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Abstract

As the size and popularity of computer clusters go on

growing, fault tolerance is becoming a crucial factor to

ensure high performance and reliability for applications.

To provide this facility, a checkpoint mechanism is used 

to recover a failed parallel application rolling it back to

an execution moment prior to occurrence of the failure. In

this work we present a mechanism for managing

checkpoint operations during the failures automatically.

This mechanism records periodically the application’s

context, identifies failed nodes and restarts MPI processes 

on the remaining nodes, allowing the continuity of the 

application and taking advantage of the computing

accomplished previously.  We describe a lot of changes 

inside source of the LAM/MPI. Experiments with an 

application for recognizing DNA similarity showed that

despite the overhead caused by periodic checkpoints, the 

benefits can reach about 50% on a small cluster.

1. Introduction

As the human knowledge increases more complex
problems appear. For many computational problems, the
complexity is usually measured by the amount of
calculations necessary to solve them. Thus, as bigger the 
problem, more time is need to solve it. As examples, we 
have the calculations for climatologic forecast, analysis of 
satellite images, aerodynamic simulations, pattern
recognition, seismic analysis and the genome sequencing.

Parallel processing can be used efficiently to solve 
these problems . It is done dividing the complex
applications in a group of smaller and simpler tasks, so that 
they can be executed simultaneously by independent 
processors. However, the construction of specific parallel
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machines has high cost, a million dollars for gigaflop 
approximately.

Clusters of the Beowulf class [1,2] have been used as 
alternative machine with a great advantage: relatively
cheap conventional computers are connected in order to 
work in parallel on the solution of the same problem. In this 
model, as bigger is the number of nodes, bigger is  the 
potential for parallel processing.

However, with the increase of the amount of nodes, the 
reliability decreases because the occurrence of failures is 
directly proportional, restricting the scalability of cluster 
[3]. To minimize this problem, a checkpoint mechanism is
used to record the context of an application during its
execution for later recover it in the case of failures.
However, in many MPI implementations, this mechanism
depends on the user's interventions to activate the
checkpoint operations, such as LAM/MPI.

The present paper, started in [22], proposes the
automation of the checkpoint operations on the
LAM/MPI, implicitly for the users. Changes were made in 
some functions of the LAM/MPI library, including code 
corrections. Our automatic checkpointing was
experimented with a parallel application for DNA similarity 
recognition on a cluster of 8 nodes. This paper is an 
improved version of a previous work [30], which was 
published in Portuguese and experimented with a
mathematical application on a cluster of 4 nodes. 

This paper is organized as follows. Section 2 presents 
an overview on the checkpointing. Section 3 briefs the 
features of the LAM/MPI. Section 4 presents the proposal 
showing how it was implemented. Section 5 presents  the 
performance evaluation applied on a DNA-based
application. Conclusions and references appear in the
sections 6 and the last one, respectively.

2. Checkpoint Mechanism

The goal of the checkpointing is to establish a recovery 
point in the application execution, recording enough
information of its context for later recover it (roll-back



recovery) in case of failures, minimizing the work loss [4,5]
already accomplished. Checkpointing provide support for
many other mechanisms  like fault tolerance, process
migration, load balance, task swap and code debug [4,6,7].

When a process is running its context is  composed by 
memory and registers contents and by the context of the 
operating system (included file system). Usually, the
memory is organized in four segments: code, variables,
heap and stack. During the checkpointing the code is not 
usually recorded, because it can be recovered from the 
source file.

When a checkpoint mechanism is implemented in the
kernel’s level, the private information of the operating
system, necessary to execute the application, can be easily 
obtained during the roll-back recovery. However, when
this  mechanism is implemented in user’s level, that
information needs to be recorded in the checkpoint
container to be accessed later [4,6]. Besides the internal
structures of the operating system and file system,
information about the user interface (graphical or text),
external servers and others related to the execution
environment may need be recovered. Many checkpoint
systems supply primitives for programmers, allowing the 
control of the information that they want to record.
However, they have all responsibility by the
reconstruction of the execution context during the roll-
back recovery.

Checkpointing in distributed memory systems is more 
complex, because it is necessary to keep a coherent global 
state of all system to ensure a safe recovery. Figure 1
sketches situations about this question on a
multiprocessor. The horizontal lines represent independent 
executions of the processes A, B and C. The stars
represent checkpoints associated to each process and the 
arrows from m1 to m4 represent transmitted messages
among remote processes.

Figure 1 shows there are sets of the checkpoints that do 
not ensure a safe recovery. For example, the set of
checkpoints comp osed by A2, B2 and C2 is not coherent
one due to the message m2, because if the execution is
recovered in these points, the process B will send m2 
again, which has already been received by the process C. 
On the other hand, the checkpoints composed by A3, B3
and C2 provide a consistent global state, with no lost or 
duplicated messages.

The problem is each process creates periodic
checkpoints without coordination, making hard or
unfeasible in some cases the recovery of a coherent global 
state. The called domino effect can appear when the
processes create multiple checkpoints as follows. During a 
failure, the checkpointing will try to recover the application 
starting from the most recent checkpoint on each process. 
However, when it is not possible, the system will try again 
and again while the operation to fail. The attempts will 
continue successively until the last possibility, returning 
back to the initial point of the execution, because no 
consistent global state was reached [6,8]. However, there 

are two forms for handling the domino effect: coordinated 
checkpointing and checkpointing with message logs.
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Figure 1. Checkpointing on a Multiprocessor

With coordinated checkpointing, the processes
cooperate to execute all checkpoints synchronously,
ensuring that all sent messages were received before the 
checkpoint. With this approach, all messages that still 
were not consumed will be sent and received also
naturally. Obviously, it is possible that some processes 
execute the same lot of instructions again, but no resent 
message will be lost. A great advantage of this model is 
that any failure causes that all processes needs just the
most recent checkpoints, reducing the storage size.
Another advantage is the algorithm for recovery is trivial.
Other models request complex algorithms to recover the 
application [6,9,10,11].

Using checkpointing with message logs, a specific
control will exist exclusively for the messages. However, 
the message flow must be fully deterministic, that is, 
starting from a given checkpoint the program will always 
produce and consume the same messages. In this scenario, 
a process can record all the received messages after the 
last checkpoint and thus rebuild any safe state. Algorithms 
for message logs work so, allowing independent
checkpoints [6,8].

3. About the LAM/MPI

The Message Passing Interface (MPI) is a de facto 
standard for parallel programming based in message
passing for large scale distributed systems.
Implementations of MPI support  the middleware layer for
many high-performance applications [3]. However, the MPI 
standard itself does not specify any kind of fault tolerance.
In addition, the most widely used MPI implementations 
have not been designed to be fault tolerant. LAM/MPI is a 
well known MPI implementation. Some projects were
developed with the intention of extending pre-existent MPI 
implementations including fault tolerance. COCHECK [12], 
CLIP [13], MPICH-V [15] and LAM/MPI-CR [3,16,17] are 
examples. We do not have knowledge that they have
automatic checkpointing/restart.



3.1. Organization

LAM/MPI [3] uses a small user's space daemon for the 
control of processes, communication and I/O redirection.
This daemon, called lamd, is launched during the booting
of the MPI platform. All daemons lamd together form the 
base of the execution environment of LAM/MPI [16,17,18].

The user interface is constituted by several command 
line applications (MPI commands), which are responsible 
by necessary actions to creation and execution of
distributed applications. The three main MPI commands
are: 1) lamboot, which is the responsible by loading the 
daemon lamd and initialization of the execution
environment; 2) mpicc, mpic++ and mpif77, which are 
compilers/linkers that allow to the users write applications 
in languages C, C++ and Fortran, respectively; 3) mpirun,
which is the responsible for loading and controlling the 
execution of the application.

The execution environment of distributed applications 
on LAM/MPI can be exemplified in the Figure 2. We may 
see the MPI application is composed by three processes 
executing on an ideal cluster composed by three nodes. It 
is known that LAM/MPI creates a logical cluster on the 
physical nodes where the lamd daemons are loaded. The 
MPI application is executed on that logical cluster. Each 
physical node when executing a copy of the daemon lamd,
becomes a logical node of the LAM/MPI cluster.
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Figure 2. A Distributed Application on the LAM/MPI

The mpirun program is executed in the master node. 
During the loading of application processes, it is possible 
to select the 1) MPI module, that implements the
communication primitives, like send and recv, for using of 
users’ applications and the 2) RPI module (Request
Progression Interface) [20], that  implements the dependent 
of hardware communication basic layer (TCP, Myrinet,
SMP) and some other functionalities, including
checkpointing.

The module RPI, coded as crtcp, is composed by the 
modules CRLAM and CRMPI, which implement the
checkpoint bookmark routines. The CRMPI implements the 
communication primitives and the CRLAM implements the 
coordination among the processes of the MPI application.
The lamd daemon also provides a resource for fault

tolerance through a heartbeat routine, which tests the
connectivity of the cluster nodes and updates the
environment in the case of failure in some node.

3.2. Checkpointing

The BLCR (Berkeley Labs Check-point/Restart) package
[7] was developed to support interactive checkpointing on 
the LAM/MPI [3]. It provides the commands
cr_checkpoint and cr_restart, which can be used by the 
user explicitly. The checkpointing steps during the context 
recordings are quite simple and they can be summarized as
follows:

• user: calls  the command cr_checkpoint passing the 
pid of the mpirun process.

• mpirun: receives the user´s request (via CRLAM).
• mpirun: propagates the request for each MPI process

(via CRMPI).
• each MPI process: dialogues with the other processes 

in order to establish a consistent global state.
• each MPI process: calls  also the command

cr_checkpoint passing its  own pid.
• cr_checkpoint: records the context of each MPI

process.
• each MPI process: continues its normal execution

after the cr_checkpoint return.
• mpirun: prepares itself for a possible recovery and 

replies to the command cr_checkpoint that it is ready.
• cr_checkpoint: records the context of the mpirun 

process.
• mpirun: continues its normal execution.
The sequence of steps of the recovery algorithm can 

also be summarized as follows:
• user: calls the command cr_restart passing the context

file name associated to mpirun created by cr_checkpoint.
• mpirun: re-executes itself (via execve system call)

passing the configuration file prepared by itself. This file 
informs that the mpirun must to recover the MPI
application.

• mpirun: executes from the recovered context (after the 
checkpointing call in the code): reads the configuration file 
and requests the re-execution of the MPI processes using
the cr_restart command followed by the name of context 
file associated to each one created by cr_checkpoint.

• each MPI process: executes from the recovered
context (after the checkpointing call in the code).

• each MPI process: sends its “updated” local
information (_gps structures) to mpirun.

• mpirun: builds the global information table  and
propagate it back to all MPI processes.

• each MPI process: receives the information about the 
others MPI processes  and rebuilds the communication 
channels with everyone.

• each MPI process: continues its normal execution.
• mpirun: continues its normal execution.



4. Automatic Operations

This work presents the design and implementation of 
the mechanism to automate checkpoint operations on the
LAM/MPI, including context recording, failure detection 
and application recovery, using BLCR [3,7,21].

4.1. Recording

Our mechanism generates recovery points automatically 
(checkpoints) in a frequency predefined by the user and 
also during the MPI collective function calls [19]. The
implementation of the automatic checkpoint operations is
based on threads created in runtime, which exe cute the
new functionalities inserted into LAM/MPI. We have
implemented two threads: cr_ckpt_time() and
cr_ckpt_coll(). The simplified algorithms of these threads
can be observed in the Figure 3 and Figure 4.

The thread cr_ckpt_time calls the command
cr_checkpoint, in intervals defined by the user. The thread 
cr_ckpt_coll calls the command cr_checkpoint during the 
execution of collective MPI functions that involve
synchronization, as the functions implemented in the
module CRMPI: MPI_Barrier, MPI_Scatter and
MPI_Gather, which also were adapted. The combined use 
of these threads ensures the creation of coherent
checkpoints on the LAM/MPI.

cr_ckpt_time()

{ ckpt_time = now + interval;

  while (TRUE)

  { wait(ckpt_time - now);
    lock(mutex);

    if (ckpt_time <= now)

    // it was not done by cr_ckpt_coll

    { cr_checkpoint; //takes a delay

      ckpt_time = now + interval + delay;

    }

    // else does nothing because it was already
    // done by cr_ckpt_coll

    unlock(mutex);

  }

}

Figure 3. Thread cr_ckpt_time()

The main modification in the collective functions is the 
insertion of a call to primitive send, in order to allow that 
they can do a checkpoint recording request to thread 
cr_ckpt_coll located in the mpirun. This call is placed 
where the processes are synchronized waiting the
finalization of the collective function. For example, the 
original MPI_Barrier works as follows. There is a root 
process, which is the responsible process for the
synchronization. All the other processes send messages to 
it through the MPI_Barrier function and stay blocked 
waiting a reply. When all the messages are received, the 
root process replies to all unblocking them. In the new 
MPI_Barrier, before sending the reply for unblocking a 

checkpoint recording is done, exactly when all of the
processes are blocked.

cr_ckpt_coll()
{ while (TRUE)
  if (recv(checkpoint_request))
  { lock(mutex);

    if ((ckpt_time - delay) <= now)
    // an interval elapsed with no checkpoint
    {  cr_checkpoint; //takes a delay
       ckpt_time = now + interval + delay;
    // else an interval still didnt elapse

    // after the last checkpoint
    }
    unlock(mutex);
  }
}

Figure 4. Thread cr_ckpt_coll()

The synchronization among the checkpoint threads is 
controlled by mutex mechanism, which ensures the mutual 
exclusion during concurrent checkpoints, as well as the 
updating of the shared time control variables. A heuristic 
updates the intervals among the checkpoints, which are 
calculated using the average time spent during
checkpoints added to the interval defined by user. The 
activation moment of these threads may be seen in the area 
“B” of the Figure 5. This figure shows the simplified 
algorithm of the mpirun, where the delimited areas indicate 
the modifications.

4.2. Fault-Detection and Recovery

The fault detection and automatic recovery are
implemented by a routine inserted in the mpirun that is able 
to recognize failures among the cluster nodes by asking for 
their life to each lamd daemon (fault detection by
heartbeat), which must be executing in the safe mode. This 
routine, called cr_wait, substitutes the original routine, 
called rpwait. 

The rpwait waits the finalization of the MPI processes in 
a blocking call to the function nrecv. Instead of this, the 
cr_wait uses a semi-busy wait (loop with sleep), where the 
function nprobe is used to verify the existence of
messages from lamd daemons. If no message exists from 
some lamd daemon, a query to that lamd is done. If no 
reply is received, it is supposed a failure in the associated 
node. In this case, the mpirun restarts the MPI application, 
from the last checkpoint, on the remaining nodes. This 
routine may be seen in the area “C” of the Figure 5.

4.3. Process Migration

When the MPI processes connect to the LAM/MPI 
environment, during the execution of the MPI function 
MPI_Init, they create a communication channel using a 
pipe with each local lamd daemon. The name and location 
of this communication channel are dependent of the



physical node where each process is executing. During the 
checkpoint, the name of this pipe is stored in each MPI 
process context in order to be available during the
recovery. However, this information allows the re-
establishment of the communication just over the same 
physical nodes. Therefore, during the process migration 
among physical nodes, the name of the recovered pipe 
becomes incorrect and the communication is not possible.
To solve this problem, which was not handled in [3], the
pipe name is updated before to call the routine responsible 
for the communication reestablishment as follows.
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Figure 5. Changes in the mpirun application

Each MPI process keeps information about the other 
processes in a structure called _proc, which can be
accessed using a substructure _gps as search key. The 
substructure _gps is composed by 4 identifiers: the logical 
node (gps_node), the process in the Unix environment
(gps_pid), the process in the logical node (gps_idx) and 
the process in the MPI application (gps_grank). After the 
restart of the MPI processes, the information about the 
logical and physical nodes of each process is updated in 
the _gps structure, allowing the re-establishment of the 

communication channels even that any process has been
migrated. The routine lb_fault_app was developed, inside
the mpirun, to redistribute the MPI processes among the 
remaining nodes. This  routine acts in the area “A” in the 
Figure 5.

5. Performance Evaluation

We have accomplished a lot of practical experiments in
order to evaluate the performance of the automatic
checkpointing. To induce failures we turn off one or more 
processors  manually during the execution of the MPI
application. The failures were induced in different
moments, after the application to have already been
executed a certain percentage of its lifetime. We have
experimented on a cluster of PCs running our extended
LAM/MPI, which we have called “Cluster-8”. This cluster 
has 1 master and 8 slaves. Each one has an IDE disk and a 
Fast-Ethernet board. The master is an Atlhon 1.0GHz with 
256 MB of RAM. The slaves are 4 Pentium IV 1.8GHz and 4
Pentium IV 3.0GHz, each one with 512MB of RAM. The 
slaves boot locally, but they use the “/home” of the master 
through NFS.

To analyze the effects under failures we executed a MPI 
application provided partially by Alves [26] and adjusted 
according to Needleman & Wunsch [23], Smith &
Waterman [24] and Gotoh [25]. This application is able to 
determinate the similarity among DNA sequences parallely.
We refer to it as DNA/MPI Application. The DNA/MPI 
Application was applied on the bacterias Xac
(Xanthomonas axonopodis) and Xcc (Xanthomonas
campestris), using the same idea used by Almeida [27].
Xac and Xcc were obtained in the GenBank and they have
5,175,554 and 5,076,187 nucleotides, respectively.
However, we have worked in terms of amino acids, which 
are groups of 3 nucleotides. This approach reduces the 
number of components to be compared despite of
increasing the number of comparisons because there are 20 
different types of amino acids against just 4 different types
of nucleotides.

The similarity is measured in a score, which is obtained 
by comparing the two sequences of DNA (strings for us) 
component to component.  The basic idea to score the two 
strings is as follows. Consider a column i consisting of 
symbols X[i] and Y[i]. If X[i]=Y[i], this column will receive 
a partial score p(X[i],Y[i])>0 (1 in this example), otherwise, 
it will receive a partial score p(X[i],Y[i])<=0 (0 in this 
example). Finally, a column with a blank will receive a 
partial score p(X[i],Y[i])=–c, where c is in ?N (0 in this 
example). The final score is the sum of these partial scores. 
Then, we suppose the better alignment is that one with 
maximum score, which is called similarity. The matrix S, 
where each element S[i,j] represents the similarity among 
Y[1..i] and X[1..j], can be used to facilitate the matching 
algorithm.



if (myrank == 0) //I am the master
{  GetSequences(X, sizex, Y, sizey);

//I send data to slaves
MPI_Broadcast(sizex, sizey);
MPI_Broadcast(X, sizex); 
 slicey=sizey/nproc;

  //I send a different slice of Y to each slave
   for (slave=1; slave <=nproc-1; slave++)
      MPI_Send(Y[slave*slicey], slicey, slave); 
}
else //I am a slave
{ //I receive data from the master
   MPI_Broadcast(sizex, sizey); 
   slicey=sizey/nproc;
   MPI_Broadcast(X, sizex);
   //I receive my slice of Y from the master
   MPI_Recv(Y, slicey, 0);
}
//I create a partial matrix S
S=CreateMatrix(Y, slicey, X, sizex);
slicex=sizex/nproc;
for (k=0; k<=sizex; k:=k+slicex)
{ if (myrank!=0)

//I receive in S[0] data from the previous process
      MPI_Recv(S[0], slicex, myrank-1);

for (j=k+1; j<=k+slicex; j++)
for (i=1; i<=slicey; i++)

S[i][j]=max(S[i-1][j]-c, S[i][j-1]-c,
S[i-1][j-1]+p(Y[i], X[j]));

If (myrank!=nproc-1) //I am not the last
 MPI_Send(S[slicey], slicex, myrank+1);

}

Figure 6. Simplified DNA/MPI Application

Figure 6 shows the simplified algorithm of the
DNA/MPI Application – some statements and parameters 
are omitted – which works as follows. There are nproc 
processes, including the master. Firstly, the master reads 
the sizes and the sequences X and Y. Then, it sends the 
sizes and X for all slaves, using the function
MPI_Broadcast. Notice that this function can be used for 
both sending and receiving. After that, Y is split in nproc 
subsequent slices, which are distributed one for each 
process, using the functions MPI_Send/MPI_Recv. Each 
slave creates part of the matrix S and calculates the scores 
associated to it. After the calculation of each subpart, the 
process sends the last line to the following process
(myrank+1). This technique, known as “wavefront”, is 
described in [26].

5.1. Analysis of the Results

In our experiments we executed the DNA/MPI
Application on the whole genome of the bacteria Xac, 
which has 1,432,518 amino acids. However, we used just a
part of the genome of the bacteria Xcc containing 10,574 
amino acids. The results are plotted in the Figure 7 and 
Figure 8. Failures were induced on 1 up to 4 slaves during 
the execution of the application. After the failure detection 
the application was re-executed on the remaining nodes. 
The failures were induced on the 4 fastest nodes firstly 
and after on the 4 slowest nodes. The average results were 
considered as final. These figures show two different 
situations: “Normal n” and “ACR n”.

The label “Normal n” represents the variation of the 
execution total time of the DNA/MPI application with no 
checkpoint mechanism but under failures of n nodes after 
x% of its execution. We suppose that the operator of the 
application will perceive immediately the failures and will 
restart the application with no waste of time with the 
slaughter of the alive processes. This is an optimistic 
situation.

The label “ACR n” (acronym for Automatic
Checkpoint/Restart) represents the same execution but 
with our automatic checkpoint mechanism. Unlike of the 
first one, this is a realistic situation because it counts the 
waste of time with the detection, killing of the alive
processes and the recovery o n  the remaining nodes,
everything automatically. Besides, in this situation, the 
processes need to establish a new dialog about theirs new 
positions before of restarting the execution.

In the Figure 7, the lines “Normal n” are the 4 above in 
the right side and the “ACR n” are the others below. The y 
axis show the total time (lifetime) of the execution of the 
application in seconds and the x axis show the percentages 
of executed code before the failure (from 10% to 90%), 
except at the start of the lines (labeled “no failure”), which 
show the time of execution with no failure. In this point we 
may see the ACR causes an overhead in the application. 
This overhead is due to the heartbeat mechanism to detect 
failures and to the periodic recordings (each 1,000
seconds) of the process contexts of the DNA/MPI
application. In these experiments, the overhead was about 
13,6% (5,098 against 4,887), but it is paid back quickly 
when failures happen.

Global Performance on the Cluster-8
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Figure 7. Performance ACR and Normal on 8 Nodes

Still in this figure, notice that as larger is the elapsed 
execution time before the failures, larger is the difference 
between the Normal and ACR. In fact, these two lines 
move forward in vertically opposed directions, increasing 
the Normal and decreasing the ACR. Also, even using
ACR, the execution time of the application can to increase 
so much when one or more nodes fail. However, this fact 
happens because the application is restarted on fewer
nodes than before. Thus, the remaining nodes will execute 
more than one process. Besides, in our application the 
processes could be classified as cpu-bound. This situation 



can to multiply the remaining execution time because the 
global time of the application will be tied in the time of the 
slowest node, not improving anything if the fastest nodes 
finish first.

We may see that the increase in the number of failures 
causes the increase of the execution time. For the Normal 
situations, this increase arises as a lateral displacement 
almost constant in the whole course of the graph lines. In a 
superficial analysis, this fact seems strange because when 
already there is at least one node with two processes, the 
execution time should not increase if other nodes also 
execute 2 processes since that the time of the slowest node 
basically defines the time of the application. 

However, the specificities of the application in
conjunction with the operating system policies must be 
considered either as advantage or as damage in the time 
increase. In our application for example, the processes 
exchanges the partial results periodically. Thus, when 2 
processes are placed in the same node, the remote
message passing must be serialized because of the I/O 
concurrence and this fact can delay the application. For 
the execution with ACR, this increase is smaller when the 
failures happen after the application to be executed a larger 
time.

Therefore, the “ACR n” lines converge in the end of the 
execution. It is a comprehensible behavior because it is 
presumed that in the limit of 100% of execution, the time 
impact caused by the recovering of the application with 
ACR is not much more than the overhead already
mentioned previously. In this situation, the dependencies 
among processes in terms of message passing already 
were solved. Figure 8 shows the speedups for different
situations.
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Figure 8. Speedup ACR over Normal on 8 Nodes

The highest speedup reaches around 50%. The
DNA/MPI application was split in 8 parts, taking
advantage of the time-slice given by the operating system 
if compared with another situation does not related here 
where the application is split in 4 parts. The application 

gets the processor more times. In fact, developing an 
application with more processes can be a technique to 
deceive the operating system in order to get more cpu.

6. Conclusions and Future Works

In this work we present an automatic checkpointing
proposed for extending the LAM/MPI using a basic
infrastructure provided by BLCR. Also, we describe a lot 
of changes inside the open source of the LAM/MPI and 
experiment on a parallel application for recognizing of DNA 
similarity. The results show that despite the little overhead 
caused by periodical checkpoints, the benefits with our 
mechanism can reach about 50% on a cluster of 8 nodes, 
when compared with the necessary time for the re-
execution of the same application running without
checkpointing.  Detecting and recovering the application 
automatically after failures reduces significantly the waste 
of time with both the wait for the operator's intervention 
and with the processing already accomp lished.

As future works, the use of the local disks to record the
process context s will be better investigated to reduce the 
traffic in the interconnection network and the overhead in
the file server, increasing the checkpointing performance.
Besides, we will be combining this  mechanism with
techniques for load balancing in MPI clusters, improving
the performance after the recovery by allocating processes 
on more appropriated nodes. Anyway, the unequivocal 
conclusion is: the use of automatic checkpointing in
LAM/MPI is a fundamental support to provide reliability 
to high performance computing.
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