
A global address space framework for locality aware scheduling of block-sparse
computations

Sriram Krishnamoorthy1, Umit Catalyurek2, Jarek Nieplocha3, Atanas Rountev1, and P. Sadayappan1

1 Dept. of Computer Science and Engineering 2 Dept. of Biomedical Informatics
The Ohio State University

{krishnsr,rountev,saday}@cse.ohio-state.edu umit@bmi.osu.edu

Pacific Northwest National Laboratory
jarek.nieplocha@pnl.gov

Abstract

In this paper, we present a mechanism for automatic
management of the memory hierarchy, including secondary
storage, in the context of a global address space parallel
programming framework. The programmer specifies the
parallelism and locality in the computation. The schedul-
ing of the computation into stages, together with the move-
ment of the associated data between secondary storage
and global memory, and between global memory and local
memory, is automatically managed. A novel formulation of
hypergraph partitioning is used to model the optimization
problem of minimizing disk I/O. Experimental evaluation
using a sub-computation from the quantum chemistry do-
main shows a reduction in the disk I/O cost by up to a factor
of 11, and a reduction in turnaround time by up to 49%, as
compared to alternative approaches used in state-of-the-art
quantum chemistry codes.

1 Introduction

The dramatic strides in hardware performance of mod-
ern high-end systems over the past decades have not been
matched by a corresponding improvement in the ease of
programming them. The dominant approach at present is
message passing using MPI, which requires the program-
mer to explicitly partition the work, map it onto the parallel
computer, and schedule its execution. This approach makes
parallel computing very tedious and error-prone because of
the myriad low-level details the programmer must contend
with. One of the reasons for the continuing use of the MPI

1-4244-0910-1/07/$20.00 c©2007 IEEE.

programming model is that by leaving all of the details up
to the programmer, it is possible to obtain high performance
— if the programmer puts in the effort to do so. But as the
architecture of parallel computer systems gets more com-
plex, the explicit orchestration of computation and commu-
nication for optimum performance will get increasingly dif-
ficult.

An emerging class of programming models require an
explicit specification of partitioning and scheduling of com-
putation onto processes, but offer a global-shared view of
data, such as UPC [18], Co-Array Fortran [4], Titanium
[20, 17], and Global Arrays [14, 15]. These models are
generally considered easier to program than MPI because
they involve only one-sided communication for data trans-
fer, which is in some cases implicit in the program syn-
tax, together with their global-shared view of the program
data. These approaches have become prominent only re-
cently, but are drawing a great deal of interest as alternatives
to MPI as the basic parallel programming model in a vari-
ety of areas. For example, essentially all scalable parallel
quantum chemistry packages use either Global Arrays or an
equivalent [7, 19, 12, 13, 16, 6].

For computations involving data structures more general
than dense matrices, performing completely automatic pro-
gram transformations to parallelize them and optimize their
execution time is a challenging task. We propose a model in
which the data and computation abstractions are geared to-
wards expressing and exploiting the locality inherent in the
problem. The data abstraction encapsulates the locality of
access. The user expresses the parallelism in the computa-
tion in the form of a task pool, which is then used by the run-
time system to schedule the computation to maximize lo-
cality. The decoupling of the computation and data abstrac-
tions enables the implementation of efficient operations on
existing data structures, extending their capabilities. We

present our experiences with this approach in the context
of computations on multi-dimensional block-sparse arrays.
The motivating applications are presented in Section 2. The
locality-aware abstractions are discussed in Section 3. The
hypergraph partitioning problem, employed in communi-
cation and disk I/O minimization, is described in 4. Sec-
tion 5 discusses our approach to minimizing communica-
tion for in-memory computations. Section 6 discusses disk
I/O minimization for out-of-core computations. Section 7
concludes the paper.

2 Motivation

One of the major motivations for the development of
the proposed primitives is our work on the Tensor Contrac-
tion Engine (TCE) [2] synthesis system. TCE is a domain-
specific compiler for expressing ab initio quantum chem-
istry models. The TCE takes as input a high-level specifi-
cation of a computation, expressed as a set of tensor con-
traction expressions, and transforms it into efficient parallel
code. Each tensor contraction expression is comprised of
a collection of multi-dimensional summations of products
of several block-sparse input arrays. An operation on the
indices of the segments that form a block of an array deter-
mines if that block is non-zero. The wide-ranging sizes of
the blocks lead to significant variations in the computation
and communication times involved in processing a block.
The large sizes of the arrays can significantly increase com-
munication costs, if locality is not taken into account. For
large systems the data can be too large to fit in the collective
physical memory in the parallel system. This necessitates
the schedules of disk I/O to ensure that the data is available
in memory when the computation is being performed.

In general, applications with the following characteris-
tics can benefit from our proposed scheme:

• Can be partitioned into independent tasks,

• Involve many more tasks than the number of proces-
sors,

• Have wide variation in task execution times, and

• Operate on coarse-grain data, and incur communica-
tion costs if the task and the data it operates on are not
co-located.

• Data is distributed in the collective physical memories
of the parallel system or in secondary storage.

3 Locality-Aware Abstractions

In this section, we briefly discuss the data and compu-
tation abstractions that constitute the global address space
framework under consideration. Note that the computation
abstraction is decoupled from the data abstractions and can
be leveraged for other data structures as well. The details of
these abstractions can be found in [10].

3.1 Block-Sparse Matrices

An abstraction is provided to manipulate multi-
dimensional block-sparse matrices that occur in the context
of the TCE. The user specifies a brick size along each di-
mension, which is used to divide the dimensions of the ar-
ray, so that the non-zero blocks can be stored as collections
of bricks. Each brick is uniquely identified by a brick num-
ber, derived from its position in the array. A brick is the ba-
sic unit of communication and I/O. A disk array is provided
that distributes the bricks amongst the local disks of the pro-
cessors. Collective I/O operations enable reading from and
writing to collections of bricks in the disk arrays.

The disk array has an in-memory counterpart — the
memory brick collection. The memory brick collection is
a global distributed data structure that supports one-sided
communication to an arbitrary brick in the collection, given
the brick number.

Manipulating a data array involves creating a memory
brick collection and populating it with the set of bricks to
be accessed by that memory brick collection. Memory is
then allocated to accommodate the bricks. Collective I/O
operations can now be used to move all the bricks in the
memory brick collection between global memory and disk.

3.2 Locality-Aware Load Balancing

The computation abstraction provided to the user enables
the specification of a set of independent tasks, without any
dependences, to be executed in parallel. Each task is se-
quential and is associated with a set of data elements in a
globally addressed data structure such as the one described
above. An estimate of the execution time of each task is
also specified. The task is processed using a user-supplied
function that is assumed to be optimized for sequential exe-
cution.

A majority of practical parallel applications have outer
serializing loops (representing sequencing in time or itera-
tion till convergence), but within those outer-serial loops,
they exhibit considerable “forall” parallelism. A signif-
icant number of engineering codes using finite-element,
finite-difference, and finite-volume methods fit this model.
For these applications, an abstraction of independent tasks
within each iteration of the outer loop is appropriate, as is
the case for the TCE application that motivates this work.

A task pool is created and populated with all the tasks to
be processed. Before starting the processing of any task in
the task pool, the task pool is sealed to signify the comple-
tion of population operations. At this stage, the tasks in the
task pool are analyzed for data reuse and a schedule for I/O
and computation is determined.

The computation and I/O schedule, once determined, can
be used to process the set of tasks in the task pool multiple
times. For example, in TCE, a given sequence of tensor con-
tractions is evaluated many times for convergence. Thus the

2

start-time cost of optimization is paid once and is amortized
over multiple executions of the task pool.

All global data structures are initially assumed to be dis-
tributed amongst the local disks attached to the processors
in a cluster. Movement of data from the distributed data
structures in disk to their in-memory counterparts is done
collectively. Once the data is in the global memory, the
computation proceeds asynchronously with each process
evaluating the next task in the sequence of tasks to be exe-
cuted.

The memory left unused after allocating the distributed
data structures is used to accommodate a LRU cache. The
cache reduces the overall communication cost and network
contention in the system.

4 Hypergraph Partitioning Problem

A hypergraph is a generalization of an undirected graph
in which an edge, referred to as a net, can connect more
than two vertices. The hypergraph partitioning problem is
concerned with dividing a hypergraph into a set of P sub-
hypergraphs, for a given P , such that the cost of intercon-
nection between the parts is minimized. The cost is influ-
enced by the nets shared between more than one part, with
a variety of metrics defined on them. The principal idea
behind the definition of the objective function is to mini-
mize the cost incurred by assigning related entities, repre-
sented by vertices connected by a net, to distinct parts. In
the rest of the section, we shall present a formal description
of the hypergraph partitioning problem and define relevant
cost metrics.

A hypergraph H = (V,N) is defined as a set of ver-
tices V and a set of nets (hyper-edges) N among those
vertices. Each net nj ∈ N is a set of vertices from V .
Weights (wi) and costs (cj) can be assigned to the vertices
(vi ∈ V) and edges (nj ∈ N) of the hypergraph, respec-
tively. Π = {V1, V2, . . . , VP } is a P -way partition of H if
(1) each part Vi is a non-empty subset of V , (2) the parts are
pairwise disjoint, and (3) union of the P parts is equal to V .
A partition is said to be vertex-weight-balanced if

Wp ≤ Wavg(1 + ε) for 1 ≤ p ≤ P

where Wp =
∑

vi∈Vp
wi is the sum of the vertex weights of

part Vp, Wavg = (
∑

vi∈V wi)/P is the weight of each part
under the perfect load balance condition, and ε is a prede-
termined maximum imbalance ratio allowed.

In a partition Π of H , a net that has at least one vertex in
a part is said to connect that part. The connectivity λj of a
net nj denotes the number of parts connected by nj . A net
nj is said to be a cut if it connects more than one part (i.e.,
λj > 1). The cut nets are also referred to as external nets,
and their set is denoted by NE .

A P -way partition Π of H can also be viewed as
inducing (P + 1)-way net partitioning, with P internal
net sets and one external net set NE ; that is, Π =

{N1, N2, . . . , NP , NE}. Here for all internal nets nj ∈ Np,
all the vertices of those nets belong to the same part, i.e.,
nj ⊆ Vp for 1 ≤ p ≤ P . Similarly to a vertex-weight-
balance partition, a partition is said to be net-cost-balanced
if

Cp ≤ Cavg(1 + ε) for 1 ≤ p ≤ P

where Cp =
∑

nj∈Np
cj is the sum of the internal net costs

of part p, and Cavg = (
∑

nj∈N−NE
cj)/P denotes the av-

erage internal net cost under the perfect load balance condi-
tion.

There are various ways of defining the cut-size χ(Π) of
a partition Π [11]. The two relevant ones for our context are
cut-net and connectivity-1, defined as follows:

χ(Π) =
∑

nj∈NE

cj (1)

χ(Π) =
∑

nj∈NE

cj(λj − 1) (2)

With the cut-net metric (1), each cut net nj contributes
its cost to the cut, whereas with the connectivity-1 metric
(2), each cut net nj contributes cj(λj − 1) to the cut-size.
The hypergraph partitioning problem can be defined as the
task of dividing a hypergraph into two or more parts such
that the cut-size is minimized, while a given balance cri-
terion either among the part weights or net costs is main-
tained. Algorithms based on the multi-level paradigm, such
as hMETIS [9] and PaToH [3], have been shown to compute
good partitions quickly for this NP-hard problem.

5 In-Memory Computations

A computation, consisting of a set of independent tasks,
is to be performed on globally addressable data. The data is
partitioned into non-overlapping regions and is distributed
across the memories of the processors, such that each region
is assigned to one and only one processor. Each task takes as
input a set of data regions and reads, writes and/or updates
(accumulates), one or more data regions. The computation
cost of each task is also provided.

Note that each task can be executed on any processor.
The input data regions associated with the task are brought
into local memory and the task is executed. The output data
are then written/accumulated into the global regions. If a
task is executed on a processor that contains the data re-
gions required by it, no communication is required. In ad-
dition, if a set of tasks that require the same data regions
are co-located in a processor, communication cost can be
significantly reduced by reusing the read-only data across
tasks.

We assume that we have enough memory to store all the
data required by all the tasks. Thus, given a set of tasks
assigned to a processor, the amount of communication per-
formed by that processor is equal to the total size of all the
distinct data regions accessed by all the tasks assigned to it.

3

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e(

se
cs

)

k(=V/O)

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

Figure 1. Execution time of block-sparse ma-
trix multiply (32 processors)

The objective is to partition the set of tasks among the
available processors, such that the amount of communica-
tion required is minimized, while maintaining the balance
of computational load amongst the processors.

5.1 Communication Minimization

We model the problem of locality-aware load-balancing
as a hypergraph partitioning problem. Each data region and
task in the computation has a corresponding vertex in the
hypergraph. A net is introduced in the hypergraph for ev-
ery data region in the computation. For each data region,
the corresponding net connects the vertices corresponding
to it and the tasks that access it. The weight associated with
each net is the communication cost associated with the data
region. We model it to be the size of the data region. The
cost of a vertex is zero if it corresponds to a data region, and
is the number of operations to be executed if it corresponds
to a task.

We can evaluate the hypergraph thus constructed in two
ways. It can be used to determine the assignment of both
the tasks and data regions to processors. If the data regions
are pre-distributed and cannot be remapped, the distribution
of the data regions amongst the processors can be prespec-
ified by constraining each data region to be on a specific
processor. The hypergraph is then partitioned to determine
the mapping of the tasks to the processors. Given a parti-
tion, the cost incurred by a net is the size of the correspond-
ing data region, times the number of remote processors that
have been assigned at least one task that accesses this re-
gion. The total cost of all the nets is given by the connectiv-
ity metric, shown in equation 2.

5.2 Experimental Evaluation

We evaluated the primitives by comparing them with al-
ternative schemes on the Colony2a system in Pacific North-
west National Laboratory. It is a twenty-four node clus-
ter with each node being a dual 1GHz Itanium-2 with 6GB
memory. We used the Infiniband network available on the
cluster for our experiments.

Three alternative load-balancing schemes were imple-
mented for comparison. In the Random scheme, each pro-
cessor traverses the entire list of tasks in the same order, and
randomly decides whether it is to be executed by it. Since
all the processors start with the same random seed, they
all generate the same sequence of pseudo-random numbers.
The randomization results in a uniform distribution of the
number and sizes tasks to processors. Note that this scheme
balances the number of tasks and not task execution times.
In addition, locality is not taken into account.

In the Owner scheme, one of the locality elements in
each task is marked. Each task is executed by the process
that “owns” the marked locality element in that task. This
scheme ensures locality for the array used to determine the
ownership.

The NextTask scheme employs dynamic load balancing.
All the processes enumerates the tasks to be executed in the
same order. A global shared counter is used to determine
the next task to be executed. Each process, when idle, per-
forms an atomic fetch-and-add of the global shared counter.
The value obtained by the process specifies the next task to
be executed by it. All processes continue this procedure un-
til the counter exceeds the number of tasks to be processed.
The strictly increasing counter ensures that no task is exe-
cuted more than once. It also keeps all the processes busy,
till there are no more tasks to be executed. This ensures
load balancing. But locality is not taken into account. Note
that this scheme is similar to self-scheduling in OpenMP
[1]. This is also the typical model of parallelization used
in many applications, including some quantum chemistry
codes [8].

Execution times of the following tensor contraction ex-
pression, typical of those encountered in quantum chem-
istry, were measured:

a, b, c, d : O
i : V
C[a, b, c, d] = A[a, b, i] ∗ B[i, c, d]

where O and V correspond to the number of occupied
and virtual orbitals, respectively. The O index was set at
160 with four symmetry segments of lengths 80, 40, 20, and
20, respectively. The value of V was varied to be a multiple
k of O, with k varying from 1 to 16.

The execution times for the different schemes for 32 pro-
cessors are shown in Fig. 1. For our approach (labeled
Our) the cost is shown including and excluding the over-
head of hypergraph partitioning. Our approach shows im-

4

 0

 4

 8

 12

 16

 20

 24

 0 4 8 12 16 20 24 28 32

S
pe

ed
up

#procs

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

Figure 2. Scalability of block-sparse matrix
multiply for k=(V/O)=16

proved performance even after including the overhead of
hypergraph partitioning.

The speedups obtained by the different schemes, for k
being 16, are shown in Fig. 2. Our approach achieves a
speed-up of up to 20 on 32 processors, excluding partition-
ing cost. Note that we did not exploit overlap of communi-
cation with computation.

6 Out-of-core Computations

In this section, we consider the scheduling problem in
the context of data in secondary storage, in a parallel file
system or distributed amongst the local disks of processors.
The objective is to determine a computation schedule, so
as to minimize the total disk I/O cost. The schedule is
required to ensure that at any point in the processing of the
tasks, the total memory allocated to the data bricks is less
than the memory available. In the case of a parallel system,
the global memory available is the constraint imposed on
the I/O schedule.

6.1 One-Level Partitioning

In this section, we describe a direct application of hyper-
graph partitioning to the disk I/O minimization problem. A
task-brick hypergraph is constructed from the set of tasks
and the set of data bricks accessed by them. For each task
and data brick, a vertex and a net is added to the hypergraph,
respectively. For each data brick, a net is constructed that
connects the vertices corresponding to the tasks that access
that brick. The cost associated with the net corresponds to
the communication cost incurred by the data corresponding
brick, modeled as the size of the brick. The weight associ-
ated with each vertex is proportional to the computation cost
associated with the corresponding task. In the evaluation of

our scheme, this is specified to be number of operations in-
volved.

Common applications of hypergraph partitioning deal
with parallelization, and hence have a pre-specified number
of parts into which the hypergraph needs to be partitioned.
We are interested in partitioning the computation into stages
such that the memory requirement at any point in the com-
putation does not exceed the memory available.

We model this problem using hypergraph partitioning to-
gether with the memory usage constraint. We recursively
partition the given hypergraph into two stages when the
computation represented by it cannot be executed without
violating the memory constraint. The memory usage of a
part is determined as the sum of weights of all nets incident
or internal to the corresponding sub-hypergraph. We shall
refer to the solution thus obtained as the one-level partition.

Fig. 3 illustrates a one-level partition of a task-brick hy-
pergraph. The computation involves nine tasks and six
data elements. The figure shows the tasks as squares and
the data elements as nets (set of edges connected by cir-
cles.) All data elements are assumed to be of the same
size. Let the memory in the system be large enough to hold
three data elements. The partitioning of the hypergraph into
three stages, indicated by the three enclosing rectangles, is
shown. Each partition requires three data elements to com-
plete processing. Two of the nets, labeled n1 and n2, are
cut-nets and are accessed in more than one stage. For each
cut-net, dummy vertices are introduced in each partition on
which it is incident, to represent its contribution to the mem-
ory cost of that partition. The total I/O cost is 9 data ele-
ments, the number of data elements within each part in the
partition.

Given such a partition, the computation schedule corre-
sponds to reading all input bricks relevant to a part, com-
puting the relevant tasks and writing out any output bricks
back to disk. In a parallel system the processing of the tasks
can be done by employing the scheme described in the pre-
vious section. There is no reuse of data across the different
stages. Thus, a reduction in the number of stages is gener-
ally beneficial.

6.2 Read-Once Partitioning

The above approach is simplistic in the measurement of
the memory cost for each stage. It ignores the potential for
reuse across the stages. In addition, the reuse is determined
to be between all the tasks in a given stage. While hyper-
graph partitioning improves the data reuse within a stage,
the available memory can be better utilized by further in-
vestigating the reuse relationships between the tasks in a
stage. We present an alternative use of hypergraph parti-
tioning, referred to as read-once partitioning.

A read-once partition is a partition of a task-brick hyper-
graph such that the sum of the sizes of the cut-nets, corre-
sponding to data bricks accessed in more than one part, and
the size of data uniquely accessed in any part does not ex-

5

n2

n1
n1

n2

n1

n1

n2

Figure 3. Illustration of one-level partitioning

ceed the available memory. This partition induces a sched-
ule in which the processing of tasks is organized into steps,
one for each part in the partition. The processing is pre-
ceded by moving all data elements accessed by more than
one step, referred to as shared bricks, into memory. Each
step is processed by first allocating memory for data ele-
ments local to that step and performing the necessary disk
I/O. The tasks in the current step are then processed and the
updated bricks local to this step are written back to disk.
The memory allocated for the local bricks are finally re-
claimed. The procedure is then repeated for the next step.
After processing all the steps, any updated shared bricks are
written to disk.

Thus a set of tasks, while requiring data elements that
together cannot fit in the memory available, can potentially
be scheduled to be processed using the available memory.
By keeping all cut-nets in memory throughout the compu-
tation of the given set of tasks, this approach also avoids
redundant I/O for any accessed data element.

The scheme uses a pessimistic upper-bound in its cal-
culation of the memory cost due to the allocation of all cut-
nets at once, even though a cut-net might be used only much
later. Despite this apparent inaccuracy, this scheme signif-
icantly improves memory utilization by deallocating nets
internal to a step once they are used, thus allowing more
related tasks to be processed within a stage.

Note that the number of parts (steps) in a read-once parti-
tion is not significant, as increasing the number of parts does
not increase the disk I/O cost. But choosing an arbitrarily
large number of parts can distribute related tasks, increas-
ing the total size of the cut-nets, thus making a read-once
partition infeasible. We choose a simple scheme of a linear
search for the number of parts, starting from two. For each
choice of the number of parts, a net-cost-balanced hyper-
graph partitioning with cut-net metric is computed, and the
result is checked to be a feasible read-once partition (i.e.,
cutsize +Cp ≤ memory limit for 1 ≤ p ≤ P). If it is not,

we continue the search for a read-once partition by increas-
ing the number of parts. In the current implementation, we
limit the number of parts being searched to be less than 128,
which we found to be sufficiently large in practice.

6.3 Integrated Approach

The integrated algorithm, referred to as two-level parti-
tioning returns a set of ordered pairs, each pair specifying
the set of tasks in that stage and the computation schedule
obtained using read-once partitioning. If a read-once par-
tition exists that satisfies the memory constraint, the set of
tasks together with the computation schedule is returned. If
not, the algorithm proceeds recursively by partitioning the
set of tasks to balance the net-weights, solving the two parts
independently and combining the result.

The outer-level partitioning scheme is identical to that
used in one-level partitioning. They differ primarily in
mechanism used to decide whether a part (sub-hypergraph)
needs to be further partitioned.

Fig. 4 shows a possible partitioning of the same compu-
tation as in Fig. 3 using the two-level approach. The stages
in the computation, corresponding to the parts in the outer-
level partition are indicated by enclosing rectangles. En-
closing circles are used to show the parts in the read-once
partitions within each stage. Nets n1 and n2 are the cut-
nets, similar to the partition determined in Fig. 3. Two of
the stages produced by the one-level partitioning approach
now form the two steps of a read-once partition in a single
stage. Net n1 is a cut-net for that read-once partition and is
retained in memory through the processing of both the steps
in the stage. This is indicated by the single representative
vertex for n1 in that stage being shared by both the steps.
The memory constraint is still satisfied as the memory us-
age does not exceed the size of three data elements at any
point. The total disk I/O cost for this partitioning is equal to
the size of eight data elements, as compared to nine for the
partitioning in Fig. 3.

Note that the illustration shows only one possible parti-
tioning and there maybe many equivalent partitions. Also,
unlike in the illustration, the partitions produced by the two-
level partitioning approach need not, in general, correspond
to any one-level partitioning that is the best possible for the
given hypergraph.

6.4 Experimental Evaluation

We evaluate our approach using the following Coupled
Cluster Doubles (CCD) [5] sub-computation:

p3, p4, p5, p7 : V
h1, h2, h6, h8 : O
input-output arrays : i0, t, v1, v2
intermediate arrays : i1
i1[h6, p3, h1, p5] += v1[h6, p3, h1, p5]
i1[h6, p3, h1, p5] += t[p3, p7, h1, h8] ∗ v2[h6, h8, p5, p7]
i0[p3, p4, h1, h2] += t[p3, p5, h1, h6] ∗ i1[h6, p4, h2, p5]

6

n2

n1
n1

n2

n1

n2

Figure 4. Illustration of two-level partitioning

Table 1. Turnaround times, in seconds, for the
CCD sub-computation

System Scheme nprocs
1 2 4 8

ia64-osc GetNext 9710 5760 3403 2281
HpGraph 9244 5110 2408 1271

p4-osc GetNext 13717 7988 4562 2739
HpGraph 11700 5886 2899 1390

ia64-pnl GetNext 7928 4453 2731 1868
HpGraph 7564 4283 1968 1081

O is set to have four segments (40,40,20,20), and V is
divided into the four segments (100,100,60,60). The in-
put/output arrays are assumed to be created and passed as
inputs to the execution environment. The first operation ini-
tializes the intermediate array. The subsequent arrays pro-
duce and consume the intermediate. The initialization op-
eration is implemented in a data-parallel fashion with each
process initializing the data bricks local to it.

We evaluate our approach, henceforth also referred to
as HpGraph, by comparing it with the approach taken
in state-of-the-art quantum chemistry packages such as
NWChem [7]. In this scheme, the data elements, stored
in a bricked form, are replicated across the local disks of
the processors. A simple load-balancing scheme, similar to
the NextTask scheme described earlier, is used to distribute
the computation amongst the processors. Before the output
array can be used as an input in another tensor contraction,
the local modifications to the replicated array need to be
reconciled. This is essentially an accumulation operation in
which all partial contributions to the individual bricks are
added together in an operation similar to MPI AllReduce.
This scheme was implemented using our data abstraction,
with suitable extensions to replicate and reconciles disk ar-
rays.

This alternative scheme will be referred to as GetNext,
in the spirit of the computation distribution scheme adopted
by it. The inputs are assumed to be replicated when evalu-
ating this scheme. A reconcile operation is carried out on
i1 before it is consumed to produce i0. In addition, the out-
put array i0 is reconciled as the final step. All inputs are
assumed to be distributed when evaluating our scheme, and
no cost is incurred in reconciling any of the arrays.

The memory limit for our scheme was set to 1 GB on
each of the systems. While under-utilizing the memory in-
creases the overall cost of the computation, the results show
efficient utilization of even a portion of the memory leads to
significant improvements. In addition, the unutilized mem-
ory can be used for optimizations such as a caching to fur-
ther reduce the communication cost. Note that utilizing the
entire memory for the computation might degrade perfor-
mance due to interference with the operation of the operat-
ing system and the disk buffer cache.

We evaluated the two schemes on the following three
systems:

ia64-osc A cluster with dual Itanium-2 900MHz nodes,
each with 4GB physical memory, and 80GB local disk,
and a Myrinet 2000 interface. GM is the underlying
communication protocol.

ia64-pnl A cluster with dual 1GHz Itanium-2 nodes, each
with 6GB physical memory, 80GB hard drive and GM
interconnection network. This is the system used in the
evaluation of our in-memory optimization described
earlier, but with a different interconnection network.

p4-osc A cluster with each node containing two 2.4GHz
Pentium 4 processors and 4GB physical memory,
80GB local disk, and an Infiniband interconnection
network.

The sub-computation was evaluated on the three systems
by varying the number of nodes between 1 and 8. Note that
only one CPU in each node was utilized in all three clusters.

The turnaround times are shown in Table 1. In addi-
tion to improving the disk I/O cost, the turnaround times
for HpGraph, including the cost of hypergraph partitioning,
are consistently better than that for GetNext. On p4-osc
for eight processors, HpGraph leads to a 49% improvement
over GetNext, with similar trends observed for other pro-
cesses. Note that the input arrays are assumed to be repli-
cated for the GetNext scheme. The improvements obtained
would be even higher if the cost of replicating the input ar-
rays is included in the execution time of GetNext.

The HpGraph scheme achieves close to linear speed-up,
a significant improvement over GetNext. For HpGraph,
while the I/O cost decreases with the number of proces-
sors, the communication cost increases. Note that GetNext,
which uses replicated data, does not incur any communica-
tion costs, except while reconciling arrays. The low com-
munication times in p4-osc lead to the observed super-linear

7

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

C
o
m
p
u
t
a
t
i
o
n

(
%
)

#procs

GetNext-ia64-osc
HpGraph-ia64-osc

GetNext-p4-osc
HpGraph-p4-osc

GetNext-ia64-pnl
HpGraph-ia64-pnl

Figure 5. Percentage of time in computation

speed-up. We intend to investigate communication reduc-
tion mechanisms such as overlap of computation and com-
munication to further improve the performance of HpGraph.

The average percentage of total execution time spent per-
forming DGEMM, the core useful computation in the appli-
cation, is shown in Fig. 5. It shows the consistent high ef-
ficiency achieved by HpGraph, despite the additional over-
head of hypergraph partitioning.

7 Conclusions

In this paper, we presented a framework for automatic
management of the memory-disk hierarchy in the context
of block-sparse tensor contractions. A novel formulation
using hypergraph partitioning was used to optimize disk
I/O costs. Experimental evaluation using a sub-computation
from quantum chemistry demonstrated significant improve-
ments in disk I/O cost, overall performance, scalability, and
computation efficiency.

Acknowledgments

We thank the National Science Foundation for the sup-
port of this research through grants 0121676, 0403342,
and 0509467, and the U.S. Department of Energy through
award DE-AC05-00OR22725. We thank the Molecular Sci-
ences Computing Facility (MSCF) at the Pacific Northwest
National Laboratory (PNNL) and the Ohio Supercomputer
Center (OSC) for the use of their computing facilities.

References

[1] Openmp specification. http://www.openmp.org/specs.
[2] G. Baumgartner, D. Bernholdt, D. Cociorva, R. Harrison,

S. Hirata, C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam,
and P. Sadayappan. A High-Level Approach to Synthesis of

High-Performance Codes for Quantum Chemistry. In Proc.
of Supercomputing 2002, November 2002.

[3] U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning
based decomposition for parallel spars e-matrix vector mul-
tiplication. IEEE TPDS, 10(7):673–693, 1999.

[4] Co-array fortran. http://www.co-array.org/.
[5] T. Crawford and H. S. III. An Introduction to Coupled Clus-

ter Theory for Computational Chemists. In K. Lipkowitz
and D. Boyd, editor, Reviews in Computational Chemistry,
volume 14, pages 33–136. John Wiley & Sons, Ltd., 2000.

[6] M. Guest. Computing for science.
http://www.dl.ac.uk/CFS/cfs.html, 8 March 2004.

[7] High Performance Computational Chemistry Group.
NWChem, A Computational Chemistry Package for Parallel
Computers, Version 4.6. Pacific Northwest National
Laboratory, 2004.

[8] S. Hitara. Tensor contraction engine: Abstraction
and automated parallel implementation of configuration-
interaction, coupled-cluster, and many-body perturbation
theories. 107(46):9887–9897, 2003.

[9] G. Karypis, R. Aggrawal, V. Kumar, and S. Shekhar. Mul-
tilevel hypergraph partitioning: Applications in VLSI do-
main. In Proc. of 34th Design Automation Conference, 1997.

[10] S. Krishnamoorthy, U. Catalyurek, J. Nieplocha, A. Roun-
tev, and P. Sadayappan. An extensible global address space
framework with decoupled task and data abstractions. In
Proc. IPDPS Workshop on Next Generation Software, 2006.

[11] T. Lengauer. Combinatorial algorithms for integrated cir-
cuit layout. John Wiley & Sons, Inc., New York, NY, USA,
1990.

[12] H. Lischka and T. Mueller. The columbus par-
allel CI program project. http://www.itc.univie.ac.at/
˜hans/Columbus/columbus parallel.html, May 6 2004.

[13] Molcas 6. http://www.teokem.lu.se/molcas/.
[14] J. Nieplocha and R. Harrison. Shared-memory programming

in metacomputing environments: The global array approach.
The Journal of Supercomputing, 11:119–136, 1997.

[15] J. Nieplocha, R. Harrison, and R. Littlefield. Global Arrays:
A portable shared memory model for distributed memory
computers. In Proc. Supercomputing ’94, pages 340–349,
1994.

[16] Q-Chem, Inc. Q-chem. http://www.q-chem.com/, May 13
2004.

[17] Titanium. http://www.cs.berkeley.edu/projects/titanium/.
[18] Unified parallel c. http://upc.nersc.gov/ and

http://upc.gwu.edu/.
[19] H. J. Werner, P. J. Knowles, R. Lindh, M. Schütz, P. Celani,

T. Korona, F. R. Manby, G. Rauhut, R. D. Amos, A. Bern-
hardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J.
Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd,
S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass,
P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone,
R. Tarroni, and T. Thorsteinsson. Molpro, version 2002.6,
a package of ab initio programs. http://www.molpro.net,
2003.

[20] K. Yelick, L. Semenzato, G. Pike, C. Miyamuto, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: A high-performance
java dialect. Concurrency: Practice and Experience, 10(11–
13), 1998.

8

