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Abstract 
 

Audio search plays an important role in analyzing 
audio data and retrieving useful audio information. In 
this paper, a Partially Overlapping Block-Parallel 
Active Search method (POBPAS) is proposed to 
perform audio quick search on shared-memory 
multiprocessor systems (SMPs). This method uses a 
proper data segmentation to achieve parallelism and 
performs a high level of parallelism with little 
additional work. Several techniques including I/O 
optimization, proper data partition and dynamic 
scheduling are also introduced to maximize its 
scalability performance. 

In addition, we conduct a detailed performance 
characterization analysis of the parallel 
implementation of the POBPAS for three data sets on 
two Intel Xeon SMPs. Experimental results indicate 
that there are no obvious parallel limiting factors in 
the implementation except memory bandwidth. As a 
result, it can achieve 11.3X speedup for a larger data 
set (searching a 15 seconds’ clip in a 27 hours’ audio 
stream) on the 16-way processor system. 
 
1. Introduction 
 

Audio data from radio, television, databases, or on 
the Internet has been a rich resource of information. 
Audio search (e.g., searching a large audio stream for 
an audio clip, even if the large audio stream is 
corrupted/distorted) is an effective way to analyze 
audio data and retrieve useful audio information. It has 
many applications including analysis of broadcast 
music/commercials, copyright management over the 
Internet, or finding metadata for unlabeled audio clips, 
and etc [1,2,3,4]. A typical audio search system is 
serial and designed for single processor systems [5]. It 
normally takes a long time for such a search system to 
search for a target audio clip in a large audio stream. In 
many cases, however, an audio search system is 
required to work efficiently on large audio streams, e.g., 
to search large streams in a very short time (e.g., close 

to real-time). Additionally, an audio stream may be 
partially or entirely distorted, corrupted, and/or 
compressed. This requires that an audio search system 
should be robust enough to identify those audio 
segments that are the same as the target audio clip, 
even if those segments may be distorted, corrupted, 
and/or compressed [2,3]. Thus, it is desirable to have 
an audio search system which can quickly and robustly 
search large audio databases for a target audio clip. 

In this paper, a Partially Overlapping Block-Parallel 
Active Search method (POBPAS) is proposed to 
efficiently employ the multiple processors and speed 
up audio searching for large audio streams on 
Shared-memory Multi-Processor systems (SMPs). This 
method also could be potentially used as an underlying 
audio processing technique for emerging personal 
media mining applications on future large-scale 
multi-core systems. Furthermore, several techniques 
including I/O optimization, proper data partition and 
dynamic scheduling are introduced to maximize its 
scalability performance. A parallel audio quick search 
system with the POBPAS method is implemented on 
two Intel Xeon SMPs. This paper also characterizes the 
performance of the parallel audio search system in 
detail.  

The reminder of this paper is organized as follows. 
Section 2 gives an introduction to the framework of the 
audio quick search. Section 3 describes the POBPAS 
method and some optimization techniques in its 
implementation. The experimental results and 
application characterizations are reported in Section 4. 
Finally, we conclude in Section 5. 

 
2. Framework of Audio Quick Search 
 

Figure 1 outlines the serial audio searching system. 
First, the feature vector sequences are extracted from 
both the audio clip and the audio stream. Then, 
windows of the same length as the clip are applied to 
both feature sequences. The feature vectors within a 
window are used to estimate a CCGMM (Common 
Component Gaussian Mixture Model, [4]). Then the 



 

distance is calculated between the CCGMMs estimated 
from the clip and the windowed stream. If the distance 
is below a threshold, the audio clip is considered to be 
detected and located in the audio stream. Finally, the 
window on the audio stream is shifted forward in time 
and the search proceeds. Below are details for each 
stage of the system. 
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Figure 1. Overview of the Serial Audio 
Searching System 

 
Feature extraction stage: The feature vector 

sequences are extracted from both the audio clip and 
the audio stream. Then, windows of the same length as 
the clip are applied to both feature sequences. A 
general approach is to separate the audio into frames. 
Then, features may be computed for each frame. Some 
of the features include Fourier coefficients, 
mel-frequency cepstral coefficients (MFCCs), spectral 
flatness and derivatives, means, variances. 

Modeling stage: Feature vectors within a window 
are used to estimate a CCGMM model. In this 
approach, audio segments are modeled by a GMM 
(Gaussian Mixture Model, [4]), which consists of M 
Gaussian components with component weights ( )k

iW , 
means ( )k

iµ , and covariance ( )k
i∑ , 1,2, ,i M= : 

( )( ) ( ) ( ) ( )

1
( ) | ,

Mk k k k
ii i

i
P x w x µ

=
= Ν∑ ∑     (1) 

To avoid poor estimation and simplify Kullback 
Leibler distance computation, we further assume that 
the GMMs for all the audio segments share a common 
set of Gaussion components. They are pre-trained and 
stored as a universal GMM: 
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Now we need only estimate the component weights 
to specify a CCGMM for an audio segment. Given T  
feature vectors ( 1,2, , )tx t T=  for an audio segment 
k , the weights are estimated by the following formula: 
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Active search stage: The distance is calculated 
between the CCGMMs estimated from the clip and the 
windowed stream. If the distance is below a threshold, 
the audio clip is considered to be detected and located 
in the audio stream. In our approach, Kullback Leibler 
(KLMAX) distance between two CCGMMs can be 
approximated as follows: 

(1)
(1) (2)

(2)1,2,..,
max ( ) log i

KLMAX i ii M
i

wd w w
w=

= −     (4) 

As the window applied over the audio stream shifts 
forward in time, we can skip some unnecessary 
hypothesis matches, while mathematically 
guaranteeing no false dismissals. 

 
3. Parallel Audio Quick Search Method 
 

In this section, we propose a Partially Overlapping 
Block-Parallel Active Search method (POBPAS) to 
efficiently and quickly perform audio searching for 
large audio streams on SMPs. This method uses a 
proper data segmentation to achieve parallelism and 
performs a high level of parallelism with little 
additional work. Furthermore, several techniques 
including proper data partition, dynamic scheduling 
and I/O optimization are also introduced to improve 
the parallel performance in practice.  

Figure 2 outlines the parallel audio searching 
system using the POBPAS method. First, the large 
audio stream is partitioned into partially overlapped 
blocks (multiple smaller substreams) with equal length 
for simplification. Then, the feature vector sequence is 
extracted from the audio clip, and a CCGMM is 
estimated from the feature vector on a processor. After 
that, these small audio streams can be dynamically 
assigned to different processors, and each processor 
extracts the feature vector sequences and estimates the 
CCGMMs from the audio stream, and detects the 
correct matches using the KLMAX distance between 
the CCGMMs estimated from the clip and the 
windowed small stream. When a processor completes 
the audio searching on a small audio stream, it can 
receive another uncalculated small stream to continue 
until there is no available stream anymore.  



 

In the implementation, the minimal length of the 
overlap equals FNClip 1− , where FNClip is the frame 
number of the clip. These overlaps ensure that we 
cannot miss any correct detection in the parallel search 
process. On the other hand, the length of each small 
stream should be greater than or equal to the length of 
the clip. Note that smaller block size may result in 
large overlapped computation, while larger block size 
may result in considerable load imbalance in parallel 
processing by multiple processors. So an appropriate 
block size should be chosen to reduce the overlapped 
computation and load imbalance.  

In practice, the block length is usually several tens 
(or hundreds) of times the length of the clip, and the 
number of blocks is much larger than the number of 
processors. We use dynamic scheduling for parallel 
processing these small audio streams to reduce the load 
imbalance overhead, since the computation cost of 
time-serials active search [5] for the same clip is much 
different from different audio streams even with equal 
length.  

Finally, in order to overlap I/O and computation 
effectively, the proper length of audio stream to be 
loaded into memory buffer from the disk by each 
processor is chosen to reduce the I/O contention.  

Figure 3 is the pseudo code illustrating an example 
of POBPAS for performing robust and parallel audio 
search on a SMP system. At line 02, audio search 
module may be initialized, e.g., target audio clip file 
and large audio stream file may be opened, and global 
parameters may be initialized. At line 04, a large audio 
stream may be partitioned into NG smaller partially 
overlapped streams. At line 06, a model (e.g., 
CCGMM) may be established for the target audio clip. 

At line 08, NG audio streams may be dynamically 
scheduled to available processors and parallel 
processing of the scheduled groups may be started. 
Line 08 uses one example instruction with OpenMP 
directives [7] that sets up parallel implementation and 
other parallel implementation instructions may also be 
used.   

Lines 10 through 34 illustrate how each of NG 
streams is processed and searched for the target in 
parallel by a processor in the multiprocessor system. It 
is worth noting that for illustration purpose, process in 
lines 12 to 34 is shown as iteration from the first 
stream until the last stream. In practice, if there are 
several processors available, several groups are 
processed in parallel by these available processors. At 
line 14, some or all of audio streams in each stream 
may be further partitioned into NS partially overlapped 
segments if such streams are longer in time than the 
target audio clip. Line 16 starts iterative process for 
each segment of the group, shown in lines 18 through 
32. At line 20, a feature vector sequence (frame by 
frame) may be extracted from the segment. At line 22, 
a model (e.g., CCGMM as shown in Equations (1) to 
(3)) may be established for the segment. At line 24, 
distance (e.g., KL-max distance as shown in Equation 
(4)) between the segment model and the target audio 
clip model may be computed. At line 26, whether the 
segment matches the target audio clip or not may be 
determined based on the distance calculated in line 24 
and a predetermined threshold #1. If the distance is less 
than the threshold #1, the segment matches the target 
audio clip. At line 28, whether a number of following 
segments (e.g., M segments) in the same audio 
(sub)stream may be skipped from searching may be 
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Figure 2. Overview of the Parallel Audio Searching System Using the POBPAS Method 

 



 

determined based on the distance calculated in line 24 
and a predetermined threshold #2. If the distance is 
larger than the threshold #2, M segments may be 
skipped from searching. At line 42, search results from 
local arrays from all of the processors may be 
summarized and outputted to a user. 

 

Figure 3. The Pseudo-code of the POBPAS 
Method 

 
4. Performance Characterization and 
Analysis 

 
We implemented the parallel audio search system 

based on the POBPAS method by using OpenMP 
programming model with C language on two Intel 
Xeon shared-memory multiprocessor systems. The first 
is a 4-way SMP system (Xeon MP 2.8GHz, L3 cache 
size 2MB, FSB Speed 400MHz), and the second is a 
Unisys-Es7000 system which consists of 16 processors 
(Xeon MP 3.0GHz, L3 cache size 4MB, FSB speed 
400MHz, L4 cache size 32MB shared by each 4 
processors, 4x4 Crossbar interconnection). The key 
characteristics of these two systems show the Unisys 
system has larger memory access latency because the 
memory transactions need to go through L4 cache 
before visiting the memory. For software 
configuration, on both platforms, we use Intel C/C++ 
Compiler Version 9.0 to compile the program under 
Windows 2003 Sever OS with full compiler 

optimization. We collected the performance data with 
some Intel performance analysis tools such as Vtune 
Analyzer and Thread Profiler [6]. 

In our experiments, the audio signals were framed 
with 20ms length and 10 ms shift, and 14 MFCCs were 
then extracted from each frame as feature vectors. The 
1997 Mandarin Broadcast News (MBN) corpus 
(Hub4-NE) was used, which consisted of about 30 
hours of recorded broadcasts from different sources, 
such as CCTV and VOA. All together there were 58 
files, where 53 files were selected to train the universal 
GMM with 128 diagonal Gaussian components via EM 
algorithm. The components of the universal GMM 
were taken as the common components of CCGMMs. 
For the audio database, we constructed three real data 
sets by recording the TV program. Their sizes are 
500MB (9hr), 1GB (18hr) and 1.5GB (27hr), 
respectively. The length of audio search clip is 15 
seconds and its size is about 160KB. 

 
4.1. Performance Optimization 

 
As mentioned in the previous section, the proper 

size of audio block should be chosen to reduce the 
overlapped computation and load imbalance. In order 
to obtain the proper size of block, we did some 
experiments on changing the block size in the 
implementation. For simplification, we set the block 
size as a linear function of the clip size. The 
experiment shows it has better performance to let the 
block size equal to 25 times the clip size, which is 
about 8MB. In the following experiments, we used this 
block size as the default. Figure 4 shows the dynamic 
scheduling improve the performance for the 1.5GB 
data set on the 16-way system by 3% and 7% in 8P and 
16P cases, respectively. 

Thread scheduler, an essential component in OS, 
plays an important role in driving the application to a 
high performance. There are already a lot of studies on 
thread scheduling, for instance, [8] gives a 
comprehensive study on different scheduling 
techniques and concludes that the decision made by the 
OS has a significant impact on performance with a 
relatively large processor count. Table 1 reports the 
performance benefit when enabling the thread affinity 
mechanism by binding threads to specific processors, 
to minimize the threads migration and context switches 
among processors. In addition, it improves the data 
locality performance and mitigates the impact of 
maintaining the cache coherency among all the 
processors. With thread affinity, the L3 cache miss rate 
and FSB (Front Side Bus) coherency ratio are reduced 
by 7.5% and 49% respectively. Here, the cache 
coherency ratio is defined as the ratio of bus requests 



 

satisfied by another cache over the total number of read 
requests sent on the bus. Furthermore, the FSB 
bandwidth utilization is also reduced by 56%. 

Based on the version with thread affinity, the I/O 
optimization is utilized to overlap the I/O operation 
and computation. The approach is that we did not let 
the processor read any data from the disk at the 
beginning and just define the data range for each thread 
(and create a buffer with the audio block size for each 
thread). This is because the MFCC feature vector is 
extracted frame by frame by each thread in the feature 
exaction stage. We let each thread read a 160KB audio 
frame in its own audio block from the disk each time as 
the feature extraction stage begins. In this way we can 
reduce the I/O contention obviously. Figure 4 shows 
the performance benefit when using dynamic 
scheduling and I/O optimization on the 16-way Unisys 
machine for the 1.5GB data set. From this figure, we 
can see that the I/O optimization improve the 
performance in 8P and 16P cases by 15% and 20%, 
respectively.  
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Figure 4. Optimization for the POBPAS Method 
on the 16-way System for the 1.5GB Data Set 
(speedups are normalized to the baseline on 
single processor) 

 
4.2. Scalability Performance Study 

 
Figure 5 shows the speedup of the parallel audio 

search system based on the POBPAS method for three 
different audio data sets on the 16-way SMP. From this 
figure, we can see the system scale well with the 
increasing number of processors for these three data 

sets. It can achieve linear speedup on 2 or 4 processors, 
6.2~6.7X speedup on 8 processors and 8.8~11.3X on 
16 processors.  
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Figure 5. Speedup of the Parallel Audio Search 
System on the 16-way System for Three Data 
Sets 

 
To deeply understand the scaling limiting factors, 

we characterize the parallel performance from the high 
level general parallel overheads, e.g., synchronizations 
penalties, load imbalance, and sequential sections, to 
the detailed memory hierarchy behavior, e.g., cache 
miss rates and FSB bandwidth. 

Fig 6 gives the general parallel profiling metrics for 
the parallel audio search system, where “Parallel” 
means running time inside the parallel region, and “
Imbalance” represents time spent waiting for other 
threads to reach the end of a parallel region. The 
profiling information indicates that the parallel system 
has very low synchronization and parallel overhead. 
The sequential area and load imbalance increases 
steadily with the increasing number of processors but 
remains at a relatively low percentage for larger data 
sets (less than 1.7% for the 1.5GB data set in 16P 
case). Overall speaking, the general parallel limiting 
factors are insignificant for larger data sets, especially 
for the 1.5GB data set, and will not hurt the scalability 
performance for the parallel system on the 16-way 
system.  

Besides the general scalability performance factors, 
memory subsystem also plays an important role in 
identifying the scaling performance bottlenecks. Figure 

 
 Time (s) L1 cache miss 

rate 
L2 cache miss 
rate 

L3 cache miss 
rate 

FSB Bandwidth 
(MB/s) 

FSB Coherency 
Ratio 

Non-Affinity 88.0 3.72% 4.51% 60.33% 260 25.28% 
Affinity 85.1 3.54% 4.55% 55.83% 115 12.89% 

 
Table 1. Performance Comparison of POBPAS with and without Thread Affinity on QP-machine for 

1.5GB Data Set (4 threads) 
 



 

7 shows the L3 level cache miss rate, cache coherency 
ratio and the memory bus utilization rate. 
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Figure 7. Memory Characterization of the 
Parallel Audio Search System on the 16-way 
System for Three Data Sets 

 
From Figure 7, we can see that the L3 cache miss 

rate increases with increased numbers of processors. 
However, the L1 cache miss rate and L2 cache miss 
rate are very low (about 4%), the aggregate cache miss 
rate (L1 * L2 *L3) ranges from 0.02% to 0.07% with 
different data sets and different processor numbers. 
Figure 7 also shows the cache coherency ratio changes 
little in cases we used more than 4 processors. These 
two characteristics reveal that they are not scaling 
performance bottlenecks for the parallel system. At the 
same time, we can see the FSB utilization rate increase 
linearly with the increase of processor numbers for all 
data sets from Figure 7. The parallel audio search 
system utilized about 40% of FSB bandwidth of the 
16-way system with 16 processors for the three data 
sets. This result shows the memory bandwidth should 
be a limiting factor for the scalability performance of 
the parallel audio search system.  

 
5. Conclusions 
 

In this paper, we implemented and analyzed a 
parallel quick audio search system with a proposed 
Partially Overlapping Block-Parallel Active Search 
method on two Intel Xeon shared-memory 
multiprocessor systems. This method uses a proper 
data segmentation to achieve parallelism and performs 
a high level of parallelism with little additional work. It 
also could be potentially used as an underlying audio 
processing technique for emerging personal media 
mining applications on future large-scale multi-core 
systems. In the implementation, several techniques 
including I/O optimization, proper data partition, 
dynamic scheduling, etc., are utilized to maximize its 
scalability performance. Our results show that for a 27 
hours’ audio stream (15 seconds’ clip) it can achieved 
a speedup of 11.3X on the 16-way processor system.  

At the same time, we performed a detailed 
performance characterization of the parallel quick 
audio search system for three data sets. The thread 
profiling analysis shows that it has little load 
imbalance and extremely low percentage of sequential 
region, even on up to 16 processors. Memory hierarchy 
performance analysis indicates it has very low cache 
misses and has a high memory bus bandwidth 
requirement. This result reveals that this parallel audio 
quick search system is constrained by the bandwidth 
and the larger bandwidth may further improve its 
scalability performance.  
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