
Implementing and Evaluating Automatic Checkpointing

Antonio S. Martins Jr. Ronaldo A. L. Gonçalves
State University of Maringá State University of Maringá
 Data Processing Center Informatics Department

 Av. Colombo, 5790 Av. Colombo, 5790
 87020-900 – Brazil 87020-900 – Brazil

 +55 (44) 32614014 +55(44) 32614071
asmartins@uem.br ronaldo@din.uem.br

Abstract

As the size and popularity of computer clusters go on

growing, fault tolerance is becoming a crucial factor to

ensure high performance and reliability for applications.

To provide this facility, a checkpoint mechanism is used

to recover a failed parallel application rolling it back to

an execution moment prior to occurrence of the failure. In

this work we present a mechanism for managing

checkpoint operations during the failures automatically.

This mechanism records periodically the application’s

context, identifies failed nodes and restarts MPI processes

on the remaining nodes, allowing the continuity of the

application and taking advantage of the computing

accomplished previously. We describe a lot of changes

inside source of the LAM/MPI. Experiments with an

application for recognizing DNA similarity showed that

despite the overhead caused by periodic checkpoints, the

benefits can reach about 50% on a small cluster.

1. Introduction

As the human knowledge increases more complex
problems appear. For many computational problems, the
complexity is usually measured by the amount of
calculations necessary to solve them. Thus, as bigger the
problem, more time is need to solve it. As examples, we
have the calculations for climatologic forecast, analysis of
satellite images, aerodynamic simulations, pattern
recognition, seismic analysis and the genome sequencing.

Parallel processing can be used efficiently to solve
these problems . It is done dividing the complex
applications in a group of smaller and simpler tasks, so that
they can be executed simultaneously by independent
processors. However, the construction of specific parallel

1-4244-0910-1/07/$20.00 ©2007 IEEE.

machines has high cost, a million dollars for gigaflop
approximately.

Clusters of the Beowulf class [1,2] have been used as
alternative machine with a great advantage: relatively
cheap conventional computers are connected in order to
work in parallel on the solution of the same problem. In this
model, as bigger is the number of nodes, bigger is the
potential for parallel processing.

However, with the increase of the amount of nodes, the
reliability decreases because the occurrence of failures is
directly proportional, restricting the scalability of cluster
[3]. To minimize this problem, a checkpoint mechanism is
used to record the context of an application during its
execution for later recover it in the case of failures.
However, in many MPI implementations, this mechanism
depends on the user's interventions to activate the
checkpoint operations, such as LAM/MPI.

The present paper, started in [22], proposes the
automation of the checkpoint operations on the
LAM/MPI, implicitly for the users. Changes were made in
some functions of the LAM/MPI library, including code
corrections. Our automatic checkpointing was
experimented with a parallel application for DNA similarity
recognition on a cluster of 8 nodes. This paper is an
improved version of a previous work [30], which was
published in Portuguese and experimented with a
mathematical application on a cluster of 4 nodes.

This paper is organized as follows. Section 2 presents
an overview on the checkpointing. Section 3 briefs the
features of the LAM/MPI. Section 4 presents the proposal
showing how it was implemented. Section 5 presents the
performance evaluation applied on a DNA-based
application. Conclusions and references appear in the
sections 6 and the last one, respectively.

2. Checkpoint Mechanism

The goal of the checkpointing is to establish a recovery
point in the application execution, recording enough
information of its context for later recover it (roll-back

recovery) in case of failures, minimizing the work loss [4,5]
already accomplished. Checkpointing provide support for
many other mechanisms like fault tolerance, process
migration, load balance, task swap and code debug [4,6,7].

When a process is running its context is composed by
memory and registers contents and by the context of the
operating system (included file system). Usually, the
memory is organized in four segments: code, variables,
heap and stack. During the checkpointing the code is not
usually recorded, because it can be recovered from the
source file.

When a checkpoint mechanism is implemented in the
kernel’s level, the private information of the operating
system, necessary to execute the application, can be easily
obtained during the roll-back recovery. However, when
this mechanism is implemented in user’s level, that
information needs to be recorded in the checkpoint
container to be accessed later [4,6]. Besides the internal
structures of the operating system and file system,
information about the user interface (graphical or text),
external servers and others related to the execution
environment may need be recovered. Many checkpoint
systems supply primitives for programmers, allowing the
control of the information that they want to record.
However, they have all responsibility by the
reconstruction of the execution context during the roll-
back recovery.

Checkpointing in distributed memory systems is more
complex, because it is necessary to keep a coherent global
state of all system to ensure a safe recovery. Figure 1
sketches situations about this question on a
multiprocessor. The horizontal lines represent independent
executions of the processes A, B and C. The stars
represent checkpoints associated to each process and the
arrows from m1 to m4 represent transmitted messages
among remote processes.

Figure 1 shows there are sets of the checkpoints that do
not ensure a safe recovery. For example, the set of
checkpoints comp osed by A2, B2 and C2 is not coherent
one due to the message m2, because if the execution is
recovered in these points, the process B will send m2
again, which has already been received by the process C.
On the other hand, the checkpoints composed by A3, B3
and C2 provide a consistent global state, with no lost or
duplicated messages.

The problem is each process creates periodic
checkpoints without coordination, making hard or
unfeasible in some cases the recovery of a coherent global
state. The called domino effect can appear when the
processes create multiple checkpoints as follows. During a
failure, the checkpointing will try to recover the application
starting from the most recent checkpoint on each process.
However, when it is not possible, the system will try again
and again while the operation to fail. The attempts will
continue successively until the last possibility, returning
back to the initial point of the execution, because no
consistent global state was reached [6,8]. However, there

are two forms for handling the domino effect: coordinated
checkpointing and checkpointing with message logs.

A

B

C

A2

B2
m1 m3

m2 m4

A3

B3

C2

Figure 1. Checkpointing on a Multiprocessor

With coordinated checkpointing, the processes
cooperate to execute all checkpoints synchronously,
ensuring that all sent messages were received before the
checkpoint. With this approach, all messages that still
were not consumed will be sent and received also
naturally. Obviously, it is possible that some processes
execute the same lot of instructions again, but no resent
message will be lost. A great advantage of this model is
that any failure causes that all processes needs just the
most recent checkpoints, reducing the storage size.
Another advantage is the algorithm for recovery is trivial.
Other models request complex algorithms to recover the
application [6,9,10,11].

Using checkpointing with message logs, a specific
control will exist exclusively for the messages. However,
the message flow must be fully deterministic, that is,
starting from a given checkpoint the program will always
produce and consume the same messages. In this scenario,
a process can record all the received messages after the
last checkpoint and thus rebuild any safe state. Algorithms
for message logs work so, allowing independent
checkpoints [6,8].

3. About the LAM/MPI

The Message Passing Interface (MPI) is a de facto
standard for parallel programming based in message
passing for large scale distributed systems.
Implementations of MPI support the middleware layer for
many high-performance applications [3]. However, the MPI
standard itself does not specify any kind of fault tolerance.
In addition, the most widely used MPI implementations
have not been designed to be fault tolerant. LAM/MPI is a
well known MPI implementation. Some projects were
developed with the intention of extending pre-existent MPI
implementations including fault tolerance. COCHECK [12],
CLIP [13], MPICH-V [15] and LAM/MPI-CR [3,16,17] are
examples. We do not have knowledge that they have
automatic checkpointing/restart.

3.1. Organization

LAM/MPI [3] uses a small user's space daemon for the
control of processes, communication and I/O redirection.
This daemon, called lamd, is launched during the booting
of the MPI platform. All daemons lamd together form the
base of the execution environment of LAM/MPI [16,17,18].

The user interface is constituted by several command
line applications (MPI commands), which are responsible
by necessary actions to creation and execution of
distributed applications. The three main MPI commands
are: 1) lamboot, which is the responsible by loading the
daemon lamd and initialization of the execution
environment; 2) mpicc, mpic++ and mpif77, which are
compilers/linkers that allow to the users write applications
in languages C, C++ and Fortran, respectively; 3) mpirun,
which is the responsible for loading and controlling the
execution of the application.

The execution environment of distributed applications
on LAM/MPI can be exemplified in the Figure 2. We may
see the MPI application is composed by three processes
executing on an ideal cluster composed by three nodes. It
is known that LAM/MPI creates a logical cluster on the
physical nodes where the lamd daemons are loaded. The
MPI application is executed on that logical cluster. Each
physical node when executing a copy of the daemon lamd,
becomes a logical node of the LAM/MPI cluster.

lamd

CRMPI

CRLAM

RPI

MPI Applic

Node 0

CRLAM

mpirun

lamd

CRMPI

CRLAM

RPI

MPI Applic

Node 1

lamd

CRMPI

CRLAM

RPI

MPI Applic

Node 2

Figure 2. A Distributed Application on the LAM/MPI

The mpirun program is executed in the master node.
During the loading of application processes, it is possible
to select the 1) MPI module, that implements the
communication primitives, like send and recv, for using of
users’ applications and the 2) RPI module (Request
Progression Interface) [20], that implements the dependent
of hardware communication basic layer (TCP, Myrinet,
SMP) and some other functionalities, including
checkpointing.

The module RPI, coded as crtcp, is composed by the
modules CRLAM and CRMPI, which implement the
checkpoint bookmark routines. The CRMPI implements the
communication primitives and the CRLAM implements the
coordination among the processes of the MPI application.
The lamd daemon also provides a resource for fault

tolerance through a heartbeat routine, which tests the
connectivity of the cluster nodes and updates the
environment in the case of failure in some node.

3.2. Checkpointing

The BLCR (Berkeley Labs Check-point/Restart) package
[7] was developed to support interactive checkpointing on
the LAM/MPI [3]. It provides the commands
cr_checkpoint and cr_restart, which can be used by the
user explicitly. The checkpointing steps during the context
recordings are quite simple and they can be summarized as
follows:

• user: calls the command cr_checkpoint passing the
pid of the mpirun process.

• mpirun: receives the user´s request (via CRLAM).
• mpirun: propagates the request for each MPI process

(via CRMPI).
• each MPI process: dialogues with the other processes

in order to establish a consistent global state.
• each MPI process: calls also the command

cr_checkpoint passing its own pid.
• cr_checkpoint: records the context of each MPI

process.
• each MPI process: continues its normal execution

after the cr_checkpoint return.
• mpirun: prepares itself for a possible recovery and

replies to the command cr_checkpoint that it is ready.
• cr_checkpoint: records the context of the mpirun

process.
• mpirun: continues its normal execution.
The sequence of steps of the recovery algorithm can

also be summarized as follows:
• user: calls the command cr_restart passing the context

file name associated to mpirun created by cr_checkpoint.
• mpirun: re-executes itself (via execve system call)

passing the configuration file prepared by itself. This file
informs that the mpirun must to recover the MPI
application.

• mpirun: executes from the recovered context (after the
checkpointing call in the code): reads the configuration file
and requests the re-execution of the MPI processes using
the cr_restart command followed by the name of context
file associated to each one created by cr_checkpoint.

• each MPI process: executes from the recovered
context (after the checkpointing call in the code).

• each MPI process: sends its “updated” local
information (_gps structures) to mpirun.

• mpirun: builds the global information table and
propagate it back to all MPI processes.

• each MPI process: receives the information about the
others MPI processes and rebuilds the communication
channels with everyone.

• each MPI process: continues its normal execution.
• mpirun: continues its normal execution.

4. Automatic Operations

This work presents the design and implementation of
the mechanism to automate checkpoint operations on the
LAM/MPI, including context recording, failure detection
and application recovery, using BLCR [3,7,21].

4.1. Recording

Our mechanism generates recovery points automatically
(checkpoints) in a frequency predefined by the user and
also during the MPI collective function calls [19]. The
implementation of the automatic checkpoint operations is
based on threads created in runtime, which exe cute the
new functionalities inserted into LAM/MPI. We have
implemented two threads: cr_ckpt_time() and
cr_ckpt_coll(). The simplified algorithms of these threads
can be observed in the Figure 3 and Figure 4.

The thread cr_ckpt_time calls the command
cr_checkpoint, in intervals defined by the user. The thread
cr_ckpt_coll calls the command cr_checkpoint during the
execution of collective MPI functions that involve
synchronization, as the functions implemented in the
module CRMPI: MPI_Barrier, MPI_Scatter and
MPI_Gather, which also were adapted. The combined use
of these threads ensures the creation of coherent
checkpoints on the LAM/MPI.

cr_ckpt_time()

{ ckpt_time = now + interval;

 while (TRUE)

 { wait(ckpt_time - now);
 lock(mutex);

 if (ckpt_time <= now)

 // it was not done by cr_ckpt_coll

 { cr_checkpoint; //takes a delay

 ckpt_time = now + interval + delay;

 }

 // else does nothing because it was already
 // done by cr_ckpt_coll

 unlock(mutex);

 }

}

Figure 3. Thread cr_ckpt_time()

The main modification in the collective functions is the
insertion of a call to primitive send, in order to allow that
they can do a checkpoint recording request to thread
cr_ckpt_coll located in the mpirun. This call is placed
where the processes are synchronized waiting the
finalization of the collective function. For example, the
original MPI_Barrier works as follows. There is a root
process, which is the responsible process for the
synchronization. All the other processes send messages to
it through the MPI_Barrier function and stay blocked
waiting a reply. When all the messages are received, the
root process replies to all unblocking them. In the new
MPI_Barrier, before sending the reply for unblocking a

checkpoint recording is done, exactly when all of the
processes are blocked.

cr_ckpt_coll()
{ while (TRUE)
 if (recv(checkpoint_request))
 { lock(mutex);

 if ((ckpt_time - delay) <= now)
 // an interval elapsed with no checkpoint
 { cr_checkpoint; //takes a delay
 ckpt_time = now + interval + delay;
 // else an interval still didnt elapse

 // after the last checkpoint
 }
 unlock(mutex);
 }
}

Figure 4. Thread cr_ckpt_coll()

The synchronization among the checkpoint threads is
controlled by mutex mechanism, which ensures the mutual
exclusion during concurrent checkpoints, as well as the
updating of the shared time control variables. A heuristic
updates the intervals among the checkpoints, which are
calculated using the average time spent during
checkpoints added to the interval defined by user. The
activation moment of these threads may be seen in the area
“B” of the Figure 5. This figure shows the simplified
algorithm of the mpirun, where the delimited areas indicate
the modifications.

4.2. Fault-Detection and Recovery

The fault detection and automatic recovery are
implemented by a routine inserted in the mpirun that is able
to recognize failures among the cluster nodes by asking for
their life to each lamd daemon (fault detection by
heartbeat), which must be executing in the safe mode. This
routine, called cr_wait, substitutes the original routine,
called rpwait.

The rpwait waits the finalization of the MPI processes in
a blocking call to the function nrecv. Instead of this, the
cr_wait uses a semi-busy wait (loop with sleep), where the
function nprobe is used to verify the existence of
messages from lamd daemons. If no message exists from
some lamd daemon, a query to that lamd is done. If no
reply is received, it is supposed a failure in the associated
node. In this case, the mpirun restarts the MPI application,
from the last checkpoint, on the remaining nodes. This
routine may be seen in the area “C” of the Figure 5.

4.3. Process Migration

When the MPI processes connect to the LAM/MPI
environment, during the execution of the MPI function
MPI_Init, they create a communication channel using a
pipe with each local lamd daemon. The name and location
of this communication channel are dependent of the

physical node where each process is executing. During the
checkpoint, the name of this pipe is stored in each MPI
process context in order to be available during the
recovery. However, this information allows the re-
establishment of the communication just over the same
physical nodes. Therefore, during the process migration
among physical nodes, the name of the recovered pipe
becomes incorrect and the communication is not possible.
To solve this problem, which was not handled in [3], the
pipe name is updated before to call the routine responsible
for the communication reestablishment as follows.

parses
command line

parameters

Y

N

end

Y

N

start

A

B

C

checkpoint

executes

builds MPI
process list

is a
checkpoint

recovery?

loads MPI
processes

receives

information
from MPI

processes,
unifies and

resends

initiates signal
handlers and

checkpoint
control

is the
automatic

checkpoint
enabled?

loads threads

of the
automatic

checkpoint

waits for MPI

processes
completion

coordinates

checkpoints of
the MPI

processes

detects

environment
failures,

recovers
application

and waits for
MPI

processes
completion

fixes MPI
process list

for failed
nodes

Figure 5. Changes in the mpirun application

Each MPI process keeps information about the other
processes in a structure called _proc, which can be
accessed using a substructure _gps as search key. The
substructure _gps is composed by 4 identifiers: the logical
node (gps_node), the process in the Unix environment
(gps_pid), the process in the logical node (gps_idx) and
the process in the MPI application (gps_grank). After the
restart of the MPI processes, the information about the
logical and physical nodes of each process is updated in
the _gps structure, allowing the re-establishment of the

communication channels even that any process has been
migrated. The routine lb_fault_app was developed, inside
the mpirun, to redistribute the MPI processes among the
remaining nodes. This routine acts in the area “A” in the
Figure 5.

5. Performance Evaluation

We have accomplished a lot of practical experiments in
order to evaluate the performance of the automatic
checkpointing. To induce failures we turn off one or more
processors manually during the execution of the MPI
application. The failures were induced in different
moments, after the application to have already been
executed a certain percentage of its lifetime. We have
experimented on a cluster of PCs running our extended
LAM/MPI, which we have called “Cluster-8”. This cluster
has 1 master and 8 slaves. Each one has an IDE disk and a
Fast-Ethernet board. The master is an Atlhon 1.0GHz with
256 MB of RAM. The slaves are 4 Pentium IV 1.8GHz and 4
Pentium IV 3.0GHz, each one with 512MB of RAM. The
slaves boot locally, but they use the “/home” of the master
through NFS.

To analyze the effects under failures we executed a MPI
application provided partially by Alves [26] and adjusted
according to Needleman & Wunsch [23], Smith &
Waterman [24] and Gotoh [25]. This application is able to
determinate the similarity among DNA sequences parallely.
We refer to it as DNA/MPI Application. The DNA/MPI
Application was applied on the bacterias Xac
(Xanthomonas axonopodis) and Xcc (Xanthomonas
campestris), using the same idea used by Almeida [27].
Xac and Xcc were obtained in the GenBank and they have
5,175,554 and 5,076,187 nucleotides, respectively.
However, we have worked in terms of amino acids, which
are groups of 3 nucleotides. This approach reduces the
number of components to be compared despite of
increasing the number of comparisons because there are 20
different types of amino acids against just 4 different types
of nucleotides.

The similarity is measured in a score, which is obtained
by comparing the two sequences of DNA (strings for us)
component to component. The basic idea to score the two
strings is as follows. Consider a column i consisting of
symbols X[i] and Y[i]. If X[i]=Y[i], this column will receive
a partial score p(X[i],Y[i])>0 (1 in this example), otherwise,
it will receive a partial score p(X[i],Y[i])<=0 (0 in this
example). Finally, a column with a blank will receive a
partial score p(X[i],Y[i])=–c, where c is in ?N (0 in this
example). The final score is the sum of these partial scores.
Then, we suppose the better alignment is that one with
maximum score, which is called similarity. The matrix S,
where each element S[i,j] represents the similarity among
Y[1..i] and X[1..j], can be used to facilitate the matching
algorithm.

if (myrank == 0) //I am the master
{ GetSequences(X, sizex, Y, sizey);

//I send data to slaves
MPI_Broadcast(sizex, sizey);
MPI_Broadcast(X, sizex);
 slicey=sizey/nproc;

 //I send a different slice of Y to each slave
 for (slave=1; slave <=nproc-1; slave++)
 MPI_Send(Y[slave*slicey], slicey, slave);
}
else //I am a slave
{ //I receive data from the master
 MPI_Broadcast(sizex, sizey);
 slicey=sizey/nproc;
 MPI_Broadcast(X, sizex);
 //I receive my slice of Y from the master
 MPI_Recv(Y, slicey, 0);
}
//I create a partial matrix S
S=CreateMatrix(Y, slicey, X, sizex);
slicex=sizex/nproc;
for (k=0; k<=sizex; k:=k+slicex)
{ if (myrank!=0)

//I receive in S[0] data from the previous process
 MPI_Recv(S[0], slicex, myrank-1);

for (j=k+1; j<=k+slicex; j++)
for (i=1; i<=slicey; i++)

S[i][j]=max(S[i-1][j]-c, S[i][j-1]-c,
S[i-1][j-1]+p(Y[i], X[j]));

If (myrank!=nproc-1) //I am not the last
 MPI_Send(S[slicey], slicex, myrank+1);

}

Figure 6. Simplified DNA/MPI Application

Figure 6 shows the simplified algorithm of the
DNA/MPI Application – some statements and parameters
are omitted – which works as follows. There are nproc
processes, including the master. Firstly, the master reads
the sizes and the sequences X and Y. Then, it sends the
sizes and X for all slaves, using the function
MPI_Broadcast. Notice that this function can be used for
both sending and receiving. After that, Y is split in nproc
subsequent slices, which are distributed one for each
process, using the functions MPI_Send/MPI_Recv. Each
slave creates part of the matrix S and calculates the scores
associated to it. After the calculation of each subpart, the
process sends the last line to the following process
(myrank+1). This technique, known as “wavefront”, is
described in [26].

5.1. Analysis of the Results

In our experiments we executed the DNA/MPI
Application on the whole genome of the bacteria Xac,
which has 1,432,518 amino acids. However, we used just a
part of the genome of the bacteria Xcc containing 10,574
amino acids. The results are plotted in the Figure 7 and
Figure 8. Failures were induced on 1 up to 4 slaves during
the execution of the application. After the failure detection
the application was re-executed on the remaining nodes.
The failures were induced on the 4 fastest nodes firstly
and after on the 4 slowest nodes. The average results were
considered as final. These figures show two different
situations: “Normal n” and “ACR n”.

The label “Normal n” represents the variation of the
execution total time of the DNA/MPI application with no
checkpoint mechanism but under failures of n nodes after
x% of its execution. We suppose that the operator of the
application will perceive immediately the failures and will
restart the application with no waste of time with the
slaughter of the alive processes. This is an optimistic
situation.

The label “ACR n” (acronym for Automatic
Checkpoint/Restart) represents the same execution but
with our automatic checkpoint mechanism. Unlike of the
first one, this is a realistic situation because it counts the
waste of time with the detection, killing of the alive
processes and the recovery o n the remaining nodes,
everything automatically. Besides, in this situation, the
processes need to establish a new dialog about theirs new
positions before of restarting the execution.

In the Figure 7, the lines “Normal n” are the 4 above in
the right side and the “ACR n” are the others below. The y
axis show the total time (lifetime) of the execution of the
application in seconds and the x axis show the percentages
of executed code before the failure (from 10% to 90%),
except at the start of the lines (labeled “no failure”), which
show the time of execution with no failure. In this point we
may see the ACR causes an overhead in the application.
This overhead is due to the heartbeat mechanism to detect
failures and to the periodic recordings (each 1,000
seconds) of the process contexts of the DNA/MPI
application. In these experiments, the overhead was about
13,6% (5,098 against 4,887), but it is paid back quickly
when failures happen.

Global Performance on the Cluster-8

0

2000

4000

6000

8000

10000

12000

No
Fa

ilur
e 10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%

From 1 to 4 Nodes Fail After X% of Execution

T
im

e
 o

f
E

x
e

c
u

ti
o

n
 (

s
e

c
)

Normal 1

ACR 1

Normal 2

ACR 2

Normal 3

ACR 3

Normal 4

ACR 4

Figure 7. Performance ACR and Normal on 8 Nodes

Still in this figure, notice that as larger is the elapsed
execution time before the failures, larger is the difference
between the Normal and ACR. In fact, these two lines
move forward in vertically opposed directions, increasing
the Normal and decreasing the ACR. Also, even using
ACR, the execution time of the application can to increase
so much when one or more nodes fail. However, this fact
happens because the application is restarted on fewer
nodes than before. Thus, the remaining nodes will execute
more than one process. Besides, in our application the
processes could be classified as cpu-bound. This situation

can to multiply the remaining execution time because the
global time of the application will be tied in the time of the
slowest node, not improving anything if the fastest nodes
finish first.

We may see that the increase in the number of failures
causes the increase of the execution time. For the Normal
situations, this increase arises as a lateral displacement
almost constant in the whole course of the graph lines. In a
superficial analysis, this fact seems strange because when
already there is at least one node with two processes, the
execution time should not increase if other nodes also
execute 2 processes since that the time of the slowest node
basically defines the time of the application.

However, the specificities of the application in
conjunction with the operating system policies must be
considered either as advantage or as damage in the time
increase. In our application for example, the processes
exchanges the partial results periodically. Thus, when 2
processes are placed in the same node, the remote
message passing must be serialized because of the I/O
concurrence and this fact can delay the application. For
the execution with ACR, this increase is smaller when the
failures happen after the application to be executed a larger
time.

Therefore, the “ACR n” lines converge in the end of the
execution. It is a comprehensible behavior because it is
presumed that in the limit of 100% of execution, the time
impact caused by the recovering of the application with
ACR is not much more than the overhead already
mentioned previously. In this situation, the dependencies
among processes in terms of message passing already
were solved. Figure 8 shows the speedups for different
situations.

Speedup ACR Over Normal on the Cluster-8

-20%

-10%

0%

10%

20%

30%

40%

50%

No
Fa

ilu
re 10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%

From 1 to 4 Nodes Fail After X% of Execution

S
p
e
e
d
u
p

Speedup ACR 1 Speedup ACR 2

Speedup ACR 3 Speedup ACR 4

Figure 8. Speedup ACR over Normal on 8 Nodes

The highest speedup reaches around 50%. The
DNA/MPI application was split in 8 parts, taking
advantage of the time-slice given by the operating system
if compared with another situation does not related here
where the application is split in 4 parts. The application

gets the processor more times. In fact, developing an
application with more processes can be a technique to
deceive the operating system in order to get more cpu.

6. Conclusions and Future Works

In this work we present an automatic checkpointing
proposed for extending the LAM/MPI using a basic
infrastructure provided by BLCR. Also, we describe a lot
of changes inside the open source of the LAM/MPI and
experiment on a parallel application for recognizing of DNA
similarity. The results show that despite the little overhead
caused by periodical checkpoints, the benefits with our
mechanism can reach about 50% on a cluster of 8 nodes,
when compared with the necessary time for the re-
execution of the same application running without
checkpointing. Detecting and recovering the application
automatically after failures reduces significantly the waste
of time with both the wait for the operator's intervention
and with the processing already accomp lished.

As future works, the use of the local disks to record the
process context s will be better investigated to reduce the
traffic in the interconnection network and the overhead in
the file server, increasing the checkpointing performance.
Besides, we will be combining this mechanism with
techniques for load balancing in MPI clusters, improving
the performance after the recovery by allocating processes
on more appropriated nodes. Anyway, the unequivocal
conclusion is: the use of automatic checkpointing in
LAM/MPI is a fundamental support to provide reliability
to high performance computing.

7. Acknowledges

Our thanks to CNPq, CAPES and FUNDAÇÃO
ARAUCÁRIA.

8. References

[1] BUYYA, R. “High Performance Cluster Computing:
Architectures and Systems”. V.1. N.J. Prentice-Hall, 1999.

[2] STERLING, T. “Beowulf Breakthroughs – The Genesis of
Linux Clusters in High Performance Computing”. Linux
Magazine. Jun. 2003.

[3] SANKARAN, S. et al. “The LAM/MPI Check-point/
Restart Framework: System-Initiated Check-point”. In:
Proceedings of LACSI Symposium. Santa Fé, USA. 2003.

[4] WANG, Y-M.; et al. “Checkpointing and its Applications”.
In: 25th International Symposium on Fault-Tolerant
Computing, Pasadena. 1995.

[5] PLANK, J. S.; et al. “Libckpt: Transparent Checkpointing
under Unix”. In: Usenix Winter 1995 Technical Conference,
New Orleans, Jan 1995.

[6] PLANK, J. S. “An Overview of Checkpointing in
Uniprocessor and Distributed Systems, Focusing on

Implementation and Performance”. University of
Tennessee, TR UT-CS-97-372., Jul. 1997.

[7] DUELL, J.; HARGROVE. P. & ROMAN, E. “The Design
and Implementation of Berkeley Lab's Linux Check-
point/Restart”. Berkeley Lab, TR LBNL-54941, 2003.

[8] ELNOZAHY, E. N.; JOHNSON, D. B. & WANG, Y. M.
“A Survey of Rollback-Recovery Protocols in Message-
Passing Systems”. C. Mellon University, TR CMU-CS-96-
181. 1996.

[9] MANIVANNAN, D.; NETZER, R. H. B.; SINGHAL M.
“Finding Consistent Global Checkpoints in a Distributed
Computation”. In: IEEE Transactions on Parallel and
Distributed Systems, vol. 8, n. 6, p. 623-627. 1997.

[10] NEVES, N. & FUCHS, W. K. “Coordinated Checkpointing
without Direct Coordination”. In: Proceedings of IEEE
International Computer Performance & Dependability
Symposium, pp. 23-31, Sep. 1998.

[11] VAIDYA, N. H. “Staggered Consistent Checkpointing”. In:
IEEE Transactions on Parallel and Distributed Systems. vol.
10, n. 7. p. 694-702. 1999.

[12] STELLNER, G. CoCheck: checkpointing and Process
Migration for MPI. In: Proceedings of the 10th International
Parallel Processing Consortium (IPPS 96). p. 526-531.
1996.

[13] CHEN, Y.; PLANK, J. S. & LI, K. “CLIP: A checkpointing
tool for message-passing parallel programs”. Princeton
University, TR-543-97, May 1997.

[14] LITZKOW, M. et al. “Checkpointing and Migration of
UNIX Processes in the Condor Distributed System”. 1997.
<www. cs.wisc.edu/condor/doc/ckpt97.ps>.

[15] BOSILCA, G.; et al. “MPICH-V: Toward a Scalable Fault
Tolerant MPI for Volatile Nodes”. In: Proceedings of IEEE
SuperComputing 2002 (SC2002). Nov. 2002.

[16] LAM/MPI TEAM. “LAM/MPI Installation Guide version
7.1.1”. Set. 2004. Available in <www.lam-mpi.org/
download/files/7.1.1-install.pdf>.

[17] LAM/MPI TEAM. “LAM/MPI User's Guide version
7.1.1”. Set. 2004. Available in <www.lam-
mpi.org/download/ files/7.1.1-user.pdf>.

[18] SQUYRES, J. M.; BARRET, B.; & LUMSDAINE, A.
“Boot System Services Interface Modules for LAM/MPI”.
TR576, CS, Indiana University. Aug. 2003.

[19] SQUYRES, J. M.; BARRET, B.; & LUMSDAINE, A.
“MPI Collective Operations System Services Interface
Modules for LAM/MPI”. TR577, CS, Indiana University.
Aug. 2003.

[20] SQUYRES, J. M.; BARRET, B.; & LUMSDAINE, A.
“Request Progression Interface System Services Interface
Modules for LAM/MPI”. TR579, CS, Indiana University.
2003.

[21] SANKARAN, S. et al. “Check-point-Restart Support
System Services Interface (SSI) Modules for LAM/MPI”.
Technical Report TR578, CSD, Indiana University. 2003.

[22] MARTINS JR, Antonio da Silva; GONCALVES, Ronaldo
A. L. Checkpointing Automático em Cluster MPI: Testes
Preliminares. (In Portuguese). In: VI FITEM - FÓRUM DE

INFORMÁTICA E TECNOLOGIA DE MARINGÁ,
Maringá, Brazil, 2004.

[23] NEEDLEMAN, S. B. & WUNSCH, C. D. “A general
method applicable to the search for similarities in the amino
acid sequence of two proteins”. Journal of Molecular
Biology, v. 48, pp. 443-453. 1970.

[24] SMITH, T. F. & WATERMAN, M. S. “Identification of
common molecular subsequences”. Journal of Molecular
Biology, v. 147, pp. 195-197. 1981.

[25] GOTOH, O. “An improved algorithm for matching
biological sequences”. Journal of Molecular Biology, v. 162,
pp. 705-708. 1982.

[26] ALVES, C. E. R.; CÁCERES, E. N.; DEHNE, F.; SONG, S.
W. “A parallel wavefront algorithm for efficient biological
sequence comparison”. The 2003 International Conference
on Computational Science and its Applications – ICCSA
2003. Lecture Notes in Computer Science, v. 2667. pp. 249-
258. Berlim: Springer-Verlag. May, 2003.

[27] ALMEIDA Jr., N. F.; ALVES, C. E. R.; CÁCERES, E. N.;
SONG, S. W. “Comparison of Genomes Using High-
Performance Parallel Computing”. 15th Symposium on
Computer Architecture and High Performance Computing
(SBAC-PAD'03). 2003.

[28] ZHONG, H. & NIEH, J. “CRAK: Linux checkpointing /
Restart as a kernel Module”. Technical Report CUCS-014-
01. Department of Computer Science. Columbia University,
Nov. 2002.

[29] SUDAKOV, O. O. & MESHCHERYAKOV, E. S.
“CHPOX: checkpointing for linuX”. Sept. 2003. Available
in <http://www.cluster.kiev.ua/tasks/chpx_eng.html>.

[30] MARTINS JR, Antonio da Silva; GONCALVES, Ronaldo
A. L. “Extensões na LAM/MPI para Automatizar o
Checkpoint e Tolerar Falhas em Cluster de Computadores”.
(In Portuguese). In: VI WSCAD (Workshop em Sistemas
Computacionais de Alto Desempenho), Rio de Janeiro,
Brazil, Oct., 2005.

