
Mobility of Data in Distributed Hybrid Computing Systems

Philippe Faes, Mark Christiaens∗, and Dirk Stroobandt
Ghent University,

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Abstract

In distributed hybrid computing systems, traditional se-
quential processors are loosely coupled with reconfigurable
hardware for optimal performance. This loose coupling
proves to be a communication challenge; the processor
units cannot efficiently share a physical memory. This pa-
per proposes a distributed shared memory architecture and
a method for effective data migration within that shared
memory. Data is moved using a novel garbage collection
scheme, the dual semispace collector. The new garbage col-
lector and the distributed memory prove to be an effective
means of data migration in distributed hybrid computing
systems.

1 Introduction

The proliferation of Field Programmable Gate Arrays
(FPGAs) as reconfigurable processor units has enabled
system architects to combine the computational power
of loosely coupled Instruction Set Processors (ISPs) and
FPGAs for applications with high computational demands.
We call these systems distributed hybrid computing sys-
tems. Because of their loose coupling, the processor units
cannot share one physical memory lest the communication
overhead becomes a major bottleneck.

Instead of copying data explicitly between the processor
units, we offer the illusion of a shared heap. In reality this
heap is distributed over memory chips closely connected
to the ISP and FPGA respectively. This paper presents a
novel garbage collector algorithm, dual semispace, which
can move objects within the heap from one physical mem-
ory to another. This operation is completely transparent for
the programmer.

Unlike page-based distributed memory systems, the
garbage collector moves data per object. Objects form a

∗Mark Christiaens is currently with Symantec Corporation, Antwerpse-
steenweg 19, B-9080 Lochristi, Belgium

1-4244-0910-1/07/$20.00 c©2007 IEEE.

Figure 1. Physical interconnection of the ISP-
node and the FPGA-node

semantic group of data, unlike memory pages, which form
fixed-size groups of data. Our results show that the dual
semispace garbage collector is an effective alternative for
moving data in distributed hybrid computing systems. The
dual semispace garbage collector is the first garbage collec-
tor, to the best of our knowledge, to move data transparently
from one physical memory to another. It relieves the appli-
cation programmers from dealing with data placement, en-
capsulating this responsibility in the runtime environment.

The rest of this paper is organized as follows. The next
section introduces the problem of data mobility in hybrid
distributed computing systems. Section 3 explains how
the garbage collector is used for moving data inside a dis-
tributed computing system, and introduces the dual semis-
pace garbage collector. Section 4 outlines a demonstration
set-up of our fully functional system, and presents timing
results for a real-life application. Related work is outlined
in Section 5. The paper concludes and looks forward to fu-
ture work in Section 6.

2 Data placement
in distributed hybrid computing

Our hybrid distributed computing system, as shown in
Fig. 1, has two cooperating processor nodes: an ISP node
and an FPGA node, connected through a relatively slow

link. Each node has its own memory, with a high-speed con-
nection to its processor unit; the memory in the ISP node
is tightly connected to the ISP itself, and likewise for the
FPGA node.

The ISP runs a computationally intensive Java applica-
tion, and uses the FPGA for the acceleration of some of
the Java methods. Due to the specific computation model
of FPGAs, their massively parallel computation power and
their relatively low clock frequency, not all methods are can-
didates for FPGA acceleration. Candidate methods have
a high degree of low-level parallelism and little sequen-
tial control-dominated code. These methods can be found
in image processing, bio-informatics applications, scientific
computing, etc.

Whenever an FPGA implementation is available for a
candidate method, the Java runtime may choose to intercept
the software execution of that method and let it run on the
FPGA instead. The intercepted Java thread will stall until
the FPGA computation is finished, while other Java threads
can continue their work.

2.1 Data transfer

Now how can we pass the data needed for a computation
to the FPGA and back? Two options arise. First, the appli-
cation could explicitly write all data elements to memories
on the FPGA node and read results back from these mem-
ories. This has the disadvantage that the communication is
explicitly visible in the software, and that it leaves no room
for lazy copying. The second option is to copy only a ref-
erence to data-structures (Java objects), and let the FPGA
fetch the data whenever it is needed. The latter option has
two problems, both of which find their solution in adapting
the garbage collector.

As a first problem, the Java garbage collector moves ob-
jects around in order to avoid memory fragmentation. If the
FPGA uses a pointer to an object that has been moved, the
system will inevitably crash. We have discussed and solved
this problem in prior work [1], by adapting the garbage col-
lector. The adapted collector knows about the references
from the FPGA into the Java heap and updates these refer-
ences during the compaction phase.

The second problem is data bandwidth. Each time the
same object is used in the FPGA, the same data is copied
over the slow FPGA-ISP connection. One could consider
keeping a copy of the object in the FPGA for later reuse, ef-
fectively caching the data. But what if the ISP changes the
data in between FPGA invocations? The two versions of
the object would be inconsistent. Moreover, the traditional
coherence and invalidation techniques [2, 3] may prove dif-
ficult or impossible to implement over an arbitrary FPGA-
ISP connection. The solution to this problem, a distributed
shared heap, is the subject of this paper.

2.2 Distributed shared heap

In order to alleviate the bandwidth problem, we choose
to allocate part of the Java heap on the FPGA board. This
way, the Java runtime environment (more precisely, the
garbage collector) can place data from either on the ISP
node or on the FPGA node, potentially bringing the it closer
to its consumer. The placement of objects can be driven ei-
ther by heuristics or by programmed hints to the JVM.

Both processor units have access to both parts of the heap
as depicted in Fig. 2. When an object is moved to the FPGA
node, the FPGA has fast access to it. The ISP can still ad-
dress the object transparently, but at a lower bandwidth.

The FPGA makes its memory visible on the system bus.
From there, the operating system maps the FPGA memory
into the memory space of the JVM process, enabling the
JVM to use this extra memory as heap memory. Only min-
imal modifications were required to the memory manage-
ment subsystem for setting up the FPGA memory.

Unlike modern ISPs, FPGAs do not have a Memory
Management Unit (MMU). We have built a minimal MMU
to provide transparent access from the FPGA to the main
memory and the FPGA memory. From the FPGA side, the
MMU behaves like a memory, with varying response times.
On the other side, the MMU has read/write access to the
on-board DDR RAM, and can request data transfers from
the JVM. When the FPGA requests a memory transaction
from the MMU, the action of the MMU depends on the ad-
dress of the transaction. If this address is within the range
of the on-board DDR RAM, the MMU can directly access
the DDR RAM. If the address is in the range of the ISP’s
main memory, the MMU forwards the request to a software
thread in the JVM.

In future versions, the MMU will handle accesses to
main memory by performing address translation and then
fetching the data directly from main memory. On systems
with virtual memory, address translation will require com-
munication with the operating system’s page tables.

Independent of the action taken by the MMU (reading
from local memory, communicating with the JVM or fetch-
ing directly from main memory) the behavior observed from
the FPGA point-of-view is identical except of course for re-
sponse times; the protocol only requests a memory read or
write operation.

In effect, our system uses a single distributed shared
memory, the Java heap, which has Non-Uniform Mem-
ory Access times (NUMA) from the different computation
units. The next section discusses the memory management
of the NUMA heap.

Figure 2. Using memory management units
to abstract the physical location of data from
the processing units

3 Managing the NUMA heap

The previous section describes our rationale for using a
NUMA heap in our hybrid distributed computing system.
Because of its specific characteristics —references from the
FPGA to heap objects and the heap’s distribution over non
uniform memory chips— a specific memory management
strategy is required. For this purpose, we have implemented
a new garbage collector scheme in the Memory Manage-
ment Toolkit (MMTk) [4], which is used in the Jikes Re-
search Virtual Machine (JikesRVM, formerly Jalapeño [5]).

3.1 Garbage Collection

A dynamic memory management system, or Garbage
Collector (GC), is a component of a runtime environment
charged with removing unused objects. It is automatically
triggered whenever the memory is exhausted in order to
create new free memory. The GC selects an object for re-
moval when it is no longer addressable by the application,
i.e. when the application no longer has a (direct or indirect)
reference to that object. In this case the object is called
dead, and it may safely be removed by the garbage collec-
tor.

In order to determine which objects are dead, the GC ex-
plores the object-reference graph, a graph where each node
represents a Java object and each directed edge represents
a reference from one object to another. In this graph, some
nodes are designated as root nodes. They represent objects
that are always reachable, such as the stacks of each thread,
and static references. From these root objects, the connec-
tivity problem is solved. All objects that are connected to
a root node are alive; the others are dead. The memory of
dead objects is freed and becomes available for new alloca-
tions.

Many GC algorithms also include compaction in order to

Algorithm 1 Semispace garbage collection algorithm
swap(fromSpace,toSpace)
todoSet = emptySet
for object in rootList:

todoSet.add(object)
//scan all reachable objects
while !todoSet.empty():

object = todoSet.pop()
newObject = object.copyTo(toSpace)
object.link = newObject
for child in newObject.references:
if child.isIn(fromSpace):
todoSet.add(child)

// update references in objects
for object in toSpace:

for child in object.references:
if child.isIn(fromSpace):
object.updateRef(child,child.link)

prevent memory fragmentation. The memory compaction
places all living objects side to side, leaving one contiguous
memory area free for future allocations. The next subsec-
tion discusses the semispace garbage collector, an algorithm
that performs collection and compaction at the same time.

3.2 Semispace

The semispace garbage collector [6], presented as Al-
gorithm 1, divides the heap in two equal parts, labeled to-
space and from-space. Whenever the GC is not active, only
the to-space is used and all new objects are allocated in the
to-space.

When a garbage collection is triggered, the to-space be-
comes the new from-space and vice-versa. The root-objects,
and objects that are (directly or indirectly) referenced by
root-objects are recursively copied to the new to-space. The
new object address is written in the old object header. Using
this header, all references to the old objects are updated to
refer to the newly copied objects. Unreachable objects are
not copied but stay in the from-space, which is discarded.
New objects are again allocated in the to-space.

3.3 Multiple spaces

While the semispace collector requires double the
amount of memory as is actually used by the objects, it is
a simple and straightforward algorithm, and many collec-
tion schemes are based on the semispace collector. Many
collectors use different spaces for different kind of objects.

Generational collectors place new objects in a nursery-
space, and copy older objects to a mature-space. The
nursery-space is collected often, and because most objects
die young, relatively few objects ever get copied to the

Algorithm 2 Dual Semispace garbage collection algorithm
swap(ispFromSpace,ispToSpace)
swap(fpgaFromSpace,fpgaToSpace)
todoSet = emptySet
for object in rootList:

todoSet.add(object)
//scan all reachable objects
while !todoSet.empty():

object = todoSet.pop()
if((requestedSpace(object) == ISP_SPACE

and ispToSpace.hasRoomFor(object))
or !fpgaToSpace.hasRoomFor(object)):

newObject = object.copyTo(ispToSpace)
else:
newObject = object.copyTo(fpgaToSpace)

object.link = newObject
for child in newObject.references:
if (child.isIn(ispFromSpace)

or child.isIn(fpgaFromSpace)):
todoSet.add(child)

// update references in objects
for object in (ispToSpace + fpgaToSpace):

for child in object.references:
if (child.isIn(ispFromSpace)

or child.isIn(fpgaFromSpace)):
object.updateRef(child,

child.link)

mature-space. The mature-space is only collected sporad-
ically. Also, some collectors place all objects whose size
exceeds a given number in the large-object-space. The fact
that this space contains few large objects makes it more ef-
ficient to collect it.

Each space contains objects with specific characteristics.
The to-space contains live (or recently deceased) objects
while the from-space contains only void. The nursery-space
contains young objects, the mature-space contains old ob-
jects and the large-object-space contains large objects. In
our dual semispace, we introduce a new pair of heap spaces,
which contain objects that show affinity to the FPGA.

3.4 Dual semispace

In the dual semispace strategy, each physical memory
(one connected to the ISP and one connected to the FPGA)
is separated into two spaces. The algorithm, presented as
Algorithm 2 is similar to the semispace garbage collector,
but now live objects can be copied to either of the to-spaces
(isp-to-space and fpga-to-space). A heuristic determines
which of both spaces is preferred. If there is enough room
left in the selected space, the object is moved there. If not,
the object is moved to the other to-space. Note that both to-
spaces are full only when the system runs out of heap-space
entirely.

The dual semispace algorithm is only measurably slower
than the semispace algorithm to the extent that data is
copied over a slower memory connection. Also, the extra
data structures needed for the dual semispace are constant
in size.

While it is possible to extend dual semispace to n-
semispace for systems of multiple ISPs and FPGAs, this
extension is not trivial. Since many smaller semispaces are
used, it is very likely that the size of a semispace will be a
limiting factor for placing objects. It is not clear which be-
havior is preferred when the heuristic in use wants to place
an object in an already full to-spaces. This question is sub-
ject to future research.

3.5 Heuristics

Since only a few time-consuming methods are executed
on the FPGA, most Java objects are never accessed by the
FPGA. Only objects that are accessed by the FPGA are
candidates for transferal to the FPGA-memory. Because of
this asymmetry, the data placement algorithm in the garbage
collector can be simplified.

The current implementation is not a heuristic, but is
based on programmed hints. It keeps a list of (weak) ref-
erences to objects that should preferably be placed in the
FPGA-memory. All other objects are placed in the ISP-
memory.

In the future we will investigate heuristics. One possible
heuristic is to move all objects for which the FPGA holds
a reference. This is easy to implement, since the garbage
collector has access to all references from the FPGA to the
heap. However, some references may not be used at all or
very infrequently by the FPGA. Having the GC copy the
entire object to the FPGA memory may be too expensive.

The execution could also be instrumented so that ac-
cesses to each object are logged, perhaps in a sampled man-
ner. An object is then moved to the FPGA memory iff

AISP TISP,FPGA+AFPGATFPGA,FPGA

> AISP TISP,ISP +AFPGATFPGA,ISP

where AX is the number of accesses to the object from
processor unit X , and TX,Y is the time needed for one ac-
cess from processor unit X to memory Y . This strategy as-
sumes that the behavior of the application is static, i.e. that
the cost of moving data will eventually be compensated by
the time gained from the more efficient data placement. In
applications with strong dynamic behavior, heuristics will
have to make non-trivial predictions of the future, a prob-
lem akin to that of cache strategies and branch prediction.

In the next section we demonstrate the speedup from data
migration using the dual semispace garbage collector.

Figure 3. Logical NUMA heap

4 Mobility demonstrated

As described earlier, both data and computational power
can be moved at run-time. The data is moved by the dual
semispace garbage collector and the computation is either
on the ISP, or it is intercepted by the JVM and sent to the
FPGA.

This section describes how data and computation are
moved in a protein sequence aligner application [7]. The ap-
plication performs a comparison of protein sequences using
the Smith-Waterman [8] dynamic programming algorithm.

The system consists of a desktop computer with an In-
tel Pentium 4 processor at 2.4 GHz, which is connected
through a PCI link to an Altera PCI Development board,
carrying a Stratix 1s25c5 FPGA and 256 MiB of DDR
SDRAM. Memory accesses from the ISP to its own memory
are as fast as 1246 MiB/s, The bandwidth over the FPGA-
ISP is limited to 73 MiB/s, and the bandwidth of the FPGA
to its own memory is 630 MiB/s.

The application has one hot method (align) that is ex-
ecuted often and consumes most of the computation time.
The method also makes many accesses to the same data
structure, the substitution matrix. We have implemented
this method on the FPGA, making it possible to choose on
which processing unit it will be executed. The experiment
comprises four phases, A through D, as depicted in Table 1.

In phase A all data and computation are on the ISP node.
In phase B, the hot method is moved to FPGA. Next, the
array is moved to the FPGA memory in phase C. Finally
in phase D, computation is moved back to the ISP. Fig. 4
shows the number of executions of align per second.

At first, the performance of phase A is low because many
classes need to be loaded into the virtual machine. As
time progresses, the JikesRVM recompiles the time-critical
methods in an optimized way. During the recompilation the
performance is lower, only to yield a better performance
when recompilation finishes.

phase A B C D
computation ISP FPGA FPGA ISP

data ISP ISP FPGA FPGA

Table 1. Four phases of data mobility

1

10

100

#alignments/s

total
#alignments

1000 30002000

A B C D

Figure 4. Number of executions per second
of the align method in different execution
phases

Since many new Java classes are needed for the com-
munication with the FPGA, the same pattern of gradually
increasing performance can be seen in the beginning of
phase B. Even though align can be computed faster on
the FPGA than on the ISP, the performance in phase B is
lower than in phase A, due to the communication overhead.
The application can only benefit from the FPGA’s compu-
tation power once the substitution matrix is moved to the
FPGA memory, in phase C. When the computation is again
moved to the ISP, in phase D, the performance decreases
again. The two better performing phases A and C are, not
surprisingly, the phases in which data and computation are
on the same node.

In this example, the computation and the data were
moved dynamically by giving hints to the JikesRVM. In
more complex situations, where many methods and many
data-structures are mobile, the optimal solution may not be
intuitively obvious. However, it will still be easy to explore
the design space using the dual semispace garbage collector
and the adapted JikesRVM.

5 Related work

We have investigated the problem of data mobility in
a distributed hybrid computing system. This is akin to
the problem of shared memories in Non Uniform Memory
Access (NUMA) and Cache Coherent NUMA (cc-NUMA)
systems [9, 10, 11]. In these systems memory pages are

used as elementary data unit, and are synchronized between
computation nodes. A disadvantage of page-based data
mobility is the possibility of false data sharing, in which
two unrelated data items are allocated on the same memory
page. This memory page then needs be sent back-and-forth
between two computation nodes who use those data items.

A first attempt at using the garbage collector in dis-
tributed computing was done by Tikir et al. [12]. This work
focuses on traditional cc-NUMA machines, with all proces-
sors being ISPs. Also, the paper presents a simulated pro-
jection based on their proposed heap lay-out, without pre-
senting a GC algorithm.

Existing hybrid computing systems either have one
shared memory between the FPGA and ISP [13, 14], or use
message-based communication [15].

6 Conclusion and Future work

This paper presents a novel approach to data mobility in
hybrid distributed computing systems. To the best of our
knowledge no prior work presents a working garbage col-
lector used for data mobility in a NUMA-heap.

The garbage collector provides a transparent way of
moving data closer to a given processor unit. While nei-
ther processor needs to worry about the exact data location,
the runtime environment places data where it best sees fit.

In future work, we will implement heuristics to drive
the dual semispace collector. We will also investigate
other garbage collection schemes and their interaction with
heuristics.

Acknowledgments

This research in part is supported by grant 020174 of the
Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen) and by hard-
ware and software donations from Altera. Philippe Faes is
supported by a Ph.D. grant of the IWT-Vlaanderen.

References

[1] Ph. Faes, M. Christiaens, D. Buytaert, and
D. Stroobandt, “FPGA-aware garbage collection
in Java,” in 2005 International Conference on
Field Programmable Logic and Applications (FPL)
(T. Rissa, S. Wilton, and P. Leong, eds.), (Tampere,
Finland), pp. 675–680, IEEE, 1 2005.

[2] A. Agarwal, R. Simoni, J. Hennessy, and
M. Horowitz, “An evaluation of directory schemes for
cache coherence,” pp. 280–289, 1988.

[3] W. Weber and A. Gupta, “Analysis of cache invalida-
tion patterns in multiprocessors,” Proceedings of the
third international conference on Architectural sup-
port for programming languages and operating sys-
tems, pp. 243–256, 1989.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Oil
and water? High performance garbage collection in
Java with MMTk,” in ICSE 2004, 26th International
Conference on Software Engineering Edinburgh, Scot-
land, United Kingdom, pp. 137–146, 5 2004.

[5] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Ser-
rano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley, “The Jalapeño vir-
tual machine,” IBM Systems Journal, vol. 39, no. 1,
pp. 211–238, 2000.

[6] R. Fenichel and J. Yochelson, “A LISP garbage-
collector for virtual-memory computer systems,”
Communications of the ACM, vol. 12, no. 11, pp. 611–
612, 1969.

[7] Ph. Faes, B. Minnaert, M. Christiaens, E. Bonnet,
Y. Saeys, D. Stroobandt, and Y. Van de Peer, “Scalable
hardware accelerator for comparing dna and protein
sequences,” in Proceedings of the First International
Conference on Scalable Information Systems, (Hong
Kong), 5 2006.

[8] T. F. Smith and M. S. Waterman, “Identification of
common molecular subsequences,” Journal of Molec-
ular Biology, vol. 147, no. 1, pp. 195–197, 1981.

[9] B. Falsafi and D. Wood, “Reactive NUMA: A Design
For Unifying S-COMA And CC-NUMA,” Computer
Architecture, 1997. Conference Proceedings. The 24th
Annual International Symposium on, pp. 229–240,
1997.

[10] A. Cox and R. Fowler, “The implementation of a co-
herent memory abstraction on a NUMA multiproces-
sor: experiences with platinum,” Proceedings of the
twelfth ACM symposium on Operating systems princi-
ples, pp. 32–44, 1989.

[11] K. Li and P. Hudak, “Memory coherence in shared
virtual memory systems,” in Proceedings of the fifth
annual ACM symposium on principles of distributed
computing, nov 1986.

[12] M. Tikir and J. Hollingsworth, “NUMA-Aware Java
Heaps for Server Applications,” Parallel and Dis-
tributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pp. 108b–108b, 2005.

[13] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte, “The Molen poly-
morphic processor,” IEEE Transactions on Comput-
ers, pp. 1363–1375, November 2004.

[14] E. Lattanzi, A. Gayasen, M. Kandemir, V. Narayanan,
L. Benini, and A. Bogliolo, “Improving Java perfor-
mance by dynamic method migration on FPGAs,” in
Proceedings of RAW 2004, 2004.

[15] Y. Ha, G. Vanmeerbeeck, P. Schaumont, S. Vernalde,
M. Engels, and H. De Man, “Virtual Java/FPGA in-
terface for networked reconfiguration,” pp. 558–563,
Jan. 2001.

