
Integrating Performance Tools with Large-Scale Scientific Software∗

Meng-Shiou Wu1, Jonathan L. Bentz1, Fang Peng1, Masha Sosonkina1,
Mark S. Gordon1,2, Ricky A. Kendall3

1Scalable Computing Laboratory 2 Department of Chemistry
Ames Laboratory, U.S. DOE Iowa State University

Ames, Iowa 50011, USA Ames, Iowa 50011, USA
{mswu,jnbntz,fangp,masha}@scl.ameslab.gov mark@si.fi.ameslab.gov

3National Center for Computational Science,
Oak Ridge National Laboratory, PO Box 2008 MS6008,

Oak Ridge, Tennessee, 37831-6008, USA
kendallra@ornl.gov

Abstract

Modern performance tools provide methods for easy in-
tegration into an application for performance evaluation.
For a large-scale scientific software package that has been
under development for decades and with developers around
the world, several obstacles must be overcome in order to
utilize modern performance tools and explore performance
bottlenecks. In this paper, we present our experience in inte-
grating performance tools with one popular computational
chemistry package. We discuss the difficulties we encoun-
tered and the mechanisms developed to integrate perfor-
mance tools into this code. With performance tools inte-
grated, we show one of the initial performance evaluation
results, and discuss what other challenges we are facing
to conduct performance evaluation for large-scale scientific
packages.

1. Introduction

The development of high performance scientific comput-
ing software has a history of three decades or more. Some

∗This research is supported by Iowa State University under Contract
No. DE-AC02-07CH11358 with the U.S. Department of Energy and in
part by the Scientific Discovery through Advanced Computing SciDAC
2006 award. This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231

1-4244-0910-1/07/$20.00 c©2007 IEEE.

of these software packages are extremely popular today and
have been under active development for multiple decades
(thus even though they have a long history of development,
they do not fit into the exact definition of “legacy code”).
This software is usually developed with a certain program-
ming language, using a particular programming model cho-
sen when the project started. With the progress of parallel
architectures, the programming language and programming
model may no longer be the best choice to provide the best
performance, thus modernization is required to provide op-
timized performance on the latest high performance com-
puters.

When modernizing a scientific software package, the
first step is to identify where performance bottlenecks may
occur. Many large-scale scientific software packages were
developed before performance technologies emerged, and
usually have performance evaluations on a coarse-grain
level only. Given the complexity of concurrent parallel
architectures, it is not easy to identify the cause of per-
formance bottlenecks with only coarse-grain level perfor-
mance data, and detailed performance evaluations are re-
quired. With the maturation of modern performance tools,
detailed performance evaluations of large-scale scientific
software can be as simple as inserting the right Performance
Evaluating Functions (PEF) in the right places. While this
seems to be an easy task given that many modern per-
formance tools provide automatic instrumentation mecha-
nisms, there are several difficulties that must be overcome to
incorporate modern performance tools into large-scale sci-
entific software.

Existing performance tools such as TAU [12], PAPI[9],

KOJAK [8], Paradyn [7], IBM’s XProfiler and others [3, 1],
each have different functionalities to provide different as-
pects of performance testing of software. For example, TAU
provides aggregate profiling data, KOJAK has tracing and
analyzing functionality, PAPI can be used to access hard-
ware counter information, and Paradyn can be use for bi-
nary code instrumentation. To use these tools, we expect
software developers to have a thorough understanding of
the source code of target software, so that they know where
to insert PEF. For a large-scale software package, a devel-
oper usually knows only part of the overall software. More-
over, the software development cycle for a large-scale scien-
tific packages has usually been established for many years.
Adding performance tools may increase the burden for de-
velopers and may require changes to the development cycle.
While these problems can be categorized as software engi-
neering problems, successfully overcoming these problems
is vital to incorporating performance tools into large-scale
scientific software.

One might argue that we could simply use automatic in-
strumentation mechanisms provided by some modern per-
formance tools and this would solve the problems listed
above. The drawback of this approach is that automatic in-
strumentation usually instruments all subroutines in a soft-
ware package. In a large-scale scientific software package
there are usually thousands of subroutines; instrumenting
every subroutine is likely to incur a huge amount of over-
head, and also produce performance information too diffi-
cult to manage. While some threshold may be set to reduce
the number of subroutines instrumented to minimize instru-
mentation overhead, some expected information may also
be lost. From our experience, in many scenarios manual
instrumentation is unavoidable.

The focus of this paper is to show our approach to solv-
ing these software engineering problems that are closely re-
lated to the success of incorporating performance tools into
large-scale software. We first discuss the difficulties we en-
countered in using modern performance tools on large-scale
scientific software. We then discuss the tools and mecha-
nisms we developed to overcome these difficulties. While
we use our approach on one computational chemistry soft-
ware package, the methodology is a generic one and should
be available for application in any scientific code that re-
quires detailed performance evaluation.

2. Large scale computational chemistry pack-
ages

Computational chemistry has become a vital element
to chemistry research, an equal partner with experimental
analysis tools. As the available computational methods in-
crease in accuracy and breadth of capability, it becomes in-
creasingly important to concurrently improve both the effi-

ciency of the computations and the availability of the com-
putational chemistry software, so that it is accessible to the
widest set of possible problems. Computational chemistry
codes have very broad applicability, ranging from combus-
tion to homogeneous and heterogeneous catalysis, to sol-
vent effects and surface science, to solid state chemistry and
physics, to protein folding and biochemical analysis, and a
whole host of other problem classes.

There are several large-scale computational chemistry
packages available; some are commercial products while
others are freely available. Three publicly available large
scale computational chemistry software packages from
DOE are GAMESS [11], NWChem [5] and MPQC [4].
Each package provides it own performance results, usually
on a very coarse grain level such as the total runtime of ma-
jor computations. If a computation does not scale well on a
particular platform, it is usually not easy to identify perfor-
mance bottlenecks with this coarse-grain level performance
data. Our goal in this research is to incorporate modern
performance tools into one of these large scale chemistry
software packages, GAMESS, which has been under devel-
opment for over two decades by many chemists around the
world.

2.1 GAMESS

The General Atomic and Molecular Electronic Structure
System (GAMESS) is an ab initio quantum chemistry pro-
gram, which has been under development for more than
twenty years. GAMESS is able to perform a wide range
of quantum chemistry computations including Hartree-Fock
(HF) wave functions (RHF, ROHF, UHF, GVB, and MC-
SCF) using the self-consistent field method. It is installed
on many high performance computing systems, including
those at most DOE, DOD, and NSF supercomputer centers,
many academic institutions, and widely in the private sector.
It is also part of the standard benchmark suites employed,
for example, by NERSC, by the High Performance Com-
puter Modernization Program, and by several computer
companies (e.g., IBM). The number of GAMESS users is
estimated to be on the order of 100,000 to 150,000. Most
of the source code of GAMESS is written in FORTRAN
77 since it was the most popular programming language for
scientific computing at the time the project started.

Most GAMESS computations can be run in parallel.
GAMESS uses a specialized communication library, DDI
(Distributed Data Interface), for parallel computation. DDI
is designed with the goal of making GAMESS run on any
parallel architecture. Its basic communication protocol is
TCP/IP; it can also use MPI or another communication li-
brary if it is available on the target platforms. The details of
the latest DDI architecture are described in [2, 10].

The GAMESS source code is developed mostly by

2

chemists worldwide. A GAMESS algorithm developer is
usually in charge of a certain part of GAMESS, and hands
the portion of the completed code to the project manager
for testing. New versions of GAMESS are released once or
twice a year, with intermittent minor revisions released as
appropriate.

2.2 Integrating modern performance tools
with GAMESS

In GAMESS, performance information is provided by
the TIMIT() subroutine, which returns the runtime and CPU
utilization between two consecutive TIMIT() calls. The per-
formance information is provided on a coarse grain level: it
shows the total run time and CPU utilization of a whole
computation, or some major computations within a long
computation. If we want to know how much time is spent
in communication, how much time I/O takes or cache uti-
lization for a certain code segment, we need to incorporate
external performance tools to retrieve the performance data
of interest. Developing those tools from scratch is not a
choice since it may take years to develop and there are ex-
isting tools to use.

Performance tools developed during the last decade can
provide more insight to find performance bottlenecks. How-
ever, we need to find the right PEF and instrument them
in the right places. Some existing performance tools such
as PDT [6] provide automatic instrumentation mechanisms
that automatically instrument every subroutine. While this
can save the trouble of finding the right places to instrument
PEF, this cannot be used directly on large-scale software
that contains thousands of subroutines, especially for scien-
tific computing software where many subroutines are called
millions of times within just a few minutes of a computa-
tion. Using naive automatic instrumentation not only may
produce too much information to be useful, but the over-
head of instrumented code can be too large, so it may sig-
nificantly increase the runtime of the computation.

To reduce the overhead caused by instrumented perfor-
mance codes, modern performance tools such as TAU pro-
vide more flexible mechanisms for automatic instrumenta-
tion. It allows users to define a threshold to indicate that if
a subroutine is called up to a certain number of times, we
do not want to profile it at all. While this can greatly reduce
runtime overhead with instrumented codes, some informa-
tion of interest may be lost. For example, in GAMESS the
subroutine QOUT() is used for I/O in some computations
and it is called repeatedly. But if we simply set a threshold
value we may not get the correct time spent in I/O. Another
case that may be solved with manual instrumentation only
is when we are interested in several code segments within a
subroutine. The ENTRY statement in FORTRAN 77 must

also be handled manually1.

A software engineering problem we encountered is that
GAMESS is developed by many scientists that do not have
a computer science background. The complexity in mod-
ern parallel architectures results in many performance tools
that provide a large set of PEF to explore different aspects
of a system. Finding the right tools and functions to use
can be a daunting task. While the learning curve for us-
ing basic performance subroutines is not high, asking ev-
ery application scientist to learn all these tools to proceed
with performance evaluation can be very counterproductive.
Moreover, adding performance subroutines may complicate
the software development procedure that has been used for
years. On the other hand, performance tool developers or
computer scientists usually do not have much knowledge of
the details of scientific packages and can not really define
the sections of code that are really of importance to the per-
formance.

To sum up, our solution has to overcome the following
difficulties:

1. We have to assume the worst-case scenario, i.e., per-
formance tool developers have limited knowledge of
GAMESS source code, and GAMESS algorithm de-
velopers have limited knowledge about performance
tools and performance optimizations, or prefer to focus
on chemistry research instead of spending time learn-
ing different performance tools.

2. The approach to be used must be able to utilize differ-
ent existing performance tools; We want to relieve ap-
plication scientists of the burden of learning different
performance tools and be able to obtain performance
data easily.

3. The tool we develop for GAMESS must be an add-on
and has to cope with different versions of GAMESS
releases. It must be able to handle the dynamic devel-
oping procedures of GAMESS and at the same time
not interfere with the original GAMESS development
procedure.

In the next section we discuss our tool GPERFI and mech-
anism for addressing the above difficulties. GPERFI is a
complementary tool to the existing “off-the-shelf” perfor-
mance tools in that it utilizes them whenever possible, but
adds mechanisms when GAMESS requires more specificity
than available tools provide.

1The ENTRY statement allows program execution to be transfered to
the middle of a subroutine, directly from some other routine in the program

3

3 GAMESS performance tools integrator
(GPERFI)

Our solution to overcome the difficulties discussed in the
last section is to create a master instrumentation file for each
GAMESS version and a flexible instrumentation program
that can automatically instrument any PEF provided by ex-
isting performance tools. The master instrumentation file
is constructed from many instrumentation files provided by
GAMESS algorithm developers (application scientists), and
GPERFI can decide which PEF or tools to use to generate
expected data based on the master instrumentation file. The
contributions of both GAMESS developers and GPERFI de-
velopers are described next.

3.1 Algorithm developers

Since our goal is that the algorithm developers (mainly
chemists) should be able to acquire performance data eas-
ily, and we do not want the already established software de-
velopment procedure to be interrupted, the changes on the
algorithm developer side should be minimized.

In our procedure, algorithm developers need only to de-
fine the “area of interest”. This includes a file or a group
of files, a subroutine or a group of subroutines, or code seg-
ments. In the case of I/O, subroutines or READ/WRITE
identifiers can be specified (details of this will be discussed
in Section 4.1). This information can be specified in a file
and sent to GPERFI developers. The original software de-
velopment procedure does not need to be changed.

To help the algorithm developers facilitate the procedure
of defining their instrumentation file, we have developed
some useful tools. For example, we have a tool to show
the function calling tree of a computation that an algorithm
developer is interested in. Then he/she can decide how de-
tailed this calling tree should be instrumented and an instru-
mentation file can be generated automatically containing all
the files and subroutines used by that portion of the function
calling tree.

Instrumentation files from the algorithm developers can
be put together by GPERFI developers as a master instru-
mentation file. For a different version of GAMESS, the only
thing required to be handled manually is the code segment
section, which indicates what code segments within a sub-
routine are of interest. This can be maintained by either the
algorithm developers or GPERFI developers.

3.2 GPERFI developers

On the performance tools developer side, we have to deal
with two cases: GAMESS code sections with and with-
out an instrumentation file. For sections of GAMESS code

without instrumentation files, we use the automatic instru-
mentation function provided by PDT, with settings to ex-
clude subroutines called more than one million times. We
also use some statistical data from experiments to identify
that some subroutines take very little time and are called
rarely; in that case we do not instrument them at all.

When the instrumentation file is available for a certain
GAMESS code section, our automatic instrumentation pro-
gram is used to instrument PEF based on what kind of per-
formance data is expected. Since different PEF from dif-
ferent performance tools may be required, these functions
are stored as templates, and instrumented by GPERFI in the
places specified by algorithm developers in the instrumen-
tation file. At this time, we have templates which include
some PEF from TAU, PAPI and our own PEF. If we need
any new performance subroutines from a different perfor-
mance tool, all we need to do is include the subroutine as
a template. Then our program can instrument it into the
GAMESS source code.

We first developed GPERFI based on the July 2005 re-
lease of GAMESS, then we applied it to the February 2006
release. All we need to do is check the correctness of the
“code segments” section in the instrumentation file, then
we can apply the tool on the newer version of GAMESS.
With this procedure, the GAMESS algorithm developers
only have to define their own instrumentation file. GPERFI
developers can utilize whatever performance tools neces-
sary for the tasks, and the performance evaluation can be
conducted without interfering with GAMESS development
by scientists.

The process of generating an instrumentation file is a
collaborative procedure whereby the GPERFI developers
and GAMESS developers must decide on a set of subrou-
tines and/or code segments that are important for perfor-
mance evaluation. This procedure may take some time
for a scientific package of the scope of GAMESS. When
we can clearly define an instrumentation file for the whole
GAMESS package, we can put “tags” in the GAMESS
source code and the instrumentation program can check
those “tags” to instrument performance codes. As we men-
tioned, GPERFI is a complementary tool to existing perfor-
mance tools in that we want to utilize functionalities pro-
vided by different “off-the-shelf” performance tools when-
ever possible. We have observed the “co-habitation” of
some performance tools, e.g., we can use PAPI subrou-
tines within TAU. Figure 1 presents an overall view of the
GAMESS performance evaluation cycle when GPERFI is
applied.

4

Figure 1. The procedure of performance evaluation in GAMESS. (1) Algorithm developers provide
instrumentation files. (2) A master instrumentation file is constructed. (3) For a different version of
GAMESS only a small section of the master instrumentation file has to be changed. (4) PEF from
different performance tools are stored as templates. (5) GPERFI instruments GAMESS source code
with templates according to the master instrumentation file. (6) Performance evaluation and the
results are sent back to GAMESS algorithm developers.

4 Incorporating performance tools with
GAMESS

Before we started integrating performance tools with
GAMESS, we consulted the GAMESS algorithm develop-
ers concerning the performance data that are most interest-
ing to have from the point of view of a chemist, and the
following has emerged.
(a) Time spent in I/O.
(b) Time spent in major routines (SCF, Correlation Meth-

ods, CI, C.C., MP2, etc.).
(c) Parallel vs. serial execution.
(d) Cache utilization.
(e) CPU utilization.
(f) Memory, CPU, I/O tracing.
(g) Time spent in communications.

The first four items in the list are profiling metrics, while
(e) and (f) fall into the tracing category, and (g) may be
viewed as either profiling or tracing metrics. Some of the
performance data can be generated by directly incorporating
performance measurements on the function level while oth-
ers need special handling. In this section, we describe those
that require special design and help of performance evalua-
tion tools to generate performance data for GAMESS.

4.1 Profiling of I/O operations

Profiling/tracing the cost of I/O can be very easy or very
difficult, depending on the method that I/O is implemented.

In GAMESS, one source file iolib.src contains many I/O
subroutines for in GAMESS computations, but many sub-
routines do not use it for I/O in GAMESS. In some compu-
tations READ/WRITE statements are used for I/O instead
of using subroutines in iolib.src. For example, the coupled
cluster algorithm uses WRITE(INTG, xxx) or READ(INTG,
xxx) for I/O (INTG is an integer and it is what we call a
READ/WRITE identifier in this paper). Some developers
even write their own I/O subroutines to handle I/O.

We provide approaches for each scenario in I/O instru-
mentation. First, subroutines in iolib.src can be instru-
mented automatically with different levels of granularity.
For example, we can instrument only the top level read sub-
routine such as DAREAD(which calls RAREAD, which in
turns calls RARD, then READ), or instrument every subrou-
tine in iolib.src.

If the algorithm developers indicate which
READ/WRITE identifiers are of interest, we can just
put them in a list. GPERFI will automatically insert
performance code before and after each READ/WRITE
statement with the identifiers of interest. For example, to
measure how much time is spend in I/O in the coupled
cluster algorithm, we only need to put INTG in the instru-
mentation list, and then every statement with READ(INTG)
or WRITE(INTG) will be instrumented.

If we already know a certain subroutine is in charge of
I/O for a computation, and for I/O only, we can put the sub-
routine name in the instrumentation list. For example, put
QOUT, PKFILE, DAREAD and RAREAD into the instru-

5

mentation list and then we can obtain the total I/O cost dur-
ing a conventional HESSIAN computation.

In our performance results, all the subroutines or code
segments that are related to I/O are then put together to eval-
uate the total time spent in I/O for a computation. This data
can then be used to determine which parts of the code may
need optimization.

4.2 Profiling of cache utilization

Acquiring cache utilization, together with MFLOP in-
formation requires access to hardware counters. This can
be achieved by instrumenting PAPI functions. While PAPI
subroutines can also be accessed through TAU, in our sys-
tem we put PAPI functions as templates and use those tem-
plates directly.

4.3 Parallel vs. serial execution

Existing performance tools such as TAU can show how
much time is spent exclusively in sequential execution. By
using paraprof provided with TAU, we can observe subrou-
tines that are executed sequentially by a single process and
subroutines that are executed in parallel. Incorporating KO-
JAK to provide tracing data of parallel vs. serial execution
is currently under development.

4.4 Profiling of communications

With PEF provided by tools such as TAU, aggregate
communication cost is probably the easiest performance
metric to develop. By adding TAU’s instrumentation code
to the entry and exit points of each DDI subroutine the in-
strumentation procedure is complete.

4.5 Tracing of CPU utilization

Some performance tools provide tracing functionality.
While those can be used in GAMESS, we also devel-
oped our own tracing subroutines in case we need per-
formance information not provided by these performance
tools. For example, we want CPU utilization currently
used by GAMESS in tracing results. This is basically the
same information as provided by the TIMIT() subroutine in
GAMESS. It has been used by GAMESS for many years
and we expect many GAMESS users would like to keep
this performance measuring ability.

4.6 Tracing of memory usage

A function called rmemory in TAU can provide the avail-
able physical memory. However, it is not available on
Linux platforms. To access the available physical memory,

we design our own subroutines to retrieve available phys-
ical memory. Computational chemistry software usually
requires a very big chunk of memory. When there is not
enough physical memory the program will not even start.
Displaying the available physical memory during runtime
can help us determine the best method to use for a certain
part of computation.

4.7 Tracing of communications

Besides the profiling data of communications from TAU,
we also want tracing results such as those provided by
VAMPIR for MPI based programs. While tools such as
MPE [1] or such as VAMPIRTRACE (now Intel Cluster
Tools [3]) can instrument MPI based programs and provide
tracing data, we can not use those tools for DDI directly.
Currently we are exploring approaches to instrument MPE
or KOJAK subroutines to DDI, so that tracing data of com-
munications can be available to application scientists.

5 Performance evaluation of GAMESS

Performance testing of computational chemistry soft-
ware is extremely complex and difficult. In particular,
GAMESS has many different functionalities which utilize
complex algorithms. Traditional run-time complexity anal-
ysis depends on a single input parameter N , the input size.
Chemistry computations have multiple input parameters.
The input molecule is one input parameter, and the execu-
tion time is roughly proportional to the size of the molecule.
The basis set is another input parameter and again the ex-
ecution time is proportional to the basis set2. But there
are also other more detailed parameters, such as SCF iter-
ative convergence threshold values. If high accuracy con-
vergence thresholds are chosen then an iterative calcula-
tion may have to execute many times before convergence
is achieved. Thus, changing a threshold value (and leav-
ing the rest of the input parameters the same) may result
in a large (unforeseen) increase in execution time. An ex-
haustive performance test of every computation type with
a reasonable subset of molecules and basis sets would be
cost-prohibitive. How to conduct performance evaluation
for GAMESS with integrated performance tools and pro-
vide useful information for optimizations is an ongoing re-
search project. In this section, we show what type of per-
formance bottlenecks may be found when GPERFI is em-
ployed.

The default GAMESS execution model is to compute
most of the data (used in iterative calculations) once, store
it on disk, and retrieve it whenever it is needed. This is

2When discussing the run-time complexity of computational chemistry
algorithms, the value of N chosen is often taken to be the number of basis
functions.

6

called conventional execution. There are a number of cal-
culations where one can specify an optional direct execu-
tion, which eliminates the need to store the data on disk,
but instead recalculates the data “on-the-fly” whenever it is
needed. It is clear that the direct method results in more
CPU cycles being used for the entire calculation, especially
when this data is needed in an iterative calculation. How-
ever, in many cases—especially in parallel execution—the
extra CPU usage is preferred to using disk I/O since it may
lead to a greater scalability. The performance evaluation re-
sults in Figures 2 and 3 are from a conventional calculation
of the molecular system (hereafter referred to as CARB),
which is an unpublished result of a Berry pseudo-rotation in
the 6-membered carbaphosphatrane system. The molecular
system size is C10O3PH13 and the basis set has 370 atomic
orbitals, performing an RHF gradient calculation. The two
testing platforms are listed as follows:

1. Seaborg: IBM cluster where each node has 16 power3
processors running at 375 MHz with 16 GB memory.

2. Bassi: IBM cluster where each node has 8 power5 pro-
cessors running at 1.9 GHz with 32 GB memory.

Figure 2. Performance of conventional CARB
computations on Bassi. Parallel read is the
major performance bottleneck on SMP ma-
chines.

For presentation clarity, Figures 2 and 3 distinguish only
subroutines that are relevant to performance bottlenecks.
In particular, the performance bottlenecks exist in the par-
allel read (shown as PRD) and parallel write (shown as
PWRT) routines of GAMESS. The time spent in compu-
tational rather than bottleneck routines is combined under
MISC in both Figures. We use i × j to represent the exe-
cution configuration that uses i nodes with j processors per
node.

On Bassi, the run time of PRD() increases with the in-
crease in processors per node. On Seaborg when the num-
ber of processors is increased to 16 per node, the latency of
parallel write PWRT() is more than half of the total runtime.

Parallel read/write were developed in GAMESS be-
fore the MPI-IO standard emerged and implemented in a

Figure 3. Performance of conventional CARB
computations on Seaborg. Besides paral-
lel read as the performance bottleneck, the
latency of parallel write jumps dramatically
when all the 16 processors are used within
an SMP node.

straightforward way, such that, every process reads/writes
its own portion of data to/from the disk. With more pro-
cesses used per node, the total volume of data may ex-
ceed I/O bandwidth even though the amount of data for
read/write diminishes.

We also observed that, on Bassi, the parallel read and
DDI global sum (barsPRD and GSUM) are not performing
better than those on Seaborg, given the same execution con-
figuration (e.g., 1 × 4 or 1 × 8), although Bassi is a more
powerful computer than Seaborg. While performance tools
are useful in exploring performance bottlenecks of a com-
putation, we are also interested in learning what parameters
may be affecting performance the most under different ex-
ecution configurations. To accomplish this, we would need
to collect the data generated by performance tools, put this
data into a database, and analyze it.

6 Discussion and future work

In this paper, we present an approach to incorporat-
ing modern performance tools into a large-scale compu-
tational chemistry package. While existing performance
tools provide mechanisms for easy integration with appli-
cations, several difficulties have to be overcome in order
to use the functionality provided by performance tools on
a large-scale scientific software package. We developed
GPERFI, such that it helps to keep the application devel-
opment procedure almost intact, to minimize the burden of
the performance tools usage, and at the same time, to pro-
ceed with performance evaluation without excessive over-
head typically incurred by instrumented performance codes.
Although currently GPERFI can handle only FORTRAN 77
code, we plan to extend its capabilities to F90/C/C++ to en-
able its usage by a variety of scientific packages.

While conducting experiments, we realized that more

7

tools are needed to conduct performance evaluations for
large-scale applications. For the existing state-of-the-art
performance tools, the generated performance data still has
to be managed manually by users. For example, with a
large number of computations provided by GAMESS, han-
dling manually the performance data is error-prone and time
consuming. Thus, our next step is to develop tools to han-
dle performance data automatically, so that the performance
evaluation process can be facilitated.

Performance comparisons between different architec-
tures and different execution configurations are needed but
currently can only be handled manually too. The focus of
performance research has been mainly on the development
of tools for data collection and evaluation. With the com-
plexity of current parallel architectures and the amount of
performance data, tools to help scientists to handle perfor-
mance data should not be ignored. In the case of GAMESS
performance evaluation, the complexity of chemistry com-
putations may require building a database and standard test-
ing procedures to make a comprehensive performance eval-
uation possible. This is a long-term effort and will require
collaborations between the computational chemistry com-
munity and performance tools developers.

References

[1] CHAN, A., GROPP, W., AND LUSK, E. Scalable log
files for parallel program trace data. (draft) (2000).

[2] FLETCHER, G. D., SCHMIDT, M. W., BODE, B. M.,
AND GORDON, M. S. The Distributed Data Interface
in GAMESS. Comp. Phys. Comm., vol.128 (2000),
190–200.

[3] INTEL. Intel Cluster Tools, http://www.intel.com.

[4] JANSSEN, C. L., SEIDL, E. T., AND COLVIN, M. E.
Object-Oriented Implementation of Parallel Ab Ini-
tio Programs. Parallel Computers in Computational
Chemistry (1995).

[5] KENDALL, R., APRA, E., BERNHOLDT, D., BY-
LASKA, E., DUPUIS, M., FANN, G., HARRISON, R.,
JU, J., NICHOLS, J., NIEPLOCHA, J., STRAATSMA,
T., WINDUS, T., AND WONG, A. High Perfor-
mance Computational Chemistry: An Overview of
NWChem a Distributed Parallel Application. Comp.
Phys. Comm., vol.128 (2000), 260–283.

[6] LINDLAN, K. A., CUNY, J., MALONY, A. D.,
SHENDE, S., MOHR, B., RIVENBURGH, R., AND

RASMUSSEN, C. A Tool Framework for Static
and Dynamic Analysis of Object-Oriented Software
with Templates. Proceedings of SC2000: High

Performance Networking and Computing Conference
(2000).

[7] MILLER, B. P., CALLAGHAN, M. D., CARGILLE,
J. M., HOLLINGSWORTH, J. K., IRVIN, R. B.,
KARAVANIC, K. L., KUNCHITHAPADAM, K., AND

NEWHALL, T. The Paradyn Parallel Performance
Measurement Tool. IEEE Computer 28, 11, Special
issue on performance evaluation tools for parallel and
distributed computer systems. (1995), 37–46.

[8] MOHR, B., AND WOLF, F. KOJAK - A Tool Set
for Automatic Performance Analysis of Parallel Ap-
plications. In Proceedings of the International Con-
ference on Parallel and Distributed Computing (Euro-
Par 2003), (Klagenfurt, Austria,, June 2003).

[9] MOORE, S., CRONK, D., WOLF, F.,
PURKAYASTHA, A., TELLER, P., ARAIZA, R.,
AGUILERA, M., AND NAVA, J. Performance Profil-
ing and Analysis of DoD Applications using PAPI and
TAU. In Proceedings of DoD HPCMP UGC 2005,
IEEE (Nashville, TN, United States, June 2005).

[10] OLSON, R. M., SCHMIDT, M. W., GORDON, M. S.,
AND PENDELL, A. P. Enabling the Efficient Use
of SMP Clusters: The GAMESS/DDI Model. In
Proceedings of Supercomputing (Phoenix, Arizona,
United States, November 2003).

[11] SCHMIDT, M., K.K.BALDRIDGE, J.A.BOATZ, EL-
BERT, S., GORDON, M., JENSEN, J., KOSEKI, S.,
MATSUNAGA, N., NGUYEN, K., SU, S., WINDUS,
T., DUPUIS, M., AND MONTGOMERY, J. General
Atomic and molecular Electronic Structure System.
Journal of Computational Chemistry, vol.14 (1993),
1347–1363.

[12] SHENDE, S., AND MALONY, A. D. The TAU Parallel
Performance System. International Journal of High
Performance Computing Applications, Vol.20 (2006),
287–331.

8

