaton
Velocity_calculation
tracing_point2

}
tracing_point3
Communication among tasks
tracing_point4
.....
// 4º step

for (i=0;i<vectorSize;i++)
{

Force_calculation
Position_calculaton
Velocity_calculation

}

Communication among tasks
time = time + deltaTime;

} 
Figure 2. Parallel symplectic algorithm 
showing communication among tasks and 
tracing points. 

6. Computational environment 
 

The cost of COTS (commodity off the shelf) 
components for PCs has been constantly decreased over 
the past decades, what made it possible to build parallel 
systems, such as PCs clusters, with a relatively little 
amount of money. Moreover, the growth of public domain 
software such as MPI library and operational systems like 
Linux, also contributed a lot to the increment of this kind 
of clusters. Nowadays, the cluster is an established and 
spreadly used paradigm of parallel computation [18, 19]. 

Our computational environment is a homogeneous 
Beowulf cluster of eight machines. Each machine has two 
AMD Atholn MP 1900+ processors at 1600 MHz and 256 
KB of cache L2 memory. Each node has 1GB of local 
RAM memory and 40 GB hard disk. They are 
interconnected by a gigabit network. We run it with a 
version of Linux operating system. 

As shown in Figure 3, when using the parallel port to 
gather the performance results, we used a front-end 
machine that has the following characteristics: Intel 
Pentium II 350 MHz processor with 512 KB of L2 cache, 
160 MB of RAM memory and a hard disk of 6.5 GB. This 
machine is interconnected to the others by a megabit 
network. 

 

 
 
Figure 3. Homogeneous computational 
environment and PM2P tool. 

 
7. Experimental results 
 

The implementations written in message passing and 
distributed shared memory were tested for 1, 2, 4, 6 and 8 
tasks, each task running on a different machine of the 
homogeneous cluster [20]. We ran the tests in a way that 
all the tasks treated the same number of particles. The 
total number of particles used in the tests was in the range 
of 24 thousand to 98 millions of particles. Figure 4 



 

 

graphically exposes the behavior of the execution times, in 
seconds, for a single iteration of the message passing 
implementation. 

 

 
 
Figure 4. Execution time versus number of 
particles and number of tasks for the MPI 
implementation. 
 
Using the results showed before, we calculated the 

obtained speedup. Due to the fact that the simulation with 
just a task is limited to 50 million particles, it was not 
possible to calculate the speedup for a simulation of a 
system with 98 million of particles. The graphics of 
Figure 5 visually presents the obtained speedup. Looking 
at this graphics, we can notice that significant values for 
the speedup are obtained for a number of tasks greater 
than 4, simulating a system with more than 49 million 
particles. 

One possible explanation for this fact is that using a 
little number of tasks (one task per machine) leads to an 
overload of each of them when processing the vectors 
involved in the calculus of the simulation. This overload 
decreases when new tasks (machines) are added to the 
computational system. 

For the JIAJIA implementation the tests were also 
executed using 1, 2, 4, 6 and 8 tasks, one task per 
machine, but the number of particles of the simulated 
system was restricted to a range of 24 thousand to 3 
million of particles. During the execution of the tests, we 
noticed that for 2 tasks (2 machines) it was possible to 
simulate a system of at most 12 million of particles, but it 
was not possible to run the tests for this number of 
particles to another number of tasks. Thus, we decided to 
analyze the data obtained from the simulations of at most 
3 million of particles. 

The graphic of Figure 6 shows the behavior of these 
values for each set of machines, allowing the visualization 
of the relation between number of machines, number of 
particles and execution times. It can be noticed that the 
behavior of the relation between number of machines and 

execution times is the inverse one of what it happens in 
the MPI implementation. In the JIAJIA implementation, 
as the number of machines grows, the time of execution 
for one same number of particles also grows. However, in 
the MPI implementation, as more machines are added to 
the cluster, the execution time decreases. This difference 
can be explained for the fact that as the number of 
machines in the cluster increases, JIAJIA has a bigger cost 
in the distributed shared memory management what leads 
to a significant performance loss. On Figure 7 are 
represented the obtained speedups for the JIAJIA 
implementation. 

On the tests previously taken, we also measured the 
communication times for each implementation which 
obtained results are next presented on the following 
graphics. On Figure 8, one can observe how the 
communication cost behaves as function of the number of 
particles and the number of tasks for the MPI 
implementation for an iteration of the algorithm. 

The values of communication costs for the JIAJIA 
implementation are presented on Figure 9 which shows 
the behavior of this cost as a function of the number of 
particles and the number of tasks. 

 

 
 
Figure 5. Obtained speedups versus 
number of particles and number of tasks 
for the MPI implementation. 
 



 

 

 
Figure 6. Execution time versus number of 
particles and number of tasks for the 
JIAJIA implementation. 
 

 
 
Figure 7. Obtained speedups versus the 
number of particles and the number of 
tasks for the JIAJIA implementation. 
 

 
 
Figure 8. Communication costs versus the 
number of particles and the number of 
tasks for the MPI implementation. 
 

 
 
Figure 9. Communication costs versus the 
number of particles and the number of 
tasks for the JIAJIA implementation. 
 
The three Gantt charts (Figures 10, 11, and 12) are 

graphical representations of the durations for the 
execution of an algorithm iteration of, respectively, 2, 4, 
and 8 tasks against the progression time. These results 
were obtained using the PM2P tool. In these figures, each 
vertical bar represents a specific tracing point placed into 
the source code. 

The Gantt chart of Figure 12 represents the execution 
of an iteration of a 98 million particles system distributed 
among eight tasks. The values for the tracing points 
recorded time instants are detailed on Table 1. The time 
interval between instants Time0 and Time1 (tracing 
points) is spent in parallel tasks initialization. Data 
structure allocation and initialization occurs on the time 
interval between time instants Time1 and Time2. These 
two time intervals just happen on the first program 
iteration, the following intervals occurs inside the iteration 
loop. Inside the loop, mathematical computations are done 
between time instants Time3 and Time4. Time interval 
between Time4 and Time5 denotes the interval time spent 
in the global communication carried out by the AllReduce 
MPI operation. Finally, time instant Time6 represents the 
iteration execution end. 
 
8. Conclusions 
 

In this work it is presented the performance evaluation 
of two implementations of the symplectic integrator using 
two parallel programming paradigms. These paradigms 
are not restricted to professionals of Computer Science; 
researchers of areas like Physics, Mathematics, 
Engineering, and Biology also need High Performance 
Computing to make their simulations feasible. 

To quantify the parallel execution performance of the 
two distinct implementations, the measures of execution 
times and the calculation of obtained speedups have been 



 

 

done varying the number of tasks and the size of the 
problem, by means of the variation of the number of 
particles of the simulated system. To measure the 
execution times, the assembly rdtsc instruction was 
inserted into specific places of each source code. As the 
number of particles was increased, we observed a 
limitation in the JIAJIA implementation in respect to the 

number of particles that could be simulated at a time. In a 
general way, for any number of tasks, it was only possible 
to simulate a system of up to three million of particles. 
However, for the message passing implementation, 
systems of up to a hundred million of particles could be 
simulated. 

 

 
Figure 10. Gantt chart for 2 tasks working on a system of 24 million of particles. 

 
Figure 11 – Gantt chart for 4 tasks working on a system of 49 million of particles. 

 
Figure 12 – Gantt chart for 8 tasks working on a system of 98 million of particles. 

Table 1. Time instants of program events shown in Figure 12. 
Task Time0 Time1 Time2 Time3 Time4 Time5 Time6 

1 0,05056 2,82642 6,65730 6,66988 23,40901 28,27691 28,35633 
2 0,00000 2,77684 6,60735 6,62154 23,37406 28,26940 28,31549 
3 0,00144 2,78168 6,63051 6,63118 23,40428 28,30632 28,35172 
4 0,00152 2,78062 6,61694 6,62858 23,40176 28,30703 28,34064 
5 0,00179 2,78098 6,61007 6,62900 23,39526 28,29311 28,34224 
6 0,00212 2,78170 6,62215 6,63013 23,40304 28,30538 28,34612 
7 0,00253 2,78297 6,61695 6,63267 23,44196 28,35466 28,35542 
8 0,00285 2,78275 6,62684 6,63183 23,40427 28,30672 28,35122 



 

 

From the obtained results it was possible to observe 
that the message passing implementation of the symplectic 
integrator presents better results in terms of total 
execution time than distributed shared memory 
implementation. We believe that these results are caused 
by the costs involved on distributed shared memory 
management, which involves kernel system calls, context 
switching, and communication latency. In our point of 
view, another positive aspect of the MPI implementation 
is that it forces the programmer to explicitly mark into the 
code the communication points, what permits an enhanced 
control and understanding of what is happening during 
runtime. Moreover, MPI has a better support community 
and documentation. 

Using a tool like PM2P makes it possible to visualize 
the tracing points and identify execution bottlenecks that 
lead to performance loss and try to solve them. In the 
present work, we used the PM2P tool to monitor the 
execution in a homogeneous environment, bringing us a 
better understanding of the application behavior. 
 
References 
 
[1] Omelyan I. P., Mryglod I. M., Folk R., Optimized Forest-

Ruth- and Suzuki-likealgorithms for integration of motion in 
many-body systems, Computer Phys. Comm., V.146, No 2.- 
P. 188-202, 2002. 

[2] Tatekawa T., et al, Thermodynamics of the self-gravitating 
ring model, Physical Review E 71, 056111, The American 
Physical Society, 2005. 

[3] Borstnik U, Janezic D., Symplectic Molecular Dynamics 
Simulations on Specially Designed Parallel Computers, J. 
Chem. Inf. Model, Nov-Dec;45(6):1600-4, 2005. 

[4] Oh, K. J., Klein, M. L., A general purpose parallel molecular 
dynamics simulation program, Computer Physics 
Communications 174, pp. 560-568, 2005. 

[5] Spinnato, P. F., van Albada, G.D., Sloot, P.M.A, 
Performance Modeling of Distributed Hybrid Architectures, 
IEEE Transactions on Parallel and Distributed Systems, vol. 
15, no. 1, pp. 81-92, 2004. 

[6] Pruett, C. D., Rudmin, J. W., Lacy, J. M., An adaptive N-
body algorithm of optimal order, Journal of Computational 
Physics, vol. 187, Issue 1 , pp. 298-317, 2003. 

[7] Sweatman, W. L., The development of a parallel N-body 
code for the Edinburgh concurrent supercomputer, Journal 
of Computational Physics, vol. 111, no. 1, pp. 110-119, 
1994. 

[8] Hungershöfer, J., Streit, A., Wierum, J-M, Efficient 
Resource Management for Malleable Applications, 
Technical Report PC 2 TR-003-01, Paderborn Center for 
Parallel Computing, Paderborn, Germany, December 2001. 

[9] MPI Fórum www.mpi-forum.org/ 
[10] Parallel Virtual Machine http://www.csm.ornl.gov/pvm/ 

[11] Gropp, W., Lusk, E, Goals guiding design: PVM and MPI, 
IEEE International Conference on Cluster Computing 
Proceedings, pp. 257-265, 2002. 

[12] Villa Verde F., Pfitscher, G. H., Viana D. M., Performance 
Characterization of a Parallel Code Based on Domain 
Decomposition on PCs Cluster, I2TS'2006 - 5th 
International Information and Telecommunication 
Technologies Symposium, Cuiabá, Brazil, 2006. 

[13] Quarks http://www.cs.utah.edu/flux/quarks.html 
[14] JIAJIA, JIAJIA Distributed Shared Memory Project, 

Institute of Computing Technology, CAS; 
 http://www.ict.ac.cn/chpc/dsm/. 

[15] TreadMarks http://www.cs.rice.edu/~willy/TreadMarks/ 
[16] DSM-PM2 http://www.irisa.fr/paris/pages-perso/Gabriel-

Antoniu/dsm-pm2.htm 
[17] Weiwu H., Weisong S., Zhimin T., The JIAJIA Software 

DSM System; Center of High Performance Computing, 
Institute of Computing Technology, Chinese Academy of 
Sciences, 1998. 

[18] Nonaka, J., Pfitscher, G. H., Nakano, H., Onisi, K. Low-
Cost Hybrid Internal Clock Synchronization Mechanism for 
COTS PC Cluster. EuroPar 2002, LNCS 2400, Springer-
Verlag, Berlin, pp 121–124, 2002. 

[19] Parhami, B., Introduction to Parallel Processing Algorithms 
and Architectures, Kluwer Academic Publishers, University 
of California at Santa Barbara, California, 2002. 

[20] Ferreira, R. R., Performance characterization of the finite 
element method parallel aplication in heterogeneous 
environments, Computer Science MSc Thesis, University of 
Brasília, 2006. 

[21] Kergommeaux, J. C., Maillet, E., Vincent, J-M., 
Monitoring parallel programs for performance tuning in 
cluster environments. In: Parallel program development for 
cluster computing: methodology, tools and integrated 
environments archive, pp 131–150, Nova Science 
Publishers, Inc. Commack, NY, USA, 2001. 

[22] Tanenbaum, A. S., van Steen, M., Distributed Systems: 
Principles and Paradigms, Prentice Hall, 2002. 

[23] Verissimo, P., Raynal, M., Clock and Temporal Order, in: 
Recent Advances in Distributed Systems, Springer-Verlag, 
2000. 

[24] Haridasan, M., Pfitscher, G. H., PM2P: A tool for 
performance monitoring of message passing applications in 
COTS PC clusters, in Proceedings of the 15th Symposium 
on Computer Architecture and High Performance 
Computing (SBAC-PAD’03), 2003. 

[25] Top 500 Supercomputer Sites, http://www.top500.org 
[26] Gobbert, M. K, Configuration and Performance of a 

Beowulf cluster for Large Scale Scientific Simulations, 
Computing in Science and Engineering, pp. 14-26, 2005. 

[27] Passos, L.B.C., Performance evaluation of a method to 
solve the temporal evolution of self-gravitating systems 
using two parallel programming paradigms: message passing 
and distributed shared memory, Computer Science MSc 
Thesis, University of Brasília, 2006. 

 
 


