
1-4244-0910-1/07/$20.00 ©2007 IEEE

Parallel Audio Quick Search on Shared-Memory Multiprocessor Systems

Yurong Chen, Wei Wei, Yimin Zhang

Intel China Research Center
8/F, Raycom Infotech Park A, No.2, Kexueyuan South Road, Zhong Guan Cun,

Haidian District, Beijing 100080, China
{yurong.chen}@intel.com

Abstract

Audio search plays an important role in analyzing
audio data and retrieving useful audio information. In
this paper, a Partially Overlapping Block-Parallel
Active Search method (POBPAS) is proposed to
perform audio quick search on shared-memory
multiprocessor systems (SMPs). This method uses a
proper data segmentation to achieve parallelism and
performs a high level of parallelism with little
additional work. Several techniques including I/O
optimization, proper data partition and dynamic
scheduling are also introduced to maximize its
scalability performance.

In addition, we conduct a detailed performance
characterization analysis of the parallel
implementation of the POBPAS for three data sets on
two Intel Xeon SMPs. Experimental results indicate
that there are no obvious parallel limiting factors in
the implementation except memory bandwidth. As a
result, it can achieve 11.3X speedup for a larger data
set (searching a 15 seconds’ clip in a 27 hours’ audio
stream) on the 16-way processor system.

1. Introduction

Audio data from radio, television, databases, or on
the Internet has been a rich resource of information.
Audio search (e.g., searching a large audio stream for
an audio clip, even if the large audio stream is
corrupted/distorted) is an effective way to analyze
audio data and retrieve useful audio information. It has
many applications including analysis of broadcast
music/commercials, copyright management over the
Internet, or finding metadata for unlabeled audio clips,
and etc [1,2,3,4]. A typical audio search system is
serial and designed for single processor systems [5]. It
normally takes a long time for such a search system to
search for a target audio clip in a large audio stream. In
many cases, however, an audio search system is
required to work efficiently on large audio streams, e.g.,
to search large streams in a very short time (e.g., close

to real-time). Additionally, an audio stream may be
partially or entirely distorted, corrupted, and/or
compressed. This requires that an audio search system
should be robust enough to identify those audio
segments that are the same as the target audio clip,
even if those segments may be distorted, corrupted,
and/or compressed [2,3]. Thus, it is desirable to have
an audio search system which can quickly and robustly
search large audio databases for a target audio clip.

In this paper, a Partially Overlapping Block-Parallel
Active Search method (POBPAS) is proposed to
efficiently employ the multiple processors and speed
up audio searching for large audio streams on
Shared-memory Multi-Processor systems (SMPs). This
method also could be potentially used as an underlying
audio processing technique for emerging personal
media mining applications on future large-scale
multi-core systems. Furthermore, several techniques
including I/O optimization, proper data partition and
dynamic scheduling are introduced to maximize its
scalability performance. A parallel audio quick search
system with the POBPAS method is implemented on
two Intel Xeon SMPs. This paper also characterizes the
performance of the parallel audio search system in
detail.

The reminder of this paper is organized as follows.
Section 2 gives an introduction to the framework of the
audio quick search. Section 3 describes the POBPAS
method and some optimization techniques in its
implementation. The experimental results and
application characterizations are reported in Section 4.
Finally, we conclude in Section 5.

2. Framework of Audio Quick Search

Figure 1 outlines the serial audio searching system.
First, the feature vector sequences are extracted from
both the audio clip and the audio stream. Then,
windows of the same length as the clip are applied to
both feature sequences. The feature vectors within a
window are used to estimate a CCGMM (Common
Component Gaussian Mixture Model, [4]). Then the

distance is calculated between the CCGMMs estimated
from the clip and the windowed stream. If the distance
is below a threshold, the audio clip is considered to be
detected and located in the audio stream. Finally, the
window on the audio stream is shifted forward in time
and the search proceeds. Below are details for each
stage of the system.

τ

()c
iw ()

,
s

i tw ()
,
s

i tw τ+

Figure 1. Overview of the Serial Audio
Searching System

Feature extraction stage: The feature vector

sequences are extracted from both the audio clip and
the audio stream. Then, windows of the same length as
the clip are applied to both feature sequences. A
general approach is to separate the audio into frames.
Then, features may be computed for each frame. Some
of the features include Fourier coefficients,
mel-frequency cepstral coefficients (MFCCs), spectral
flatness and derivatives, means, variances.

Modeling stage: Feature vectors within a window
are used to estimate a CCGMM model. In this
approach, audio segments are modeled by a GMM
(Gaussian Mixture Model, [4]), which consists of M
Gaussian components with component weights ()k

iW ,
means ()k

iµ , and covariance ()k
i∑ , 1,2, ,i M= :

()() () () ()

1
() | ,

Mk k k k
ii i

i
P x w x µ

=
= Ν∑ ∑ (1)

To avoid poor estimation and simplify Kullback
Leibler distance computation, we further assume that
the GMMs for all the audio segments share a common
set of Gaussion components. They are pre-trained and
stored as a universal GMM:

()() () () ()
1() | ,u u uM u

i ii ip x W N x µ== ∑ ∑ .

Thus Equation (1) becomes (with () (),k k
iiµ ∑ being

constrained to () (),u u
iiµ ∑ respectively):

()() () () ()

1
() | ,

Mk k u u
ii i

i
p x w x µ

=
= Ν∑ ∑ (2)

Now we need only estimate the component weights
to specify a CCGMM for an audio segment. Given T
feature vectors (1,2, ,)tx t T= for an audio segment
k , the weights are estimated by the following formula:

()
()

() () ()
()

() () ()1 1

| ,1
| ,

u u u
T ii t ik

i u uM ut j jj t j

w x
w

T w x
µ

µ= =

Ν ∑
= ∑

Ν∑ ∑
 (3)

Active search stage: The distance is calculated
between the CCGMMs estimated from the clip and the
windowed stream. If the distance is below a threshold,
the audio clip is considered to be detected and located
in the audio stream. In our approach, Kullback Leibler
(KLMAX) distance between two CCGMMs can be
approximated as follows:

(1)
(1) (2)

(2)1,2,..,
max () log i

KLMAX i ii M
i

wd w w
w=

= − (4)

As the window applied over the audio stream shifts
forward in time, we can skip some unnecessary
hypothesis matches, while mathematically
guaranteeing no false dismissals.

3. Parallel Audio Quick Search Method

In this section, we propose a Partially Overlapping
Block-Parallel Active Search method (POBPAS) to
efficiently and quickly perform audio searching for
large audio streams on SMPs. This method uses a
proper data segmentation to achieve parallelism and
performs a high level of parallelism with little
additional work. Furthermore, several techniques
including proper data partition, dynamic scheduling
and I/O optimization are also introduced to improve
the parallel performance in practice.

Figure 2 outlines the parallel audio searching
system using the POBPAS method. First, the large
audio stream is partitioned into partially overlapped
blocks (multiple smaller substreams) with equal length
for simplification. Then, the feature vector sequence is
extracted from the audio clip, and a CCGMM is
estimated from the feature vector on a processor. After
that, these small audio streams can be dynamically
assigned to different processors, and each processor
extracts the feature vector sequences and estimates the
CCGMMs from the audio stream, and detects the
correct matches using the KLMAX distance between
the CCGMMs estimated from the clip and the
windowed small stream. When a processor completes
the audio searching on a small audio stream, it can
receive another uncalculated small stream to continue
until there is no available stream anymore.

In the implementation, the minimal length of the
overlap equals FNClip 1− , where FNClip is the frame
number of the clip. These overlaps ensure that we
cannot miss any correct detection in the parallel search
process. On the other hand, the length of each small
stream should be greater than or equal to the length of
the clip. Note that smaller block size may result in
large overlapped computation, while larger block size
may result in considerable load imbalance in parallel
processing by multiple processors. So an appropriate
block size should be chosen to reduce the overlapped
computation and load imbalance.

In practice, the block length is usually several tens
(or hundreds) of times the length of the clip, and the
number of blocks is much larger than the number of
processors. We use dynamic scheduling for parallel
processing these small audio streams to reduce the load
imbalance overhead, since the computation cost of
time-serials active search [5] for the same clip is much
different from different audio streams even with equal
length.

Finally, in order to overlap I/O and computation
effectively, the proper length of audio stream to be
loaded into memory buffer from the disk by each
processor is chosen to reduce the I/O contention.

Figure 3 is the pseudo code illustrating an example
of POBPAS for performing robust and parallel audio
search on a SMP system. At line 02, audio search
module may be initialized, e.g., target audio clip file
and large audio stream file may be opened, and global
parameters may be initialized. At line 04, a large audio
stream may be partitioned into NG smaller partially
overlapped streams. At line 06, a model (e.g.,
CCGMM) may be established for the target audio clip.

At line 08, NG audio streams may be dynamically
scheduled to available processors and parallel
processing of the scheduled groups may be started.
Line 08 uses one example instruction with OpenMP
directives [7] that sets up parallel implementation and
other parallel implementation instructions may also be
used.

Lines 10 through 34 illustrate how each of NG
streams is processed and searched for the target in
parallel by a processor in the multiprocessor system. It
is worth noting that for illustration purpose, process in
lines 12 to 34 is shown as iteration from the first
stream until the last stream. In practice, if there are
several processors available, several groups are
processed in parallel by these available processors. At
line 14, some or all of audio streams in each stream
may be further partitioned into NS partially overlapped
segments if such streams are longer in time than the
target audio clip. Line 16 starts iterative process for
each segment of the group, shown in lines 18 through
32. At line 20, a feature vector sequence (frame by
frame) may be extracted from the segment. At line 22,
a model (e.g., CCGMM as shown in Equations (1) to
(3)) may be established for the segment. At line 24,
distance (e.g., KL-max distance as shown in Equation
(4)) between the segment model and the target audio
clip model may be computed. At line 26, whether the
segment matches the target audio clip or not may be
determined based on the distance calculated in line 24
and a predetermined threshold #1. If the distance is less
than the threshold #1, the segment matches the target
audio clip. At line 28, whether a number of following
segments (e.g., M segments) in the same audio
(sub)stream may be skipped from searching may be

()c
iw ()

,
s

i tw ()
,
s

i tw τ+

()c
iw ()

,
s

i tw ()
,
s

i tw τ+
()c
iw ()

,
s

i tw ()
,
s

i tw τ+

τ τ τ

Figure 2. Overview of the Parallel Audio Searching System Using the POBPAS Method

determined based on the distance calculated in line 24
and a predetermined threshold #2. If the distance is
larger than the threshold #2, M segments may be
skipped from searching. At line 42, search results from
local arrays from all of the processors may be
summarized and outputted to a user.

Figure 3. The Pseudo-code of the POBPAS
Method

4. Performance Characterization and
Analysis

We implemented the parallel audio search system

based on the POBPAS method by using OpenMP
programming model with C language on two Intel
Xeon shared-memory multiprocessor systems. The first
is a 4-way SMP system (Xeon MP 2.8GHz, L3 cache
size 2MB, FSB Speed 400MHz), and the second is a
Unisys-Es7000 system which consists of 16 processors
(Xeon MP 3.0GHz, L3 cache size 4MB, FSB speed
400MHz, L4 cache size 32MB shared by each 4
processors, 4x4 Crossbar interconnection). The key
characteristics of these two systems show the Unisys
system has larger memory access latency because the
memory transactions need to go through L4 cache
before visiting the memory. For software
configuration, on both platforms, we use Intel C/C++
Compiler Version 9.0 to compile the program under
Windows 2003 Sever OS with full compiler

optimization. We collected the performance data with
some Intel performance analysis tools such as Vtune
Analyzer and Thread Profiler [6].

In our experiments, the audio signals were framed
with 20ms length and 10 ms shift, and 14 MFCCs were
then extracted from each frame as feature vectors. The
1997 Mandarin Broadcast News (MBN) corpus
(Hub4-NE) was used, which consisted of about 30
hours of recorded broadcasts from different sources,
such as CCTV and VOA. All together there were 58
files, where 53 files were selected to train the universal
GMM with 128 diagonal Gaussian components via EM
algorithm. The components of the universal GMM
were taken as the common components of CCGMMs.
For the audio database, we constructed three real data
sets by recording the TV program. Their sizes are
500MB (9hr), 1GB (18hr) and 1.5GB (27hr),
respectively. The length of audio search clip is 15
seconds and its size is about 160KB.

4.1. Performance Optimization

As mentioned in the previous section, the proper

size of audio block should be chosen to reduce the
overlapped computation and load imbalance. In order
to obtain the proper size of block, we did some
experiments on changing the block size in the
implementation. For simplification, we set the block
size as a linear function of the clip size. The
experiment shows it has better performance to let the
block size equal to 25 times the clip size, which is
about 8MB. In the following experiments, we used this
block size as the default. Figure 4 shows the dynamic
scheduling improve the performance for the 1.5GB
data set on the 16-way system by 3% and 7% in 8P and
16P cases, respectively.

Thread scheduler, an essential component in OS,
plays an important role in driving the application to a
high performance. There are already a lot of studies on
thread scheduling, for instance, [8] gives a
comprehensive study on different scheduling
techniques and concludes that the decision made by the
OS has a significant impact on performance with a
relatively large processor count. Table 1 reports the
performance benefit when enabling the thread affinity
mechanism by binding threads to specific processors,
to minimize the threads migration and context switches
among processors. In addition, it improves the data
locality performance and mitigates the impact of
maintaining the cache coherency among all the
processors. With thread affinity, the L3 cache miss rate
and FSB (Front Side Bus) coherency ratio are reduced
by 7.5% and 49% respectively. Here, the cache
coherency ratio is defined as the ratio of bus requests

satisfied by another cache over the total number of read
requests sent on the bus. Furthermore, the FSB
bandwidth utilization is also reduced by 56%.

Based on the version with thread affinity, the I/O
optimization is utilized to overlap the I/O operation
and computation. The approach is that we did not let
the processor read any data from the disk at the
beginning and just define the data range for each thread
(and create a buffer with the audio block size for each
thread). This is because the MFCC feature vector is
extracted frame by frame by each thread in the feature
exaction stage. We let each thread read a 160KB audio
frame in its own audio block from the disk each time as
the feature extraction stage begins. In this way we can
reduce the I/O contention obviously. Figure 4 shows
the performance benefit when using dynamic
scheduling and I/O optimization on the 16-way Unisys
machine for the 1.5GB data set. From this figure, we
can see that the I/O optimization improve the
performance in 8P and 16P cases by 15% and 20%,
respectively.

0

2

4

6

8

10

12

1P 2P 4P 8P 16P

S
pe
e
d
u
p

I/O optimization

Dynamic scheduling

Static scheduling

Figure 4. Optimization for the POBPAS Method
on the 16-way System for the 1.5GB Data Set
(speedups are normalized to the baseline on
single processor)

4.2. Scalability Performance Study

Figure 5 shows the speedup of the parallel audio

search system based on the POBPAS method for three
different audio data sets on the 16-way SMP. From this
figure, we can see the system scale well with the
increasing number of processors for these three data

sets. It can achieve linear speedup on 2 or 4 processors,
6.2~6.7X speedup on 8 processors and 8.8~11.3X on
16 processors.

0

2

4

6

8

10

12

1P 2P 4P 8P 16P
S
p
e
e
d
u
p 500MB

1GB

1.5GB

Figure 5. Speedup of the Parallel Audio Search
System on the 16-way System for Three Data
Sets

To deeply understand the scaling limiting factors,

we characterize the parallel performance from the high
level general parallel overheads, e.g., synchronizations
penalties, load imbalance, and sequential sections, to
the detailed memory hierarchy behavior, e.g., cache
miss rates and FSB bandwidth.

Fig 6 gives the general parallel profiling metrics for
the parallel audio search system, where “Parallel”
means running time inside the parallel region, and “
Imbalance” represents time spent waiting for other
threads to reach the end of a parallel region. The
profiling information indicates that the parallel system
has very low synchronization and parallel overhead.
The sequential area and load imbalance increases
steadily with the increasing number of processors but
remains at a relatively low percentage for larger data
sets (less than 1.7% for the 1.5GB data set in 16P
case). Overall speaking, the general parallel limiting
factors are insignificant for larger data sets, especially
for the 1.5GB data set, and will not hurt the scalability
performance for the parallel system on the 16-way
system.

Besides the general scalability performance factors,
memory subsystem also plays an important role in
identifying the scaling performance bottlenecks. Figure

 Time (s) L1 cache miss

rate
L2 cache miss
rate

L3 cache miss
rate

FSB Bandwidth
(MB/s)

FSB Coherency
Ratio

Non-Affinity 88.0 3.72% 4.51% 60.33% 260 25.28%
Affinity 85.1 3.54% 4.55% 55.83% 115 12.89%

Table 1. Performance Comparison of POBPAS with and without Thread Affinity on QP-machine for

1.5GB Data Set (4 threads)

7 shows the L3 level cache miss rate, cache coherency
ratio and the memory bus utilization rate.

0%

20%

40%

60%

80%

100%

2P 4P 8P 16P 2P 4P 8P 16P 2P 4P 8P 16P

500MB 1GB 1.5GB

Parallel Seq. Imbalance Locks & Sync Para o/h
Figure 6. Impact of the General Parallel
Limiting Factors for Three Data Sets

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

2P 4P 8P 16P 2P 4P 8P 16P 2P 4P 8P 16P

L3 cache miss

rate

FSB Coherency

Ratio

FSB Utilization

rate

500MB 1GB 1.5GB
Figure 7. Memory Characterization of the
Parallel Audio Search System on the 16-way
System for Three Data Sets

From Figure 7, we can see that the L3 cache miss

rate increases with increased numbers of processors.
However, the L1 cache miss rate and L2 cache miss
rate are very low (about 4%), the aggregate cache miss
rate (L1 * L2 *L3) ranges from 0.02% to 0.07% with
different data sets and different processor numbers.
Figure 7 also shows the cache coherency ratio changes
little in cases we used more than 4 processors. These
two characteristics reveal that they are not scaling
performance bottlenecks for the parallel system. At the
same time, we can see the FSB utilization rate increase
linearly with the increase of processor numbers for all
data sets from Figure 7. The parallel audio search
system utilized about 40% of FSB bandwidth of the
16-way system with 16 processors for the three data
sets. This result shows the memory bandwidth should
be a limiting factor for the scalability performance of
the parallel audio search system.

5. Conclusions

In this paper, we implemented and analyzed a
parallel quick audio search system with a proposed
Partially Overlapping Block-Parallel Active Search
method on two Intel Xeon shared-memory
multiprocessor systems. This method uses a proper
data segmentation to achieve parallelism and performs
a high level of parallelism with little additional work. It
also could be potentially used as an underlying audio
processing technique for emerging personal media
mining applications on future large-scale multi-core
systems. In the implementation, several techniques
including I/O optimization, proper data partition,
dynamic scheduling, etc., are utilized to maximize its
scalability performance. Our results show that for a 27
hours’ audio stream (15 seconds’ clip) it can achieved
a speedup of 11.3X on the 16-way processor system.

At the same time, we performed a detailed
performance characterization of the parallel quick
audio search system for three data sets. The thread
profiling analysis shows that it has little load
imbalance and extremely low percentage of sequential
region, even on up to 16 processors. Memory hierarchy
performance analysis indicates it has very low cache
misses and has a high memory bus bandwidth
requirement. This result reveals that this parallel audio
quick search system is constrained by the bandwidth
and the larger bandwidth may further improve its
scalability performance.

References

[1] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, A review

of algorithms for audio fingerprinting, Proceedings of
2002 International Workshop on Multimedia Signal
Processing, pages 169-173, 2002.

[2] C. J. Burges, J. C. Platt, and S. Jana, Distortion
discriminant analysis for audio fingerprinting, IEEE
Trans. on Speech and Audio Processing,
11(3):165-174, May. 2003.

[3] S. Sukittanon and L. E. Atlas, Modulation frequency
features for audio fingerprinting, Proceedings of
ICASSP’02, pages 1773-1776, 2002.

[4] Y. Wang and C. Huang, Speaker-and-environment
change detection in broadcast news using the common
component gmm-based divergence measure, In
INTERSPEECH-2004, pages 1069-1072, 2004.

[5] K. Kashino, T. Kurozumi, and H. Murase, A quick
search method for audio and video signals based on
histogram pruning, IEEE Trans. on Multimedia,
5(3):348-357, Sep. 2003.

[6] Intel Corp. VTune performance analyzer. Available at
http://www.intel.com/software/products/vtune

[7] OpenMP Architecture Review Board: OpenMP C and
C++ Application Program Interface, Version 2.0.
http://www.openmp.org

[8] R. C. Kunz. PhD dissertation, Performance bottlenecks
on large-scale shared-memory multiprocessors. 2004.

