

Performance Evaluation of two Parallel Programming Paradigms Applied to the
Symplectic Integrator Running on COTS PC Cluster

Lorena B. C. Passos1, Gerson H. Pfitscher1, Tarcísio M. Rocha Filho2

1University of Brasilia
Department of Computer Science
70.919-970, Brasília – DF, Brazil

{lbrasil, gerson}@unb.br

2University of Brasilia
Institute of Physics

70.919-970, Brasília – DF, Brazil
marciano@fis.unb.br

Abstract

There are two popular parallel programming

paradigms available to high performance computing
users such as engineering and physics professionals:
message passing and distributed shared memory. It is
interesting to have a comparative evaluation of these
paradigms to choose the most adequate one. In this work,
we present a performance comparison of these two
programming paradigms using a Computational Physics
problem as a case study. The self-gravitating ring model
(Hamiltonian Mean Field model) for N particles is
extensively studied in the literature as a simplified model
for long range interacting systems in Physics. We
parallelized and evaluated the performance of a
simulation that uses the symplectic integrator to model an
N particle system. From the obtained results it is possible
to observe that message passing implementation of the
symplectic integrator presents better results than
distributed shared memory implementation.

1. Introduction

In Physics and Engineering, there are several
simulation problems that require High Performance
Computing to be executed. In Astrophysics and
Cosmology, the many-body self-gravitating systems are of
great importance. Typical examples of those systems are
globular clusters and elliptical galaxies recognized as self-
gravitating stellar systems.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

In this work, an experimental model representing an N-
body self-gravitating system is used. In this model, it is
simulated the circular movement of particles of mass m,
speed v in a radius r having a spherical mass distribution
and constant density. A mathematical tool that can be
employed in the simulation is the symplectic integrator.

The symplectic integrator is best suited for mechanical
conservative systems described by Hamilton equations,
since they preserve the volume in phase space and can be
put in an explicitly reversible form. Very large simulations
are not possible to run using a sequential implementation
of a symplectic integrator algorithm, though it is necessary
to parallelize the solution.

There are several ways to parallelize a sequential code
and various parallel programming paradigms that could be
used to implement the parallel algorithm. Message passing
and Distributed Shared Memory – DSM – are two well
known parallel programming paradigms designed to fit in
distributed architectures like personal computer clusters.
During the last decades, cluster computing has shown an
enormous growth and is an interesting low cost alternative
of parallell computational system.

Our goal in this work is to compare the performance of
the message passing and the DSM parallel programming
models used to implement the symplectic integrator
applied to solve an N-Body problem. The algorithm
chosen is the fourth order integrator described by
Omelyan et al. [1]. Our code is applied to a self-
gravitating ring model for N particles, extensively studied
in the literature as a simplified model for long range
interacting systems in Physics [2, 3, 4, 5, 6, 7]. The
interaction potential in this system leads to some
simplification in the numerical implementation such that
the CPU time scales linearly with N. The message passing
implementation chosen to be used is the MPICH 1.2.6 and
for DSM we employed a middleware called JIAJIA.

In this work, we present the results obtained from the
execution tests of the message passing and the DSM
implementations of the symplectic integrator, and from
these results we concluded that the message passing
implementation has better performance results than the
DSM one for this particular application. We also present
the application behavior obtained by tracing points placed
into the MPICH source code, using a hardware assisted
tool called PM2P.

2. Parallel programming paradigms

There are two most used parallel programming
paradigms for parallel systems based on clusters of
computers: message passing and distributed shared
memory [8], thus it is interesting to compare them and
evaluate their performance in a real case.

In the message passing paradigm data is exchanged
among remote tasks basically by send/receive operations
and any process interaction is made by the explicit
message passing. The message passing is typical for
programs running on computational systems each with its
own private memory and connected by a communication
network. Due to possible communication overheads, the
use of this programming paradigm is only profitable when
the application granularity is bigger than the
communication cost involved. Message passing libraries
allow efficient parallel programs to be written for
distributed memory systems, providing routines to initiate
and configure the messaging environment as well as
sending and receiving packets of data.

The two most popular high-level message-passing
systems for scientific and engineering application are:
Message Passing Interface – MPI – defined by the MPI
Forum [9] and the Parallel Virtual Machine – PVM –
from Oak Ridge National Laboratory [10]. PVM has
several features that MPI lacks to offer [11], leading to
conclude that this would be the best choice for the
implementation of a parallel application. However, these
features offered by PVM have a cost that appears in the
application performance as observed in [12], where one
same application was implemented using MPI and PVM,
and performance of implementation MPI showed superior
performance results. Therefore, in the present work, MPI
was the message passing model chosen for the
implementation of the application.

Distributed Shared Memory – DSM – is the extension
of the shared memory programming model on systems
without physically shared memory, in this model the
shared data space is accessed through normal read and
writes operations encapsulated by a middleware that still
uses message passing. In contrast to the message passing
paradigm, in a DSM system a process that wants to fetch
some data does not need to know its location, it is the

DSM middleware that will find and fetch the data
automatically. In most DSM systems, shared data may be
replicated to enhance the parallelism and the efficiency of
the applications. There are many implementations of DSM
middleware, e.g., Quarks [13], JIAJIA [14, 17],
TreadMarks [15], and DSM-PM 2 [16]. In this work we
use JIAJIA middleware.

3. Code instrumentation

Instrumentation is done by the insertion of specific
code instructions to detect and record the program events.
Each event record contains at least the type of the event,
the date, and the identification of what process performed
the event. Performance tuning, debugging, and testing all
require instrumentation to provide information about the
execution. Information about the use of architectural
features, for example, is required for performance tuning,
while detailed information concerning the global state of
the computation is essential for testing and debugging
[18].

Code instrumentation is one way to collect data about a
program and there are many ways to do this
instrumentation. One can choose to insert it into the
application source code directly or to let the compiler
automatically do this job [19]. Another way to instrument
the code is to use runtime libraries, or even to modify the
linked executable.

In this work, we are interested in collecting finer
grained information about our application, and due to this
fact, we decided to use direct instrumentation of the
application because when it is compared to kernel or
library instrumentation it is known that this is the best way
to collect information in this granularity [18]. For
example, loop level or basic block data can only be
collected with the direct instrumentation technique.

To instrument our code, we tested five ways to capture
time information: MPI_WTIME, jia_clock, Gettimeofday,
RDTSCdll, and rdtsc. Our experiments showed that the
assembly instruction rdtsc is the less costly and
consequently the less intrusive way to gather time results.
This assembly instruction returns the number of clock
cycles elapsed since the last reboot of the machine and
due to its machine’s clock precision and minimal
execution time, it gives better execution time information
when compared to the functions gettimeofday of the C
language or to mpiwtime of the MPI library that gives
only microsecond precision [20].

4. Hardware assisted tracing

There are three basic techniques for tracing: Hardware,
Hybrid and Software tracing [18, 21]. Each of those has

positives and negatives points. Software tracing is the
cheapest and most portable technique, but it is difficult to
obtain high quality traces due to the lack of global clocks
and to the intrusions caused by the tracing activity itself.
Hardware tracing requires the development of specific
hardware what can be very costly. On the other hand, it is
the less intrusive way of tracing, what means that it tends
not to interfere into the code execution to make the trace.

Hybrid tracing combines the software and hardware
tracing approaches. This kind of hardware assisted tracer
is triggered by application level instructions, the program
being monitored initiates event recording by making a
request to the hardware collector, and its generated
information is written on dedicated hardware ports
connected to monitoring hardware by a separate bus or
interconnection network, what maintains the monitoring
intrusion in a very low level. This approach provides the
event visibility of an application direct instrumentation
with the low overhead of dedicated hardware collectors.

To obtain precise measures of execution time, it is
necessary to synchronize the clocks of the machines where
the program is executed. However, in Beowulf class of
computer clusters, clock synchronization is one of the
problems that constantly appear. The individual clock of
each node is sensitive to external conditions such as
temperature and suffers the effect of different constant
drifts, making it difficult to maintain [22] a unified clock
view. Many software, hardware and hybrid [18] approach
have been proposed to enhance clock synchronization
between the nodes of the clusters, but problems like
network delays do not permit a perfect view of an unified
reference clock [22, 23]. Due to this fact, that local clocks
of the machines are asynchronous, it is necessary to have
an external way to obtain the time measures of application
events.

One very interesting approach to this choice is the use
of the parallel port to send signals to a machine which is
responsible for collecting the data of all the machines
executing the program. In [24], it is presented PM2P, a
tool for use in clusters of personal computers that provides
a graphic visualization of the temporal execution of
distributed applications that use the MPI standard for
message passing. The tool uses an approach involving the
parallel port to read the time of events that occur in all
different machines of a cluster. In the present work, we
used PM2P to observe the behavior of the MPI
implementation in a cluster environment.

5. Symplectic parallel algorithm

In astrophysics and cosmology, many-body gravitating
systems are of great importance. Typical examples of
these kinds of systems are globular clusters and elliptical
galaxies, which are recognized as self-gravitating stellar

systems. In this work, we used a toy model representing
an N-body self-gravitating systems: the circular motion of
particles of mass m in a spherical mass distribution with a
constant density. The core values involved in this model
are: position, velocity, mass and force. In our tests, the
mass of all the particles of the system was considered to
be unitary. In the algorithm implementation, the values of
position, velocity and force are represented by three
distinct vectors: p, r and f respectively. Each element of
these vectors corresponds to the information about each
system particle.

The mathematical tool used to solve the equations
modeling the simulation is the symplectic integrator,
which is best suited for mechanical conservative systems
described by Hamilton equations, since they preserve the
volume in phase space and can be put in an explicitly
reversible form. The sequential algorithm chosen is the
fourth order integrator described by Omelyan et al. [1].
This algorithm works as follows: in the initialization step
of the algorithm, random values are given to each element
of the vectors r and p, and the initial energy of the system
is calculated. After the initializing step, there is an
iteration loop that represents system time elapsing. Inside
this loop, four different steps are followed to calculate the
values of force, velocity, and position for each particle of
the system. The computation continues until the time
previously set by the loop condition finishes. Figure 1
shows the expressions for the single-step propagation of
position and velocity from time t to t+h of the symplectic
sequential algorithm.

rI = r(t) + ξhf[p(t)]/m
pI = p(t) + (1-2λ)hrI/2
rII = rI + χhf[pI]/m
pII = pI + λhrII
rIII = rII + (1-2(χ+ξ))hf[pII]/m
pIII = pII + λhrIII
rIV = rIII + χhf[pIII]/m
p(t+h) = pIII + (1-2λ)hrIV/2
r(t+h) = rIV + ξhf[p(t+h)]/m

Figure 1. Single-step propagation of
position and velocity from time t to t+h for
a single particle

For the algorithm parallelization, we adopted a simple

approach which consists in the equally distribution of the
system particles among the computational tasks, therefore,
each task is responsible for a subset of particles. In the
message passing implementation, reduction operations are
responsible for the aggregation of values calculated for
each particle subset by the responsible task and for the
posterior broadcast of the total values to all tasks. In the

shared memory implementation, global values are directly
written into shared variables using the appropriate
synchronization mechanisms. Figure 2 shows the pseudo-
code of the parallel symplectic algorithm implementation
for each subset of system particles, it is also shown the
communication that occurs among the existing tasks and it
is possible to observe the tracing points introduced into
the code. Our code is applied to a self- gravitating ring
model (Hamiltonian Mean Field model) for N particles,
extensively studied in the literature as a simplified model
for long range interacting systems in physics. The
interaction potential in this system leads to some
simplification in the numerical implementation such that
the CPU time scales linearly with N. This property is
particularly useful for testing the parallel code for a large
number of particles (typically 108). As mentioned before,
a reason for using parallel computing is putting together
several processors in parallel to solve a problem should
help obtain the solution more quickly. Moreover,
distributing a problem onto several processors can help
solve a problem that is very large for a single serial
machine. In our experiment, we observed that the
sequential code maximum number of particles is limited to
50 millions, when we increased this number of particles,
the system answers with a lack of memory message.
Though, the parallel execution seems to be the solution
for a larger number of particles simulations.

while (time < finalTime)
{

// 1º step

for (i=0;i<vectorSize;i++)
{

tracing_point1
Force_calculation
Position_calculaton
Velocity_calculation
tracing_point2

}
tracing_point3
Communication among tasks
tracing_point4
.....
// 4º step

for (i=0;i<vectorSize;i++)
{

Force_calculation
Position_calculaton
Velocity_calculation

}

Communication among tasks
time = time + deltaTime;

}
Figure 2. Parallel symplectic algorithm
showing communication among tasks and
tracing points.

6. Computational environment

The cost of COTS (commodity off the shelf)
components for PCs has been constantly decreased over
the past decades, what made it possible to build parallel
systems, such as PCs clusters, with a relatively little
amount of money. Moreover, the growth of public domain
software such as MPI library and operational systems like
Linux, also contributed a lot to the increment of this kind
of clusters. Nowadays, the cluster is an established and
spreadly used paradigm of parallel computation [18, 19].

Our computational environment is a homogeneous
Beowulf cluster of eight machines. Each machine has two
AMD Atholn MP 1900+ processors at 1600 MHz and 256
KB of cache L2 memory. Each node has 1GB of local
RAM memory and 40 GB hard disk. They are
interconnected by a gigabit network. We run it with a
version of Linux operating system.

As shown in Figure 3, when using the parallel port to
gather the performance results, we used a front-end
machine that has the following characteristics: Intel
Pentium II 350 MHz processor with 512 KB of L2 cache,
160 MB of RAM memory and a hard disk of 6.5 GB. This
machine is interconnected to the others by a megabit
network.

Figure 3. Homogeneous computational
environment and PM2P tool.

7. Experimental results

The implementations written in message passing and
distributed shared memory were tested for 1, 2, 4, 6 and 8
tasks, each task running on a different machine of the
homogeneous cluster [20]. We ran the tests in a way that
all the tasks treated the same number of particles. The
total number of particles used in the tests was in the range
of 24 thousand to 98 millions of particles. Figure 4

graphically exposes the behavior of the execution times, in
seconds, for a single iteration of the message passing
implementation.

Figure 4. Execution time versus number of
particles and number of tasks for the MPI
implementation.

Using the results showed before, we calculated the

obtained speedup. Due to the fact that the simulation with
just a task is limited to 50 million particles, it was not
possible to calculate the speedup for a simulation of a
system with 98 million of particles. The graphics of
Figure 5 visually presents the obtained speedup. Looking
at this graphics, we can notice that significant values for
the speedup are obtained for a number of tasks greater
than 4, simulating a system with more than 49 million
particles.

One possible explanation for this fact is that using a
little number of tasks (one task per machine) leads to an
overload of each of them when processing the vectors
involved in the calculus of the simulation. This overload
decreases when new tasks (machines) are added to the
computational system.

For the JIAJIA implementation the tests were also
executed using 1, 2, 4, 6 and 8 tasks, one task per
machine, but the number of particles of the simulated
system was restricted to a range of 24 thousand to 3
million of particles. During the execution of the tests, we
noticed that for 2 tasks (2 machines) it was possible to
simulate a system of at most 12 million of particles, but it
was not possible to run the tests for this number of
particles to another number of tasks. Thus, we decided to
analyze the data obtained from the simulations of at most
3 million of particles.

The graphic of Figure 6 shows the behavior of these
values for each set of machines, allowing the visualization
of the relation between number of machines, number of
particles and execution times. It can be noticed that the
behavior of the relation between number of machines and

execution times is the inverse one of what it happens in
the MPI implementation. In the JIAJIA implementation,
as the number of machines grows, the time of execution
for one same number of particles also grows. However, in
the MPI implementation, as more machines are added to
the cluster, the execution time decreases. This difference
can be explained for the fact that as the number of
machines in the cluster increases, JIAJIA has a bigger cost
in the distributed shared memory management what leads
to a significant performance loss. On Figure 7 are
represented the obtained speedups for the JIAJIA
implementation.

On the tests previously taken, we also measured the
communication times for each implementation which
obtained results are next presented on the following
graphics. On Figure 8, one can observe how the
communication cost behaves as function of the number of
particles and the number of tasks for the MPI
implementation for an iteration of the algorithm.

The values of communication costs for the JIAJIA
implementation are presented on Figure 9 which shows
the behavior of this cost as a function of the number of
particles and the number of tasks.

Figure 5. Obtained speedups versus
number of particles and number of tasks
for the MPI implementation.

Figure 6. Execution time versus number of
particles and number of tasks for the
JIAJIA implementation.

Figure 7. Obtained speedups versus the
number of particles and the number of
tasks for the JIAJIA implementation.

Figure 8. Communication costs versus the
number of particles and the number of
tasks for the MPI implementation.

Figure 9. Communication costs versus the
number of particles and the number of
tasks for the JIAJIA implementation.

The three Gantt charts (Figures 10, 11, and 12) are

graphical representations of the durations for the
execution of an algorithm iteration of, respectively, 2, 4,
and 8 tasks against the progression time. These results
were obtained using the PM2P tool. In these figures, each
vertical bar represents a specific tracing point placed into
the source code.

The Gantt chart of Figure 12 represents the execution
of an iteration of a 98 million particles system distributed
among eight tasks. The values for the tracing points
recorded time instants are detailed on Table 1. The time
interval between instants Time0 and Time1 (tracing
points) is spent in parallel tasks initialization. Data
structure allocation and initialization occurs on the time
interval between time instants Time1 and Time2. These
two time intervals just happen on the first program
iteration, the following intervals occurs inside the iteration
loop. Inside the loop, mathematical computations are done
between time instants Time3 and Time4. Time interval
between Time4 and Time5 denotes the interval time spent
in the global communication carried out by the AllReduce
MPI operation. Finally, time instant Time6 represents the
iteration execution end.

8. Conclusions

In this work it is presented the performance evaluation
of two implementations of the symplectic integrator using
two parallel programming paradigms. These paradigms
are not restricted to professionals of Computer Science;
researchers of areas like Physics, Mathematics,
Engineering, and Biology also need High Performance
Computing to make their simulations feasible.

To quantify the parallel execution performance of the
two distinct implementations, the measures of execution
times and the calculation of obtained speedups have been

done varying the number of tasks and the size of the
problem, by means of the variation of the number of
particles of the simulated system. To measure the
execution times, the assembly rdtsc instruction was
inserted into specific places of each source code. As the
number of particles was increased, we observed a
limitation in the JIAJIA implementation in respect to the

number of particles that could be simulated at a time. In a
general way, for any number of tasks, it was only possible
to simulate a system of up to three million of particles.
However, for the message passing implementation,
systems of up to a hundred million of particles could be
simulated.

Figure 10. Gantt chart for 2 tasks working on a system of 24 million of particles.

Figure 11 – Gantt chart for 4 tasks working on a system of 49 million of particles.

Figure 12 – Gantt chart for 8 tasks working on a system of 98 million of particles.

Table 1. Time instants of program events shown in Figure 12.
Task Time0 Time1 Time2 Time3 Time4 Time5 Time6

1 0,05056 2,82642 6,65730 6,66988 23,40901 28,27691 28,35633
2 0,00000 2,77684 6,60735 6,62154 23,37406 28,26940 28,31549
3 0,00144 2,78168 6,63051 6,63118 23,40428 28,30632 28,35172
4 0,00152 2,78062 6,61694 6,62858 23,40176 28,30703 28,34064
5 0,00179 2,78098 6,61007 6,62900 23,39526 28,29311 28,34224
6 0,00212 2,78170 6,62215 6,63013 23,40304 28,30538 28,34612
7 0,00253 2,78297 6,61695 6,63267 23,44196 28,35466 28,35542
8 0,00285 2,78275 6,62684 6,63183 23,40427 28,30672 28,35122

From the obtained results it was possible to observe
that the message passing implementation of the symplectic
integrator presents better results in terms of total
execution time than distributed shared memory
implementation. We believe that these results are caused
by the costs involved on distributed shared memory
management, which involves kernel system calls, context
switching, and communication latency. In our point of
view, another positive aspect of the MPI implementation
is that it forces the programmer to explicitly mark into the
code the communication points, what permits an enhanced
control and understanding of what is happening during
runtime. Moreover, MPI has a better support community
and documentation.

Using a tool like PM2P makes it possible to visualize
the tracing points and identify execution bottlenecks that
lead to performance loss and try to solve them. In the
present work, we used the PM2P tool to monitor the
execution in a homogeneous environment, bringing us a
better understanding of the application behavior.

References

[1] Omelyan I. P., Mryglod I. M., Folk R., Optimized Forest-

Ruth- and Suzuki-likealgorithms for integration of motion in
many-body systems, Computer Phys. Comm., V.146, No 2.-
P. 188-202, 2002.

[2] Tatekawa T., et al, Thermodynamics of the self-gravitating
ring model, Physical Review E 71, 056111, The American
Physical Society, 2005.

[3] Borstnik U, Janezic D., Symplectic Molecular Dynamics
Simulations on Specially Designed Parallel Computers, J.
Chem. Inf. Model, Nov-Dec;45(6):1600-4, 2005.

[4] Oh, K. J., Klein, M. L., A general purpose parallel molecular
dynamics simulation program, Computer Physics
Communications 174, pp. 560-568, 2005.

[5] Spinnato, P. F., van Albada, G.D., Sloot, P.M.A,
Performance Modeling of Distributed Hybrid Architectures,
IEEE Transactions on Parallel and Distributed Systems, vol.
15, no. 1, pp. 81-92, 2004.

[6] Pruett, C. D., Rudmin, J. W., Lacy, J. M., An adaptive N-
body algorithm of optimal order, Journal of Computational
Physics, vol. 187, Issue 1 , pp. 298-317, 2003.

[7] Sweatman, W. L., The development of a parallel N-body
code for the Edinburgh concurrent supercomputer, Journal
of Computational Physics, vol. 111, no. 1, pp. 110-119,
1994.

[8] Hungershöfer, J., Streit, A., Wierum, J-M, Efficient
Resource Management for Malleable Applications,
Technical Report PC 2 TR-003-01, Paderborn Center for
Parallel Computing, Paderborn, Germany, December 2001.

[9] MPI Fórum www.mpi-forum.org/
[10] Parallel Virtual Machine http://www.csm.ornl.gov/pvm/

[11] Gropp, W., Lusk, E, Goals guiding design: PVM and MPI,
IEEE International Conference on Cluster Computing
Proceedings, pp. 257-265, 2002.

[12] Villa Verde F., Pfitscher, G. H., Viana D. M., Performance
Characterization of a Parallel Code Based on Domain
Decomposition on PCs Cluster, I2TS'2006 - 5th
International Information and Telecommunication
Technologies Symposium, Cuiabá, Brazil, 2006.

[13] Quarks http://www.cs.utah.edu/flux/quarks.html
[14] JIAJIA, JIAJIA Distributed Shared Memory Project,

Institute of Computing Technology, CAS;
 http://www.ict.ac.cn/chpc/dsm/.

[15] TreadMarks http://www.cs.rice.edu/~willy/TreadMarks/
[16] DSM-PM2 http://www.irisa.fr/paris/pages-perso/Gabriel-

Antoniu/dsm-pm2.htm
[17] Weiwu H., Weisong S., Zhimin T., The JIAJIA Software

DSM System; Center of High Performance Computing,
Institute of Computing Technology, Chinese Academy of
Sciences, 1998.

[18] Nonaka, J., Pfitscher, G. H., Nakano, H., Onisi, K. Low-
Cost Hybrid Internal Clock Synchronization Mechanism for
COTS PC Cluster. EuroPar 2002, LNCS 2400, Springer-
Verlag, Berlin, pp 121–124, 2002.

[19] Parhami, B., Introduction to Parallel Processing Algorithms
and Architectures, Kluwer Academic Publishers, University
of California at Santa Barbara, California, 2002.

[20] Ferreira, R. R., Performance characterization of the finite
element method parallel aplication in heterogeneous
environments, Computer Science MSc Thesis, University of
Brasília, 2006.

[21] Kergommeaux, J. C., Maillet, E., Vincent, J-M.,
Monitoring parallel programs for performance tuning in
cluster environments. In: Parallel program development for
cluster computing: methodology, tools and integrated
environments archive, pp 131–150, Nova Science
Publishers, Inc. Commack, NY, USA, 2001.

[22] Tanenbaum, A. S., van Steen, M., Distributed Systems:
Principles and Paradigms, Prentice Hall, 2002.

[23] Verissimo, P., Raynal, M., Clock and Temporal Order, in:
Recent Advances in Distributed Systems, Springer-Verlag,
2000.

[24] Haridasan, M., Pfitscher, G. H., PM2P: A tool for
performance monitoring of message passing applications in
COTS PC clusters, in Proceedings of the 15th Symposium
on Computer Architecture and High Performance
Computing (SBAC-PAD’03), 2003.

[25] Top 500 Supercomputer Sites, http://www.top500.org
[26] Gobbert, M. K, Configuration and Performance of a

Beowulf cluster for Large Scale Scientific Simulations,
Computing in Science and Engineering, pp. 14-26, 2005.

[27] Passos, L.B.C., Performance evaluation of a method to
solve the temporal evolution of self-gravitating systems
using two parallel programming paradigms: message passing
and distributed shared memory, Computer Science MSc
Thesis, University of Brasília, 2006.

