
A Markov Reward Model for Software Reliability ∗

YoungMin Kwon and Gul Agha
Open Systems Laboratory

Department of Computer Science
University of Illinois at Urbana Champaign

{ykwon4, agha}@cs.uiuc.edu

ABSTRACT
A compositional method for estimating software reliability of many
threaded programs is developed. The method uses estimates of
the reliability of individual modules and the probability of tran-
sitions between the modules to estimate the reliability of a pro-
gram in terms of its current state. The reliability of a program is
expressed using iLTL, a probabilistic linear temporal logic whose
atomic propositions are linear inequalities about transitions of the
probability mass function of a Discrete Time Markov Chain. We
then use a Markov reward model to estimate software reliability.
The technique is illustrated in terms of an example.

1. INTRODUCTION
It is well known that fixing a fault in a program becomes increas-
ingly expensive in later phases of software development [4]. It is
much more cost effective to fix as many faults as possible before
releasing a program. Unfortunately, because it becomes harder to
detect a fault as the software becomes more reliable, the cost of
testing also increases [4]. Thus, at some point, testing is no longer
cost-effective and the software has to be released. It has also been
observed that modular testing is a good strategy [6]. Moreover, as
the lines of code increase, the testing effort required to fix a fault
grows superlinearly [4]. Hence, modular testing with fewer lines
of code would significantly reduce the overall effort required for
testing.

We address the problem of accurately estimating reliability of large-
scale software systems and, at the same time, improving the effec-
tiveness of the testing process. We assume that we can estimate
the control transition probabilities between modules using opera-
tional profiling. Together with estimated module reliabilities, these
transition probabilities not only enable us to estimate system reli-
ability, they also help us focus testing on modules that may more
effectively increase the reliability of the entire system.

A many threaded program, such as a server program, differs from a
single threaded program in that its current state is better abstracted
by a probability mass function (pmf). A naive representation of the
program state as a product of the states of each thread results in a
state explosion. Suppose that a program with 100 thread is mod-
eled as a 3 state state-machine; this results in a program with an
unwieldy 3100 states. Observe that the threads are executed con-
currently; thus the current state of each thread execution may be
represented as a random variable that has a stochastic behavior. We

∗This research has been supported in part by the DARPA IXO
NEST program under contract F33615-01-C-1907, by NSF under
grant CNS 05-09321 and by ONR under DoD MURI award N0014-
02-1-0715.

can use this representation to express the reliability of a program
more precisely as a conditional probability given the current pmf
of the states of the program.

Our approach uses a tool based on iLTL, a probabilistic linear tem-
poral logic, that can check whether a discrete time Markov chain
(DTMC) is a model for an iLTL specification or not. The atomic
propositions of the iLTL are linear inequalities about the probability
mass function (pmf) transitions of a given DTMC.

There are many probabilistic verification approaches such as prob-
abilistic LTL, pCTL, pCTL*, CSL, Markov reward model and its
variations [1, 2, 5, 9, 8, 11]. These approaches assign probability
measures to paths of computation and check probabilistic specifica-
tions on these paths. We use iLTL since our primary interest is not
path behavior but reasoning about the pmf transitions to establish
(conditional) program reliability. iLTL allows us to express spec-
ifications such as: “given the current pmf estimation, eventually a
certain property will be satisfied.” Specifically, we add fault states
and check for the probability of transition to these states.

The outline of the paper is as follows. Section 2 defines the Markov
Reward Model and discusses the modeling assumptions we make.
Section 3 defines a specification logic and provides a verification
algorithm for it. Section 4 illustrates our approach by means of an
example executed on an iLTL checker. The final section summa-
rizes some open problems.

2. A MARKOV REWARD MODEL FOR
SOFTWARE RELIABILITY

We first show how we construct a Markov model for software re-
liability based on the reliability of components and the probability
of transitions between them. We make the modeling assumptions
explicit and illustrate our approach by means of an example.

2.1 Markov Model
We assume that a program consists of a set of modules and that
control flow of a program is represented as a sequence of these
modules. The particular control flow depends on the input and the
logics of the modules. We may assume that there are different prob-
abilities for different possible inputs. Moreover, for a given input,
there is a transition probabilities between modules and we can as-
sume that these transition probabilities are known. This assumption
is not unrealistic since we can build an operational profile that pro-
vides the transition probabilities between modules [6].

With a set of modules and transition probabilities between mod-
ules, we can model a program as a Markov chain. Recall that a

1-4244-0910-1/07/$20.00 ©2007 IEEE

Markov process is a stochastic process whose past has no influ-
ence on the future, except as it is represented in the present. A
Markov chain is a Markov process that has a countable number of
states. We represent a Discrete Time Markov Chain (DTMC) X as
a tuple (S ,M) where S = {s1, . . . , sn} is a set of finite states and
M ∈ �n×n is a Markov transition matrix that governs the transi-
tions of probability mass function (pmf). Since M is a Markov
matrix, its elements are non-negative and its column sums are all
one: 0 ≤ Mi j ≤ 1 for 1 ≤ i, j ≤ n and

∑n
i=1 Mi j = 1 for 1 ≤ j ≤ n.

Let x ∈ �n×1 = [x1(t), . . . , xn(t)]T be a pmf of X at time t such that
xi(t) = P{X(t) = si}. Thus,

x(t + 1) =M · x(t)

If a program consists of a set of modules S = {s1, . . . , sn} and tran-
sition probabilities between modules are represented by a matrix M
then we can model the program by a DTMC X = (S ,M), where Mi j

is the probability that control transfers from module si to module
s j : P{X(t + 1) = s j |X(t) = si}. We assume that sn is a terminating
state that every successful execution arrives at. Note that sn is an
absorbing state: P{X(t + 1) = sn|X(t) = sn} = 1.

We regard the reliability of a module as the probability that a mod-
ule does not produce a fault when a control is passed to it. Note that
this reliability is independent of the transition probabilities. More-
over, unlike the transition probabilities, reliabilities are usually un-
known and we have to estimate them. A simple reliability model is
a NHPP (Non-homogeneous Poisson Process) exponential model.
This model is based on the following simplifying assumptions:

• The faults in a program are mutually independent, at least
from the point of view of failure detection.

• The number of failures detected at any time is proportional
to the current number of faults in a program. In other words,
the probability of failures that occur due to faults is constant.

• Faults that are detected are isolated and removed prior to fur-
ther testing.

• Each time a software failure occurs, the software error which
caused it is immediately removed, and no new errors are in-
troduced as a result of this removal.

Note that these simplifying assumptions need not hold exactly. How-
ever, because we are dealing with probabilities, as long as they are
hold with a sufficiently high probability, our reliability estimation
technique would nevertheless be realistic.

Under these assumption, the expected number of errors detected by
time t is:

m(t) = a(1 − e−bt),

where a is the expected total number of faults that exist in the soft-
ware before testing and b is the failure detection rate or the failure
intensity of a fault. Given the number of failures and the detection
times for a module, we can estimate a and b for that module. Using
these parameters, we can estimate the reliability of a module as:

R̂(x|t) = e−â(e−b̂t−e−b̂(t+x)),

where the reliability R(x|t) is the probability that a module does not
have a failure during the time interval t to t + x [4].

During the interval between between correction of errors, we as-
sume that the reliability of a module over a fixed sampling interval
x, R(x|t), remains constant. For example, suppose the software is
released to a market. Then, as long as no errors are corrected, the
reliabilities of the modules do not change.

We can extend our DTMC model X = (S ,M) in order to check the
reliability of a program. Let ri be the reliability of a module si.
We add one more states: S ′ = S ∪ { f } where f represents a fail
state. Then the extended transition matrix such that M′i j = r j · Mi j

for n ≤ i, j ≤ 0, M′(n+1) j = 1 − r j for n ≤ j ≤ 0, M′i(n+1) = 0 for
n ≤ i ≤ 0, and M′(n+1)(n+1) = 0.

Because a terminating state sn cannot result in a failure, Min is 0 if
i � n and 1 if i = n and rn is 1. The extended matrix M′ is also
a probability matrix: each element is non-negative and the sum of
each column is 1. One can easily check that

∑n
i=1 r j ·Mi j+1−r j = 1

for 1 ≤ j ≤ n since
∑n

i=1 Mi j = 1.

The reliability of a program is the probability that a program even-
tually arrives at the final success state sn: P{X(∞) = sn}. This
probability can be computed by:

r = Mn∗ · lim
t→∞

t∑

i=1

Mi
∗ · x(0),

where M∗ is a sub-matrix of M that comprises the first n − 1 rows
and the first n − 1 columns of M, Mn∗ is a nth row vector of M with
first n − 1 elements, and x(0) is an initial probability mass function
of X(0). Note that the reliability of a program is a function of initial
pmf x(0).

It is known that an arbitrary matrix M with the property limt→∞Mt =

0 satisfies the equation [7]:

lim
t→∞

t∑

i=0

Mi = (I −M)−1.

Moreover, if all elements of a matrix M satisfy 0 ≤ Mi j < 1 and
each column sum of M is less than 1 then limt→∞Mt = 0 [7].

Assuming that the reliability ri of each module is less than one,
the sub-matrix M∗ satisfies the previous condition: all elements are
non-negative and less than one, and the column sum is less than
one since M is a Markov transition matrix. So, the reliability of a
program r can be rewritten as:

r =Mn∗ · (I −M∗)−1 · x(0).

Note that since the transition probability from sn to sn is 1, the
reliability r computed above should be equal to the nth element of
the following vector.

M∞
∗ · x(0)

2.2 Example
Figure 1 shows a reliability diagram of a program with three mod-
ules. In addition to these three modules, a success state is added to
indicate that a program has successfully terminated. Figure 1 also
shows the transition probabilities between these modules and the
success state. If we regard rA, rB and rC as 1, then the number at
the arrows connecting these states represent the transition probabil-
ities that have been obtained from an operation profile. We extend
this diagram to check the reliability of a program.

Success
0.01 rB

0.07 rB

0.02 rB

1−rC

1−rA

1−rB

0.05 rC

0.95 rA 0.9 rB

0.07 rA

0.95 rC

Fail

A B

C

1

1

Figure 1: a module reliability diagram

0.9

0.99

0.999

0.9999

0.99999

0.9

0.99

0.999

0.9999

0.99999
0

0.2

0.4

0.6

0.8

1

rBrA

re
lia

bi
lit

y

Figure 2: a reliability of a program as a function of module
reliabilities rA and rB with rC = 1 − 10−5.

Let rA, rB and rC be the reliabilities of the modules A, B and C. We
can model the reliability of the program by a DTMC X = (S ,M)
where S = {A, B,C, success, f ail } and:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.95rA .07rB .05rC .00 .00

.05rA .90rB .00rC .00 .00
.00 .02rB .95rC .00 .00
.00 .01rB .00 1.0 .00

1 − rA 1 − rB 1 − rC .00 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, given rA = rB = rC = 0.9 and x(0) = [1, 0, 0, 0, 0]T , the
reliability of X is 0.1655. This agrees with the probability with
large t P{X(t = 105) = success} = (M105 ·[1, 0, 0, 0, 0]T)4 � 0.1655.

Figure 2 shows how the reliability of a program X changes as a
function of module reliabilities rA and rB. In the figure, we assume
that rC = 1 − 10−5 and x(0) = [1, 0, 0, 0, 0]T . Observe that the
overall program reliability depends not only on the reliability of the
modules but is significantly affected by the transition probabilities
between the modules.

2.3 Markov Reward Model
A Markov reward process is a triple (ρ, S ,M) where (S ,M) is a
DTMC and ρ : S → � is a reward function for each state. We con-
sider only constant rewards. So we represent the reward function as
a constant row vector r = [ρ(s1), . . . , ρ(sn)]. The expected reward
at time t is:

n∑

i=1

ρ(si) · P{X(t) = si} = r · x(t) = r ·Mt · x(0).

Later, we will transform our DTMC representation of a program to
a Markov reward model so that we can use iLTL to reason about the
reliability of a program.

3. SPECIFICATION LOGIC
Since we are interested in the temporal behavior of a probability
mass function (pmf), our specification logic should be able to ex-
press properties of the transitions of the pmf. The sort of properties
we are interested in compare a probability that a DTMC will be
a particular state with a constant, or with another such probability
at a different time. We use linear inequalities over pmf vectors as
atomic propositions of our specification logic.

3.1 Syntax and informal semantics
The syntax of the specification logic is:

ψ ::= T | F | ineq | atomic propositions
¬ψ | ψ ∨ φ | ψ ∧ φ | logical operators
X ψ | ψ U φ | ψ R φ temporal operators

ineq ::=
∑n

i=1 ai · P{X = si} < b,

where X = ({s1, . . . , sn},M), ai ∈ � and b ∈ �. Recall that �
represents eventually, � represents always, X is the next operator,
ψ U φ means φ eventually becomes true and before φ becomes true
ψ is true, and ψ R φ means until ψ first becomes true φ is true.

Observe that the comparison between two probabilities at different
times can be expressed by the linear inequalities of the form ineq.
For example, given the DTMC X = ({s1, . . . , sn},M), the probabil-
ity that X is in state si at time t + k is given by:

P{X(t + k) = si} = xi(t + k) = Mk
i · x(t),

where Mk
i is the ith row of Mk and x(t) is the pmf at time t.

Predicates about a Markov reward process[3] can also be expressed
by linear inequalities. We consider only a constant reward function
ρ : S → � for each state. A performance metric is an accumulated
reward over time. The expected accumulated reward is:

∑T
k=0

∑
si∈S ρ(si) · P{X(t + k) = si}

= r ·
(∑T

k=0 Mk
)
· x(t)

= r · S ·
(∑T

k=0Λ
k
)
· S−1 · x(t)

where ρ(si) is a reward function associated with a state si, r is a row
vector [ρ(s1), . . . , ρ(sn)], M = S ·Λ ·S−1 withΛ a diagonal matrix of
eigenvalues of M and the T on the summation is an upper bound of
the accumulation interval. Note that the accumulation interval can
be ∞ if the reward vector r is orthogonal to the steady state pmf
vector.

3.2 Verification Algorithm
Let sX(x(0)) be a string whose alphabet is Σ = 2AP and its ith al-
phabet is {ineq ∈ AP : ineq(Mi · x(0))} where X is a DTMC, x(0)
is an initial pmf and AP is a set of inequalities. Let LX ⊆ Σ∗ be a
set of strings sX(x(0)) for all x(0). Then our model checker checks
whether LX ⊆ Lψ where Lψ is a language accepted by the Büchi au-
tomata built from an LTL formula ψ. More specifically, for a given
specification ψ, it checks whether any sX ∈ LX is in L¬ψ.

Figure 3 shows a block diagram of the iLTL model checker. Given
an iLTL specification, it computes a search depth using the Markov
model and the inequalities used in the specification logic. With

Markov model & iLTL specification

compute search depth build a Buchi automaton

check feasibility through LP

YES
NO

with a counterexample

Markov model, inequalities iLTL

Figure 3: a block diagram of an iLTL model checking algorithm

the specified iLTL, which essentially is an LTL, we build a Büchi
automata by the expand algorithm [10]. Using the search depth and
the Büchi automata we check the feasibility of a set of inequalities
collected using the Büchi automata.

Our model checking algorithm has two steps. First, we build a
Büchi automaton for the negated normal form of a given LTL spec-
ification ψ using the expand algorithm [10]. Second, we check the
feasibility of the initial pmf x(0) against the set of inequalities col-
lected along finite paths obtained from the automaton. From the set
of inequalities, if there is a feasible solution, then a counterexam-
ple that does not satisfy the specification ψ is found. Otherwise, the
DTMC X satisfies the given specification.

We now provide the details of our algorithm and the technical jus-
tification for it. The rest of this section is purely technical and may
be skipped without loss of continuity.

Observe that given the linear inequalities of an LTL formula ψ and
a Markov matrix M, we can compute an upper bound N on the
number of time steps after which the atomic propositions of ψ be-
come constant. Given a DTMC X = (S ,M), an initial pmf x(0) and
an LTL formula, because we can compute the bound after which
the truth value of the inequalities in the LTL formula become con-
stants, after a finite expansion of the LTL formula, we can evaluate
it. Recall that the ‘until’ and ‘release’ operators may be rewritten
as:

φ U ψ ≡ ψ ∧ (φ ∨ X (φ U ψ))
φ R ψ ≡ (φ ∧ ψ) ∨ (φ ∧ X (φ R ψ)).

More detailed discussion and proofs about model checking algo-
rithm can be found in [12].

4. MODEL CHECKING OF SOFTWARE RE-
LIABILITY

We are interested in a number of different kinds of program prop-
erties related to reliability:

• Recall that the reliability of a program depends on an initial
pmf x(0). Thus we may be interested in finding the initial
pmf x(0) that would result in the lowest reliability.

• If we can estimate the current pmf x(t), we may want to com-
pute the reliability of a program given the estimated pmf.

Success
0.01 rB

0.07 rB

0.02 rB

1−rC

1−rA

1−rB

0.05 rC

0.95 rA 0.9 rB

0.07 rA

0.95 rC

Done

A B

C

1

1

Figure 4: modified reliability state transition diagram

• We may want to check the effects on the reliability of a pro-
gram if different execution constraints are enforced on the
program.

These properties can be handled by iLTL using the reliability model
we considered in Section 2.1. However, we cannot use our iLTL
model checking algorithm directly on the model we mentioned,
because the model violates the eigenvalue constraints of theorem
1. So, we have transform the model slightly.

In theorem 1, our iLTL model checking algorithm has two con-
straints on the Markov transition matrix M. One is the diagonal-
izability of M and the other is that M should have only one eigen-
value whose absolute value is one. The latter condition ensures a
unique steady state pmf of a Markov chain. However, the model
in Section 2.1 violates the second condition: two of its eigenval-
ues are 1. One can easily check this from Figure 1. The transi-
tion probabilities from success to success and from fail to fail are
one. That means once a pmf becomes P{X(t) = success} = α and
P{X(t) = f ail} = 1 − α, it will remain there for any 0 ≤ α ≤ 1.
Hence, there is no unique steady state pmf in the DTMC of Fig-
ure 1. Specifically, for the matrix M of Section 2.2, the two vectors
x1 = [0, 0, 0, 1, 0]T and x2 = [0, 0, 0, 0, 1]T are eigenvectors of it
with x1 = M · x1 and x2 = M · x2. Hence the two eigenvalues λ1

and λ2 are one.

In order to use our iLTL model checking algorithm we modify the
diagram of Figure 1 to Figure 4. First we replaced the fail state
by the done state. And, we remove the self loop transition of suc-
cess state. Instead we add a transition from state success to done
with a probability one and make the success state transient. With
this change every successful execution arrives at done state through
success state whereas every unsuccessful execution arrives at done
state without going through success state.

The reliability of a program is the accumulated sum of the prob-
abilities that the success state is visited. So our modified DTMC
model is X = (S ,M) where S = {A, B,C, S uccess,Done} and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.95rA .07rB .05rC .00 .00

.05rA .90rB .00rC .00 .00
.00 .02rB .95rC .00 .00
.00 .01rB .00 .00 .00

1 − rA 1 − rB 1 − rC 1.0 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{X(t)=A}

P{X(t)=B}

P{X(t)=C}

P{X(t)=fail}

P{X(t)=success}

step

pr
ob

ab
ili

ty

Figure 5: probability transitions of figure 1

The reliability of the program X is:

r =
∑∞

t=0 P{X(t) = success}
=
∑∞

t=0[0, 0, 0, 1, 0] · x(t)
=
∑∞

t=0[0, 0, 0, 1, 0] ·Mt · x(0)

For the example of Section 2.2 with module reliabilities rA = .97,
rB = .999 and rC = .999, the reliability of the program can be
expressed as r · x(0) where r = [.2149, .3478, .5036, 0, 0]. Fig-
ure 5 shows how the probabilities of each states change over time
and how the reliability of the program (P{X(t) = success}) is ac-
cumulated with module reliabilities rA, rB and rC and initial pmf
x(0) = [1, 1, 1, 0, 0]/3.

4.1 iLTL Checker
In this section, we describe some properties of the example in Sec-
tion 2.2. We assume that the reliabilities of the modules are rA =

.97, rB = .999 and rC = .999 as in the previous section.

Figure 6 describes the iLTL Checker description of the reliability
model in Figure 4. The iLTL Checker has two main blocks. The
model block describes the DTMC model to be checked. This block
begins with the name of the DTMC (pgm in this case) followed
by a set of states the DTMC has and finally the Markov transition
matrix. The specification block begins with an optional list of
inequalities that will be used in iLTL specification. Finally, an iLTL
formula is specified using the inequalities defined previously.

In Figure 6, the inequalities a, b and c describes whether the reli-
ability of the program pgm is less than 0.7, 0.5 and 0.3 each. The
inequality d describes that the probability that pgm is in states S or
D is larger than zero. So, the negation of it means that pgm is not
in states S or D. The inequality e says that the probability that pgm
is in state A is at least 0.3 larger than the probability that pgm is in
state C.

The specification a checks whether the reliability of the program
pgm is less than 0.7 regardless of the initial pmf x(0). The iLTL
Checker shows the result as:

model:

Markov chain pgm
has states :

{ A, B, C, S, D},
transits by :

[.9215, .0699, .05, .0, .0;
.0485, .8991, .0, .0, .0;
.0, .02, .9191, .0, .0;

.0, .01, .03, .0, .0;

.03, .001, .001, 1.0, 1.0]

specification:
a : .2149*P{pgm=A} + .3478*P{pgm=B}

+ .5036*P{pgm=C} < .7,
b : .2149*P{pgm=A} + .3478*P{pgm=B}

+ .5036*P{pgm=C} < .5,
c : .2149*P{pgm=A} + .3478*P{pgm=B}

+ .5036*P{pgm=C} < .3,
d : P{pgm=S} + P{pgm=D} > .0,
e : P{pgm=A} > P{pgm=C} + .3

a # 1)
#b 2)

#e -> b 3)
#e -> c 4)

#(b /\ ˜ d) -> ˜ e 5)
#(b /\ ˜ d) -> <> ˜ e 6)

Figure 6: an iLTL checker description of the reliability model
of figure 4

Depth: 22

Result: T

The first line Depth: 22 says that the required search depth for
this formula is 22. Note that the formula a is a state formula (not
a path formula). So, in theory the required search depth is zero.
However, current implementation of our iLTL checker computes a
search depth based on the set of inequalities used in the formula and
the Markov transition matrix not the formula itself. We plan to im-
prove the tool to avoid excessive search depth in such cases. How-
ever, note that the search depth is displayed before actual search
begins. So, one can modify specification if the search depth is too
large instead of waiting indefinitely. The second line says that pgm
is a model of the specification a.

The second commented specification b checks whether the relia-
bility of the program pgm is less than 0.5. The iLTL checker result
is:

Depth: 30

Result: F

counterexample:

pmf(pgm(0)): [.01247 .0 .98753 .0 .0]

The result shows that pgm is not a model of b with a counter ex-
ample of x(0) = [.01247, .0, .98753, .0, .0]. One can see that
r · x(0) = 0.5. From the first and the second example we know that
the maximum reliability of the program pgm is in between 0.5 and
0.7.

The third commented specification e -> b checks whether the re-
liability of the program is less than 0.5 if the probability that pgm
is in A state is at least 0.3 larger than the probability that pgm is in
C state. The iLTL checker verifies that it is true. However for the

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P{pgm(t)=A}

P{pgm(t)=A}−P{pgm(t)=C}

P{pgm(t)=C}

step

pr
ob

ab
ili

ty

Figure 7: a counterexample of b -> ¬ e

fourth commented specification e -> c, the model checker proves
that it is not true:

Depth: 78

Result: F

counterexample:

pmf(pgm(0)): [.70523 .0 .294770 .0 .0]

By comparing the previous example (b) and this example (e ->
b), we know that we should focus more on module A than module
C because more probability in A results in decreased reliability of
pgm.

The fifth example (b -> ¬ e) checks whether the fact that the re-
liability of pgm is less than 0.5 implies not e. The iLTL checker
returns a negative answer with a counter example:

Depth: 78

Result: F

counterexample:

pmf(pgm(0)): [.3 .7 .0 .0 .0]

However for the sixth example (b -> <> ¬ e), if the reliability
of a pgm is less than 0.5 then eventually the difference between the
probability that pgm is in sate A and the probability that pgm is in
sate C will be less than 0.3.

Figure 7 explains the fifth and sixth examples. From step 1 to 15,
the probability difference is larger than 0.3. However, eventually
after step 15 the difference becomes less than 03.

5. CONCLUSIONS
We have developed a method for estimating software reliability of
a program using a Markov reward model. The method uses an op-
erational profile of a program, and the estimated reliability of each
module, to estimate the reliability of a program. Using iLTL, we
show how a variety of reliability properties may be specified and
we provide an algorithm for checking these properties. While our
technique provides a promising method for rigorous compositional
software reliability estimation, empirical studies with real software
systems remain to be carried out. Moreover, further research is
needed to quantify the effect of deviations from the assumptions
used in our model.

6. REFERENCES
[1] Adnan Aziz, Vigyan Singhal and Felice Balarin. It usually

works: The temporal logic of stochastic systems. In LNCS,
volume 939, pages 155–165, 1995.

[2] Andrea Bianco, Luca de Alfaro. Model checking of
probabilistic and nondeterministic systems. In Proceedings
of Conferenco on Foundations of Software Technology and
Theoretical Computer Science, volume 1026, pages
499–513, 1995.

[3] Gianfranco Ciardo, Raymond A. Marie, Bruno Sericola and
Kishor S. Trivedi. Performability analysis using
semi-markov reward process. In IEEE Transactions on
Computers, volume 39, pages 1251–1264, October 1990.

[4] Hoang Pham. Software Reliability. Springer, 2000.

[5] Holger Hermanns, Joost-Pieter Katoen, Joachim
Meyer-Kayser and Markus Siegle. A markov chain model
checker. In S. Graf and M. Schwartzbach, editors,
TACAS’2000, pages 347–362, 2000.

[6] Jayant Rajgopal and Mainak Mazumdar. Modular
operational test plans for inference on software reliability
based on a markov model. In IEEE Transactions on Software
Engineering, volume 28, pages 358–363, April 2002.

[7] J.G. Kemeny and J.L. Snell. Finite Markov Chains.
Springer-Verlag, 1976.

[8] Marta Kwiatkowska, Gethin Norman and David Parker.
Prism: Probabilistic symbolic model checker. volume 2324,
pages 200–204. LNCS, Springer-Verlag, April 2002.

[9] Moshe Y. Vardi. Probabilistic linear-time model checking: an
overview of the automata-theoretic approach. In Proc. 5th
Int. AMAST Workshop Formal Methods for Real-Time and
Probabilistic Systems, volume 1601, May 1999.

[10] R. Gerth, D. Peled, M.Y. Vardi and P. Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In
IFIP/WG, volume 6.1, pages 3–18, 1995.

[11] Suzana Andova, Holger Hermanns and Joost-Pieter Katoen.
Discrete-time rewards model-checked. In Formal Modeling
and Analysis of Timed Systems 2003, pages 88–104, 2003.

[12] YoungMin Kwon and Gul Agha. Linear inequality ltl (iltl):
A model checker for discrete time markov chains. To appear
in Int. Conf. on Formal Engineering Methods 2004.

