
Tera-scalable Fourier Spectral Element Code for DNS of Channel Turbulent
Flow at High Reynolds Number

Jin Xu

Physics Division
Argonne National Laboratory

Argonne, IL 60439 USA
jin xu@anl.gov

Abstract

Due to the extensive requirement of memory and speed
for direct numerical simulation (DNS) of channel turbu-
lence, people can only perform DNS at moderate Reynolds
number before. With the fast development of supercomput-
ers, it has become more and more approachable for re-
searchers to perform DNS of turbulence at high Reynolds
number. This makes it imperative to consider the develop-
ment of tera-scalable DNS codes that are capable of fully
exploiting these massively parallel machines. In order to
achieve this, three parallel models (1D, 2D and 3D do-
main decompositions) have been implemented and bench-
marked. All these models have been successfully ported on
BlueGene/L. We have benchmarked these models on BG/L
at ANL and BGW at IBM Watson center. Details of these
models have been described, discussed and presented in this
paper. The optimized model can be used to perform DNS at
high Reynolds number in the near future.

Key word: DNS, Fourier Spectral Element Method, Do-
main Decomposition, high Reynolds number

1. Background

Turbulence remains one of the unsolved physical prob-
lems in 20th century. It has great importance in fluid dy-
namics, as turbulence nearly exists in all areas of fluids. Af-
ter many years of research, turbulence still remains open
challenge to the scientific and engineering communities.
People have tried to solve turbulence in theory for centuries.
However, due to its extremely complexity of nonlinearity,
it is very difficult to understand turbulence in theory. So

1-4244-0910-1/07/$20.00 c©2007 IEEE.

people become more interested in solving it through com-
puter simulation. In 1973, Steven Orszag performed the
first DNS on a 323 mesh at NCAR on a CDC7600 com-
puter with only 50 Mbytes memory. This is a 3D homoge-
neous turbulence with periodic boundary conditions in all
three directions. Since it uses Fourier series as expansion
bases, the speed is relatively faster. Direct Numerical Sim-
ulation of Turbulence by a Fourier Spectral Method on the
Earth Simulator has been reported on SC2002 with 20483

mesh. However, turbulence in wall bounded region is more
difficult to perform DNS. Usually it is more time consum-
ing than the 3D homogeneous case. In 1987, Kim, Moin
and Moser (KMM) published their first paper on DNS of
channel turbulence[8]. After that, interests on DNS greatly
increased. However, as the cost of channel turbulent DNS
is proportional to Re3, and the limit of computer speed
and memory, people can only perform DNS at moderate
Reynolds number(< Reτ = 600). Recently with the super-
computer speed becomes faster and faster, there is a revised
interest on high Reynolds number DNS. In 1999, Robert
Moser has reported his results at Reτ = 595, which is
the highest Reynolds number at that time. In 2003 and
2005, Japanese researchers have reported DNS results at
Reτ = 1152 and Reτ = 2320, using 512 and 2048 proces-
sors on Earth Simulator, respectively. Right now many re-
searchers are working on the optimization of parallel mod-
els for DNS of turbulent channel flows[3, 12]. This is
a highly competitive field and results at higher Reynolds
number are expected to be reported soon.

Our simulation method is similar to that of Kim, Moin
and Moser[9]. The computational domain is a plane chan-
nel with periodic boundary conditions in streamwise (x) and
spanwise (z) directions. The difference of the discretization
is in the wall normal (y) direction, where we use spectral el-
ement expansion instead of the Chebyshev polynomials in
one element. In the streamwise and spanwise directions, we

use Fourier series as the expansion bases, which is same as
KMM’s.

As the cost of channel turbulent DNS is proportional to
Re3

m (Rem = Um ∗H/ν, Um is the mean velocity of fluid,
H is the channel height and ν is the kinetic viscosity), it
remains very challenging to do channel turbulence DNS at
high Reynolds number. Since DNS is time and memory
consuming at high Reynolds number, we need to design
tera-scalable models for the simulation of turbulent chan-
nel flow that allows efficient scaling on tens of thousands
of processors. In order to do this, we have implemented
three different parallel models. The first model uses do-
main decomposition in the streamwise direction (model A),
and it is the simplest one among these three models. How-
ever, this model has the inherent limitation on the maximum
number of processors that can be used. As we need to have
at least two planes allocated to each processor in order to
do de-aliasing in the nonlinear step, therefore this model is
limited by the total mesh points in the streamwise direction.
In order to overcome this bottleneck, the other two paral-
lel models were implemented. In the second model (model
B), the domain is decomposed in both streamwise and span-
wise directions. In the third model (model C), the domain
is decomposed in all three directions (streamwise, spanwise
and wall-normal direction). Using models B and C, we can
easily scale the simulation to tens of thousands of proces-
sors. Model C is more flexible than model B as the number
of processors can be altered in all three directions. Imple-
mentation details and benchmark results are presented in
the following sessions. We will also present our benchmark
results on BGW at IBM Watson center, which the second
fastest machine on the world now. At last, DNS results at
Reτ = 1000 (Reτ = Uτ ∗H/ν, Uτ is the friction velocity)
are reported, which use about 0.7 billion grid points (8.64G
bytes/variable).

2. Numerical Method

The discretization is similar to that of Kim, Moin and
Moser[8]. The difference is in the wall normal direction,
where we use a spectral element expansion instead of the
Chebyshev polynomials. In the streamwise and spanwise
directions, we use a Fourier series as the expansion bases,
which is the same as KMM’s. Under this framework, the
velocity can be expressed in the following form within an
element:

u(x, y, z, t) =
M/2−1∑

m=−M/2

N/2−1∑
n=−N/2

P∑
p=0

û(m, p, n, t)e−iαmxe−iβnzφp(y) (1)

Where φp(y) are spectral modes in each spectral element.
The mapping between global coordinate y and local element
e, local coordinate ξ (−1 < ξ < 1) can be expressed as
following:

y =
1 − ξ

2
ye−1 +

1 + ξ

2
ye (2)

The modal expansions adopted in this work are Jacobi
polynomials, Pα,β

p (x) [7]. Jacobi polynomials are the fam-
ily of polynomial solutions to a singular Sturm-Louiville
problem and for −1 < x < 1, can be written as

d

dx

[
(1 − x)1+α(1 + x)1+β d

dx
up(x)

]

= λp(1 − x)α(1 + x)βup(x) (3)

with up(x) = Pα,β
p (x), λp = −p(α + β + p + 1). Jacobi

polynomials have the orthogonality property

∫ 1

−1

(1 + x)β(1 − x)αPα,β
p (x)Pα,β

q (x)dx = Cδpq (4)

with C depending on α, β, p. Thus, Pα,β
p (x) is orthogonal

to all polynomials of order less than p, when integrating
with (1 + x)β(1 − x)α and the modal expansion basis is
then defined as

φp(ξ) =

1−ξ
2 , p = 0

1
4 (1 − ξ)(1 + ξ)P 1,1

p−2(ξ) , 0 < p < P
1+ξ
2 , p = P

(5)
where Pp(y) are the standard Jacobi Polynomials

(Pα,β
p (y)) with α = β = 1 (Legendre Polynomial) in the

form.

Using this method, we can choose the position of an ele-
ment boundary, so that we can control the number of points
in the near wall region. According to [4], the DNS simu-
lation usually needs at least 13 points in the first 10 wall
units, so that it is enough to resolve the smallest turbulent
structure in the near wall region.

The velocity field �V (x, y, z, t) of incompressible flow
satisfies

∂�V

∂t
+ �V · ∇�V = −∇p + ν∇2�V , ∇ · �V = 0 (6)

Where ν is the fluid viscosity and p is the pressure. We

use the high-order time splitting method of Karniadakis, Is-
raeli, Orszag (1991)[6] to do the time integration.

1. Nonlinear step:

2

xo

y

z
xo

y

z

Figure 1. Sketch for three parallel models

�V s+1/3 − ∑Ji−1
q=0 αq

�V s−q

∆t
=

Je−1∑
q=0

βqN(�V s−q) (7)

Ji, Je are orders, and αq ,βq are coefficients in splitting
scheme.

2. Pressure step:

�V s+2/3 − �V s+1/3

∆t
= −∇ps+1 (8)

∇ · �V s+2/3 = 0 (9)

∂ps+1

∂n
= ν

Je−1∑
q=0

βq(−∇× (∇× �V s−q))]

+ �n · [
Je−1∑
q=0

βqN(�V s−q) (10)

3. Viscous step:

�V s+1 − �V s+2/3

∆t
= ν∇2�V s+1 (11)

In order to eliminate the aliasing error generated in non-
linear step, we perform the nonlinear step in physical space
using 3/2 rule. This means that we expand the mesh by
3/2 times larger in both streamwise and spanwise direc-
tions. After evaluating the nonlinear terms, we transform
them back to the normal mesh. The code uses FFTW[2],
which can optimize its performance on different platforms
to do Fast Fourier Transform. The high performance nu-
merical libraries such as BLAS, LAPACK have been used
in the code. The code has been parallelized using MPI, and
benchmarked on different platforms, such as BlueGene/L,
SPX, SGI, HP, LINUX Cluster, etc. The benchmark results
on BlueGene/L are reported in detail as follows.

3 Parallel Models Implementation

3.1 Domain Decomposition in X Direction
(Model A)

In Figure. 1 (left), we present the sketch of model A. The
domain has been decomposed only in the streamwise direc-

tion, and it is the simplest model for channel flow solver.
The domain is divided in streamwise direction, therefore
the Fast Fourier Transform (FFT) can not be performed
directly in this direction. In order to complete FFT, we
need to do transpose of whole data in (x, z) plane. The
interpolation and extrapolation in model A for dealiasing
have been performed by shifting data to its next neighbor.
This need to be performed between each processor and its
succeeding processor for N times (N is the total number
of processors). That means each time the data is shifted
from one processor to its subsequent processor, and after
N times, the data is returned to its original position, i.e.
0 → 1 → 2 → ... → N − 1 → 0. During this process,
each processor can compute to decide which portion of the
data should be copied. After one turn, all processors have
the data they need for interpolation or extrapolation.

3.2 Domain Decomposition in X and Z Di-
rections (Model B1, B2 and B3)

In Figure. 1 (middle), we present the sketch of model
B. The domain has been decomposed in both streamwise
and spanwise directions. Since we decomposed the do-
main in both streamwise and spanwise directions, we can-
not perform a FFT directly at any direction. We can not
apply transpose in (x, z) plane either, since both of them
are divided into different processors. In order to do a
FFT, we implemented two different methods. In the first
one, we used two new communication groups, comx and
comz. Communication group comx contains all processors
that have the same x locations, and communication group
comz contains all processors that have same z location.
They are different from the global communication group,
MPI COMM WORLD, which contains all processors
in the code. While comx and comz only have a portion
of all the processors. FFT in x direction is applied after
each processor performs transpose of (y, z) plane in cor-
responding communication group comz, then there is an-
other transpose to transform data back to its original posi-
tion. FFT in z direction is done similarly by transpose of
(y, x) plane in each corresponding communication group
comx, and after that, using another transpose to transform
data back to its original position. The second method col-
lected data from all processors at several planes, and per-
formed 2D FFT transform, then distributed them back to
original processors.

Domain decomposition in two directions makes it dif-
ficult to perform dealiasing by shifting or transpose, since
two direction shifting is not easy to implement, and involve
O(N2) times of operations. Transpose in the (x, z) plane
is not applicable either, because both x and z directions are

3

1 2
3 4

5 6

o x

z

1 2

3 4

5 6

Figure 2. Dealiasing of model B1(left) and
B3(right)

divided. In order to perform interpolation and extrapola-
tion for the dealiasing, we have implemented three different
methods. The first approach (referenced as model B1) is to
redistribute data on all processors, as shown in Figure. 2
(left). In the case of 16 processors shown in Figure. 1 (mid-
dle), 16 processors have redistributed the data to 16 blocks,
and each block has several planes of original data. After
that the data on each plane can be expanded to 3/2 in both x
and z directions. In the end, the dealiased data are redistrib-
uted back to the original processors. The second approach
(referenced as model B2) is to transpose separately in (y,
z) and (y, x) planes as we do for the FFT step. The in-
terpolation and extrapolation for dealiasing have been per-
formed separately in x and z directions, processors which
have different x location need to perform MPI Alltoall
in different communication group. After the operation in
one direction is finished, all processors start the operation
in the other direction. The third approach (referenced as
model B3) is to send data from all processors to their 6
neighboring processors. In the preprocessing, we need to
decide for each processor: on the outbound, the amount of
data it needs to send and to which processor it should send
those data; and on the inbound, how many data it needs to
receive from its peer processor(s). Since the mesh after in-
terpolation is 3/2 the original one in both x and z direction,
the maximum number of peer processors that one processor
will communicate with can be estimated. Each processor
can receive data from at most 6 different processors. This
has been done in the preprocessing. We will compare all
these three dealiasing models in details later.

As with model A, model B1 also has limitations. When
the total mesh points in the wall normal direction is more
than the total number of processors, Model B1 usually can
achieve similar performance as Model B2. Detailed results
of comparison will be shown later. However, when the to-
tal mesh points in the wall normal direction is less than the
total number of processors, not every processor can have
one plane of data for interpolation or extrapolation. For ex-
ample, when we use 1024 processors, and the total number
of mesh points in wall normal direction is only 257, then
using Model B1, only 257 processors can perform 2D inter-

Boundary modes

Boundary modes

Boundary modes

Boundary modes

Boundary modes

Boundary Boundary
Matrix,

Interior Interior
Matrix

iM

bM
Boundary Interior
Matrix

cM

T
cM

Figure 3. Helmholtz matrix for model C

polation and extrapolation, while the other 767 processors
will be idle and wait for synchronization. This will waste
computing resource and degrade the performance. Some
comparisons are shown later.

3.3 Domain Decomposition in X, Y and Z
Directions (Model C)

Domain decomposition in two directions has greatly im-
proved the performance and scalability, and this inspired us
to do domain decomposition in three directions. In addition,
the spectral element method has inherent characteristics of
local element, therefore we have divided the domain in y
direction to the same number of elements (model C). As
shown in Figure. 1 (right), model C has the domain decom-
position in both streamwise, spanwise and wall normal di-
rections. This model increases the number of possible com-
bination of (Nx, Ny, Nz) for three directions, where Nx,
Ny and Nz are the processor numbers in x, y and z direc-
tions, respectively. In model C, the total number of proces-
sors in y direction, Ny is equal to the total number of ele-
ments in the wall normal direction. In addition to the global
communication group MPI COMM WORLD, we have
generated additional three communication groups (comx,
comy and comz), which have all processors at the same x, y
and z location. Since BlueGene/L also has 3D torus network
structure, this model has potential to fit each processor into
its corresponding position in 3D network. This may achieve
the best performance.

Figure. 3 (left) shows the Helmholtz matrix solved at the
viscous step, which is solved globally in models A and B. In
order to do domain decomposition in y direction, we trans-
form the matrix into the form shown in Figure. 3 (right),
which put all coupled boundary modes together on the top,
and separate the interior modes from different elements. On
each processor, we keep a copy of boundary boundary ma-
trix and boundary interior matrix of its own. Each processor
will first solve the boundary modes, which includes its own
boundary. Then we use Shur complement method to sub-
tract the contribution of its boundary modes, and solve its
own interior modes in the end.

The spectral element method we used is based on C0

bases, which means it can only guarantee the continuity

4

Reτ Re Domain DNS mesh DNS
data

180 4300 2π× 2× 2π 128 × 130 ×
128

64M

600 18000 2π × 2 × π 384 × 361 ×
384

1.5G

1000 27500 6π × 2 ×
1.5π

768 × 521 ×
768

8.64G

Table 1. Simulation parameters for DNS.

of the function at the boundaries, but cannot guarantee the
continuity of the derivatives of the function. Indeed, we
usually see different values for the derivative along the y
direction on either side of the boundary. We average them
to get the correct value. So we need to average them to get
the correct value. This needs data communications at the
boundaries. We have implemented two different methods.
The first one uses MPI Send and MPI Recv. Except
for the last processor in the communication group comy,
each processor sends data of its upper boundary to its up-
per node in the group; and then each processor sends data
of its lower boundary to its lower node in the group, ex-
cept the first processor in the group. The second method
copies upper and lower boundary planes to the correspond-
ing locations in a 3D array, which has same dimensions in
the (x, z) plane. The total mesh points of this array in the
y direction are equal to the total element number plus one.
Each processor simply copies two planes of data to its cor-
responding positions, and sets all other planes to zero. Then
a MPI Allreduce is used to do global summation in com-
munication group comy. After that, each processor can ob-
tain the correct value from this array. When the number of
elements in the y direction is small, these two methods have
similar performance. However as the number of elements in
the y direction becomes large, the second method will need
to transfer much more data than the first one. Therefore the
first method is a better choice.

4 Implementation

4.1 Direct and Iterative Solver

To solve Helmholtz and Laplacian matrices, we applied
a direct solver in our models. We will implement iterative
solvers and compare them with direct solvers in a future
work.

4.2 Memory

As the Reynolds number increases, the number of mesh
points needs to increase in a cubic fashion, as shown in Ta-

ble. 1. At high Reynolds number, the mesh size should be
smaller than the smallest scale of vortices. Suppose we need
2048 × 1025 × 2048 mesh to simulate Reτ = 2000, then
the total memory for double precision is 2048 × 1025 ×
2048 × 8 = 34.4GB. In order to save memory, we uti-
lized the characteristics of Fourier coefficients. As the co-
efficients are conjugate in Fourier space if the values before
Fourier Transform are real, we only need to store array of
size 2048× 1025× 1024 in Fourier space. This leads to the
same amount of memory as needed to represent the physical
space, since complex numbers occupy twice the memory of
real numbers.

4.3 Speed

Kim, Moin, and Moser[8] suggested that the time step
required for the simulation should be

∆t ≈ 0.003√
Reτ

H

uτ
. (12)

H is the channel height. Hence, assuming that 5H/uτ sec-
onds are required to reach a statistically-steady state, then
the total time needed are

5 × H/uτ = 5 ×
√

Reτ

0.003
= 5 ×

√
2000

0.003
= 75000. (13)

If each time step takes about 35 seconds, then the to-
tal time needed will be 75000 × 30/3600/24 ≈ 26 days.
However, this estimate is based on Chebyshev polynomi-
als in one element. Since we are using the spectral element
method, the smallest mesh size in y direction is much larger
than that of the Chebyshev polynomial-based method. So
the time step ∆t can be much larger, and the total time
needed for our simulation should be much less than the
above estimation. We examine running on the BlueGene
system in our benchmark results later.

4.4 Factorization

In order to speedup the simulation, we need to employ
factorization techniques. On the other hand, we need to use
a larger mesh for DNS at higher Reynolds number. This
is a contradiction, and we need to balance the memory and
speed requirements. If using factorization technique for the
global Helmholtz matrix, the increment of the total number
of matrices is P, where P is the total mesh number in the y
direction. For example, if P=769, then we need 769 more
3D arrays to save factorization matrices. This is almost im-
possible, as the total arrays needed for the DNS without
factorization is only 25. If we transform the global matrix
to separate the boundary matrix and interior matrices, and
do the factorization of each local matrix, then the memory
requirement will be much lower, as shown in Figure. 3.

5

Nx × Ny × Nz Proc.
No.

Nl. Tot. Nl./Tot.

512 × 513 × 512 512 40.61 54.78 74.1%
768 × 513 × 768 1024 40.64 56.21 72.3%
1024×513×1024 2048 52.89 68.8 76.9%

Table 2. Time ratio of nonlinear step for model
B1

Nx × Ny × Nz Proc.
No.

Nl. Tot. Nl./Tot.

512 × 513 × 512 512 20.56 34.97 58.8%
768 × 513 × 768 1024 19.68 35.22 55.9%
1024×513×1024 2048 18.19 32.75 55.5%

Table 3. Time ratio of nonlinear step for model
C

Since the matrix is local, the maximum bandwidth is the
number of spectral modes in each element. Furthermore, if
we check the structure of Helmholtz matrix more carefully,
we can see it is actually a tridiagnal matrix. That means by
using factorization technique for banded matrices, the total
number of additional 3D arrays needed is only 6. Speedup
of pressure and viscous steps will be twice as fast, as a re-
sult.

5 Benchmark Results on BG/L at ANL

5.1 Dealiasing in Nonlinear Step

Table. 2 and 3 show the results for the same grid num-
ber in y direction, but with increasing numbers of proces-
sors and mesh size for model B1 and C. The percent-
age of total time spent on the nonlinear step remains rel-
atively constant across increasing numbers of processors
because the data transferred through all processors com-
mensurately increases. In addition, when using a very large
mesh, most of the simulation time is spent on the nonlinear
step (approximately 76%) during each time step. Because
we need to scale the “pre-de-aliased” mesh, in preparation
of de-aliasing, by a factor of 9/4, we need to exchange a
large amount of data between different processors for high
Reynolds number simulation. This is the major bottleneck
that resulted in the poor performance.

For example, overall we have 64 processors, and we have
16 elements in y direction. So we have 16 processors allo-
cated to y direction for model C, then the total number of
processors in (x, z) plane is 4. As we use the same number
of processors and same mesh, the total processors used in

250 500 750 1000
Processor No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

S
pe

ed
up

B1
B2
B3
C
Ideal

Figure 4. Comparison of model B and C

(x, z) plane of model B is 64. The data allocated to each
processor in (x, z) plane of model B is 16 times less than
that of model C, but is 16 times larger in y direction than
that of model C. So each processor will transfer the same
size of data for models B and C. Because there are only 4
processors in the (x, z) plane for model C, while there are 64
processors for model B, the transpose in model C is much
quicker than model B. The ratio of nonlinear step drops to
about 56%.

As shown in Table. 4, we can verify the assumption
that model B1 and B2 will perform differently under dif-
ferent conditions. As the total number of grid points in y
direction is more than the total number of processors, these
two models will have similar performance. However, as
the total number of grid points in y direction is less than
the total number of processors, model B2 will have better
performance. For 16, 64, 256, 512 and 1024 processors,
B1 and B2 do have similar performance for nonlinear step.
However, for 2048 processors, model B2 is 25% faster than
model B1 for the nonlinear step. There is also some differ-
ence between model B2 and B3. B3 has better performance
than B2 at small mesh and small number of processors.
However, they have similar performance for 2048 proces-
sors, as more time will be spent on copying data in and out
of the communication buffers.

5.2 Scalability

Figure. 4 (left) shows the scaling of each model on mesh
256 × 257 × 256. We can see from the plot that all models
have relatively good scaling. The solid line in the plot is the
ideal speedup. Model B2 and B3 are a little bit better than
B1. Model C is the best model among all these.

Table. 4 shows the time for each step on different mesh
with different number of processors. From this table, we
can see that model B1, B2 and B3 have similar performance.
Model C is the best, its speed is about 40% faster than
model B1. Interesting thing is that not all steps in model
C are faster than those of model B. Actually the viscous
step takes more time in model C than any other models, the
reason may be due to the extra communication in the com-
munication group comy. In model B, there is no commu-
nication; unlike model C, which has much communication.

6

CPU NX NY NZ KE
=16 =128 =129 =128 =4

Model NL PRES VIS Total
B1 8.4 2.37 1.27 12.04
B2 9.39 2.46 1.27 13.12
B3 9.08 2.42 1.27 12.77
C 6.88 1.88 1.68 10.44

CPU NX NY NZ KE
=64 =256 =257 =256 =8

Model NL PRES VIS Total
B1 23.5 6.9 2.7 33.1
B2 25.11 7.06 2.71 34.88
B3 24.97 7.06 2.71 34.74
C 15.6 4.48 4.76 24.84

CPU NX NY NZ KE
=256 =512 =257 =512 =16

Model NL PRES VIS Total
B1 30.8 7.89 2.71 41.4
B2 31.67 7.92 2.72 42.31
B3 30.66 7.95 2.71 41.32
C 20.02 4.42 2.92 27.36

CPU NX NY NZ KE
=512 =512 =513 =512 =16

Model NL PRES VIS Total
B1 40.61 11.53 2.64 54.78
B2 42.64 11.62 2.58 56.84
B3 34.15 11.61 2.58 48.34
C 20.56 6.26 8.15 34.97

CPU NX NY NZ KE
=1024 =768 =513 =768 =16
Model NL PRES VIS Total

B1 40.64 12.51 3.06 56.21
B2 41.14 12.43 3.06 56.63
B3 39.43 12.08 3.04 54.55
C 19.68 6.62 8.92 35.22

CPU NX NY NZ KE
=2048 =1024 =513 =1024 =16
Model NL PRES VIS Total

B1 52.89 13.26 2.65 68.8
B2 40.53 11.52 2.65 54.7
B3 40.54 11.5 2.65 54.66
C 18.19 6.18 8.38 32.75

Table 4. Weak Scaling on different meshes

Ca. Mesh Proc. El. Rack T.
I 2048×513×2048 16384 16 16 17.0
J 2048×513×2048 32768 16 16 14.8
K 2048×769×2048 16384 24 8 39.6
L 2048×769×2048 16384 24 16 29.0
M 2048×769×2048 32768 24 16 22.6

Table 5. 2 to 16 racks on BGW at IBM Watson
center

The encouraging thing is that the nonlinear step in model
C occupies half the time of that in the other models. This
contributes to the overall speedup of about 40%.

5.3 Comparison of Model B and C

We also compared different models using the same mesh
and the same number of processors. The mesh is still 512×
257×512, with 8 elements in the wall normal direction and
33 points per element. Since there are 8 elements in the
y direction, when we use model C, we have 8 processors
in the y direction. Then we can test model C with varying
combinations of Nx and Nz . Figure. 4 (right) compares the
total speed of Model B1, B2, B3 and C. Model C is the best
model as shown in the figure.

6 Benchmark results on BGW

In order to check the scalability of Model C on large
number of processors, we have done the tests on BGW at
IBM Watson center, which is the second fastest machine on
the world now.

We test Model C on 16 racks, with 32768 processors. We
also obtained quite good scalability as shown in table. 5.
From the table, we can see that as each compute node has
two processors for BG/L, so there are two ways to use it:
virtual node (vn) means to use two processor on each node,
and co-processor (co) mode mean use only one processor
on each node. Running same number of processors in vn
mode is usually about 40% faster than in co mode. Case K
and L show about 36.6% speedup in vn mode. And model
C can be successfully run on 16 racks with 32768 process.

7 Simulation Results at High Reynolds Num-
ber

Table. 6 compares the mesh and parameters used by dif-
ferent researchers for Reτ = 1000, The first two cases have
been done by Moser[10], and the third case has been done
by Iwamoto[4]. This last case is our DNS result[12]. We

7

Nx × Ny × Nz Reτ Lx Lz ∆x+ ∆y+ ∆z+

768 × 769 × 768 1901 π π/2 7.8 7.8 3.9
3072×385×2304 934 8π 3π 7.6 3.8 7.6
1152×513×1024 1160 6π 2π 19 - 7.1
768 × 521 × 768 934 6π 1.5π 22.9 7.66 5.7

Table 6. DNS at Reτ = 1000.

y+

U
m

100 101 1020

5

10

15

20
Re*=934
Solid-----------Moser, 3072*385*2304
Dash-----------Jin, 768*521*768

y+

R
m

s

0 200 400 600 800
0

0.5

1

1.5

2

2.5
Re*=934
Solid-----------Moser, 3072*385*2304
Dash-----------Jin, 768*521*768

Figure 5. Compare mean and rms at Reτ =
1000

can see this simulation can be easily done on one rack BG/L
system. And we can perform much higher Reynolds num-
ber DNS on BGW using 16 racks of 32768 processors.

At last, we give our simulation results at Reτ = 1000
running on PSC, using 1024 processors with model B1. The
mesh is 768×513×768, and δt = 1/2000, Rem = 28000.

8 Summary

We have developed and benchmarked several parallel
models for DNS of channel turbulent flow. We investigated
each parallel model in detail. All these models have shown
good scaling up to thousands of processors. The parallel
model with 3D domain decomposition has the best perfor-
mance. Three models based on 2D domain decomposition
have similar performance, where the nonlinear step has rel-
atively poor scaling because large data transfers are needed
for dealiasing. The viscous step has the best scaling among
all three steps. The viscous step in model C is slower than
in other models. However, the nonlinear step is much faster
than the others. The overall performance of model C is
about 40% faster than other models. We also present our
recent benchmark result on BGW at IBM Watson center,
which show great scalability and prospect to perform higher
Reynolds number DNS in the future. At last, some simula-
tion results at high Reynolds number (Reτ = 1000) has
been given.

9 Acknowledgement

I would gratefully acknowledge Assistant Prof. Mike
Kirby at Utah University for his help on discussion of paral-
lel algorithms. Special thanks give to Fred Mintzer, James
Sexton and Bob Walkup at IBM Watson center for their help
on using BGW. I would also like to thank Paul Fischer and
Ed Jedlicka in MCS at ANL for their help on BGW tests.
This work used machines at other supercomputing centers,
such as NAVO, ARSC and NCSA.

References

[1] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang.
Spectral Methods in Fluid Mechanics. Springer-Verlag, New
York 1987.

[2] http://www.fftw.org.
[3] C. W. Hamman, R. M. Kirby and M. Berzins. Parallelization

and scalability of a spectral element channel flow solver for
incompressible Navier Stokes equations. Concurrency and
Computation: Practice and Experience 2006.

[4] K. Iwamoto and N. Kasagi. DNS of high Reynolds number
turbulent channel flow. Proc. 3th Symp. Smart Control of Tur-
bulence, Tokyo, March 2003.

[5] K. Iwamoto. Direct Numerical Simulation of Turbulent Chan-
nel flow at Reτ = 2320. Proc. 6th Symp. Smart Control of
Turbulence, Tokyo, March 2005.

[6] G.E. Karniadakis, M. Israeli and S.A. Orszag. High-order
splitting methods for incompressible Navier-Stokes equa-
tions. J. Comp. Phys., 97:414-443 1991.

[7] G.E. Karniadakis and S.J. Sherwin. Spectral/hp element
methods for CFD. Oxford University Press, London 1999.

[8] J. Kim, P. Moin and R. Moser. Turbulence statistics in fully
developed channel flow at low Reynolds number. J. Fluid
Mechanics 177:133-166 1987.

[9] P. Moin and J. Kim. Numerical investigation of turbulent
channel flow. J. Fluid Mech. 118:341-377 1982.

[10] R. Moser, J. Kim and N. Mansour. Direct numerical simula-
tion of turbulent channel flow up to Reτ = 590. Phys. Fluids
11:943-945 1999.

[11] http://www.top500.org.
[12] J. Xu. High Reynolds number simulation and drag reduction

techniques. PhD. Thesis, Division of Applied Math., Brown
University, 2005.

8

