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Abstract

High-end computing is universally recognized to be a
strategic tool for leadership in science and technology. A
significant portion of high-end computing is conducted on
clusters running the Message Passing Interface (MPI) li-
brary. MPI has become a de facto standard in HPC. MPI
programs, as well as MPI library implementations can be
buggy, especially when aiming high performance, and run-
ning on or porting onto new platforms. Our recent work
has addressed the following areas: A TLA+ Formal Se-
mantics of a large subset of MPI-1; A Microsoft Phoenix
based Model Extraction and Analysis Framework for MPI
programs; Integration into the Visual Studio Environment
for error-trace visualization; A new dynamic partial order
reduction algorithm (DPOR) tailored to MPI so that the
number of interleavings examined during MPI program ver-
ification are dramatically reduced; A program called ‘in-
spector’ for Analyzing C++ Programs that has found bugs
in publicly distributed threaded programs (Inspector auto-
matically instruments PThread programs and searches for
races based on a new DPOR); Verified Byte-range Lock-
ing Protocols using MPI one-sided Communication - a case
study where we found bugs in published byte-range lock-
ing protocols, and designed and verified improved versions
of these protocols; A New In-situ Model Checker for MPI
programs, that traps MPI calls using its profiling interface
(PMPI) and orchestrates control to maximize coverage with
minimal state saving overhead. The progress made in ex-
ploring these directions, our publications, and associated
software tools are described, as are our future plans.
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1. Introduction

High-end computing is universally recognized to be a
strategic tool for leadership in science and technology. A
significant portion of high-end computing is conducted on
clusters running the Message Passing Interface (MPI) li-
brary. MPI has become a de facto standard in HPC.

It is well known that bugs do get introduced during MPI
programming, both within user applications that use MPI,
and unfortunately, within the implementation of MPI library
functions themselves. This is true even if software develop-
ment is carried out by conscientious and experienced pro-
fessionals. The seriousness as well as frequency of bugs is
directly proportional to the degree of performance sought.
Broadly stated, our research program is aimed at developing
tools and techniques for checking these assumptions at all
stages of the evolution of cluster computing software, start-
ing from high level specifications all the way to optimized
programs.

The MPI library provides over 300 functions, in effect
serving as an ‘assembly programming notation’ for paral-
lel programming. Different subsets of these functions are
relevant for specific applications. Even for a single appli-
cation, programmers are known to initially employ higher
level (albeit less efficient) primitives such as MPI_Send,
and subsequently transform their programs over to employ
more efficient (and often lower level) primitives such as
MPI_ISSend. These changes can introduce subtle bugs
pertaining to message completion orderings, resource (e.g.,
buffer) conflicts, etc., and also introduce subtle platform
dependencies that render the programs non-portable. Tra-
ditional debugging approaches based on testing and event
visualization have not solved these problems in a funda-
mentally innovative manner, causing bugs to manifest in
the context of large-scale clusters, and often crashing long-
running simulations on expensive machines. We are investi-
gating numerous ways – all based on the use of formal meth-
ods – to avoid introducing these bugs, to detect them when



inadvertently inserted, and smoothly integrate with the arti-
facts of current software practice. As far as we now, there is
only one other group – namely that of Siegel and Avrunin –
that has actively investigated the use of formal methods for
high performance computing (e.g., [1, 2, 3, 4]).

We had to decide on a research strategy: whether to pur-
sue a single topic in great depth, or whether to pursue a
collection of complementary approaches. In the end we de-
cided to pursue a collection of complementary approaches,
motivated by the following facts: (i) effective testing and
debugging requires an arsenal of related techniques; a single
technique cannot work well across a spectrum of examples;
and (ii) only by trying multiple approaches would one know
the innate strengths and weaknesses of each approach, and
more importantly the synergistic relationships between the
approaches.

Section 2 summarizes our recent work. Section 3
presents our proposed work during the remaining two years
of our NSF project. Section 4 offers concluding remarks.

2 Summary of Recent Work

Our initial proposal included the following:

• User MPI programs will be analyzed, and its con-
trol/communication skeleton will be extracted and an-
alyzed.

• The extracted models will be subject to formal analysis
using a parallel and distributed model checking frame-
work.

• A formal semantic definition for a significant subset of
MPI will be created.

• Based on the formal semantic representation, focused
tests will be developed for the MPI library.

• Particular attention will be paid to new MPI-2 features
such as one-sided communication.

• Our framework will be applied to a graded series of
benchmark examples.

We have made progress on the above topics and also have
embarked on additional directions. Here is some context for
our ongoing work:

• We have obtained some funding from the Microsoft
HPC Institutes program.

• We are having very fruitful ongoing collaborations
with the Argonne National Labs, especially with Ra-
jeev Thakur and Willam Gropp. The ANL team has
helped us achieve deeper results rapidly, and provided
us valuable feedback at critical junctures. We also

have co-authored a conference paper (which was rec-
ognized as one of the three outstanding papers at Eu-
roPVM/MPI 2006 [5]). We have expanded the Eu-
roPVM/MPI paper, and have submitted a journal spe-
cial issue paper co-authored with the ANL collabora-
tors.

• We are building two frameworks: one based on Mi-
crosoft Phoenix and Visual Studio, while the other is
based on the GCC compilation framework. The use
of the Microsoft platform (called CCS) gives us addi-
tional testing opportunities; however, CCS runs only
on 64-bit machines. The use of GCC allows our code
to be readily used by Unix/Linux users. The MPI li-
braries used in this tool-chain, namely MPICH, can run
on 32-bit machines also.

We now summarize the highlights of our ongoing work in
individual sections below.

2.1 Parallel/Distributed Model Checking

We have implemented a parallel and distributed model
checker for a modeling language and model checker called
Murphi. Murphi can be used to describe concurrent pro-
tocols, and detect bugs through model checking. Mur-
phi is widely used, especially for modeling and verifying
cache coherence protocols. However, like any other model
checker, Murphi suffers from state explosion. In addition to
clever algorithms that avoid generating certain states (some
of which, such as symmetry detection, are already present
in Murphi), the use of Murphi in practice requires high state
generation rates as well as large state storage capacities.

We have developed an MPI based distributed im-
plementation of Murphi called Eddy_Murphi. This
tool also employs two threads per node, abiding by the
MPI_thread_funneled model of threading supported
in MPI. The use of threads renders the code modular by par-
titioning the concerns of state generation and message han-
dling. Linear speedups have been obtained running on over
100 cluster nodes. Eddy_Murphi runs on MPICH as well
as Microsoft CCS, and also proves to be a valuable bench-
mark example in our research. Its code, and a conference
paper which appeared in SPIN 2006 [6], are downloadable
from our website.

2.2 Formal Semantics of MPI-1

We have developed a formal semantics for about 30 MPI-
1 functions in the modeling language TLA+ (developed by
Leslie Lamport of Microsoft Research). Our formal model
very precisely describes what MPI-1 functions mean. We
have inserted annotation tags that cross-link virtually every
clause in this formal model to the English reference specifi-
cation of MPI-1, thus allowing a user to understand MPI-1
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(and all its nuances) as a natural progression of details, start-
ing from the English and going into the formal semantics
on demand. The formal specification can be executed in the
TLC model checker, thus allowing users to write short “lit-
mus tests” that help check users’ understanding of the MPI-
1 primitives. In library based concurrent software design,
such a “semantic calculator” that enhances understanding
of library functions has been a coveted goal. Our formal
semantic achieves this goal through parsimony of expres-
sion, executability with useful speeds, and error traces dis-
played in the Visual Studio environment, as described in
Section 2.5. The formal semantics and associated tools will
be released in the next six months, and is subject of a pub-
lished paper [7] as well as some in preparation.

2.3 Phoenix-based Model Extraction and
Analysis Framework

For our CCS-based framework, we abandoned our ad-
hoc compiler front-end work following a very timely sug-
gestion made by Dr. Shahrokh Mortazavi to use Phoenix
(during the Dresden ICS 2006 meeting). We have whole-
heartedly embraced this framework, which now provides a
solid basis to perform program analysis, complexity reduc-
tion (e.g., through slicing and “standard compiler-like opti-
mizations”), and last but not least “code generation.” The
code we generate is a TLA+ model capturing the control
skeleton of the input MPI program. We can therefore accept
short MPI programs and model check them using this path.
The MPI functions in these programs will, in such a run, be
modeled using formal TLA+ definitions mentioned in Sec-
tion 2.2. Our preliminary framework was demonstrated at
Supercomputing 2006, and will be released over the next
year, and will be the subject of a paper being written. The
Phoenix framework will be used for numerous other tasks,
as described in the following sections. Some of these tasks
will be aimed at effecting source to source transformations
between MPI programs that replace expensive MPI calls
with inexpensive ones, where the substitutions are justified
in a program specific manner.

2.4 Model Checking HPC Software

Direct model checking using executable formal semantic
specifications is a coveted goal, but seldom demonstrated in
any useful manner for “real” programs and libraries. Such
an exercise is meaningful to carry out with respect to short,
but intricate program scenarios. In Section 2.6, we de-
scribe some of the complexity mitigation techniques being
researched, that will allow us to significantly increase the
computational speed of direct model checking using formal
semantics. This will be the subject of a paper being written,
and the corresponding tools will be released in the coming

year. Scaling even further will require the use of a cus-
tomized model checker; work along these lines is proposed
in Section 3.

2.5 Error-trace Visualization

We have reasonably mastered techniques for driving the
Visual Studio tool chain in order to display error traces ob-
tained during model checking. We are planning to display
error-trails generated by model checkers discussed in Sec-
tion 2.4 using such an interface. This will allow designers
to begin using model checking, and ultimately develop trust
with its results, in a familiar debugging environment.

2.6 Partial Order Reduction for MPI

During model checking, semantically independent (com-
mutative) concurrent program steps from different pro-
cesses should not be interleaved in all their exponential
number of combinations; without such an approach, model
checking can be computationally prohibitive. While such
lines of research have been pursued in many settings, the
notion of when two MPI calls are independent has not been
researched, barring a study by Siegel [3] in the context
of a limited number of MPI calls. We have developed a
much more comprehensive algorithm that runs in two steps:
(i) an ample-set based forward execution that employs static
partial-order reduction, and (ii) a dynamic partial order re-
duction technique that fills in further communication com-
mand dependencies during backtracking.2We are prototyp-
ing this algorithm, and are integrating it into our Phoenix-
based framework. In our proposed work (Section 3), a ded-
icated model checker embodying this algorithm will be de-
veloped. A paper is under preparation.

2.7 Our GCC/MPICH Framework

Employing a GCC/CCS based framework (in addition
to Phoenix/CCS) is expedient for a group such as ours.
We have developed such a framework that intercepts the
GCC compilation flow after MPI programs have been type-
checked but before they are turned into low-level three-
address instructions. This framework supports many tra-
ditional high-level compiler optimizations, and includes a
growing number of static analysis methods including es-
cape analysis and alias analysis. We have begun using this
framework actively in our research, including automatic in-
strumentation to support dynamic partial order reduction
(described in Section 2.8). This framework will soon be
employed to support numerous other tasks. Two examples
of what we plan to do with this framework in our future
work (Section 3) are: (i) static analysis methods that de-
termine which MPI barriers can be safely removed (to in-
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crease performance), and (ii) analysis methods that deter-
mine where new MPI barriers can be inserted (for example,
to streamline accesses to devices such as network adapters
in order to reduce contention, to reduce the complexity of
model checking, etc).

2.8 An In-situ Model Checker

Debugging threaded applications is notoriously hard,
and is receiving considerable attention. Although MPI is
a distributed memory programming model, threading is-
sues are essential to address in any software endeavor in the
modern context, considering the ubiquity of multicore pro-
cessors, and the ongoing escalation in the use of thread pro-
gramming. In case of MPI, (i) MPI library functions may be
implemented by employing multiple concurrent threads that
quite naturally help exploit multiple CPU cores that will be
found in virtually all future computing platforms. For in-
stance, computations of the progress engine may be carried
out on CPU cores that are distinct from the cores that carry
out the application program executions; (ii) MPI has de-
fined four threading levels for applications to exploit. Under
these levels, application threads may make various extents
of concurrent MPI calls.

We have developed a methodology for model checking
multithreaded C/C++ programs using dynamic partial order
reduction to cut down the number of interleavings exam-
ined. In our current implementation of this method, we in-
strument (using our GCC-based framework) user level pro-
grams to be model checked. This allows a scheduler (which
our methodology provides) to take control over how the in-
terleavings among multiple MPI processes will be allowed
to happen during run-time. Initial results using this ap-
proach encouraging in terms of the run-time as well as cov-
erage obtained by this model checker. The main benefits of
this approach over traditional software model checking ap-
proaches lies in the fact that the laborious and error-prone
phase of extracting a formal model from user programs,
and representing these models in the language of a model
checker are eliminated. In-situ model checking avoids these
problems, and records only the kinds of MPI calls being
made and the arguments of these calls. Of course, this style
of in-situ model checking has its limitations, including hav-
ing to depth-bound the state space search, and not being
able to check properties with full precision. However, tradi-
tional model checking approaches that rely on the extraction
of formal models are incapable of being applied, and so the
reduced precision is perceived to be a good compromise.

Three papers based on our in-situ model checker will be
written in 2007. A tool release will follow these publica-
tions.

2.9 Verified Byte-range Locking

Often, processes must acquire exclusive access to a range
of bytes, such as a portion of a file. In [8], Thakur et al.
presented an algorithm by which processes can coordinate
among themselves to acquire byte-range locks, without a
central lock-granting server. The algorithm uses MPI one-
sided communication with passive-target synchronization
(MPI_Win_lock and MPI_Win_unlock). In a paper in
EuroPVM/MPI 2006 that won an Outstanding Paper award,
we showed that their algorithm, while ingenious, can suf-
fer from a serious deadlock. One correction proposed to
the algorithm avoids this deadlock, but introduces a livelock
that can seriously hurt performance. We proposed a second
alternative algorithm that avoids the livelock also. Experi-
mental results on a cluster of 128 CPUs indicated that the
second alternative performs much better than the first cor-
rected alternative, and even the original buggy algorithm.
Model-checking using existing tools such as Promela/SPIN
[9] was employed. A new in-situ model checking approach
for MPI processes (described in Section 2.10) finds these er-
rors without the effort of manual modeling. Promela mod-
els for these byte-range algorithms are available from our
website.

2.10 In-situ Model Checker for MPI

Very similar to the in-situ model checking approach de-
scribed for threaded programs, directly model checking
MPI programs can have significant advantages, including
avoiding the huge burden of model extraction. MPI pro-
gram executions can be intercepted using the PMPI (profil-
ing MPI) mechanism. We have developed a scheduler that
interleaves MPI process execution steps, and helps cover
execution states more systematically than random testing
(which tends to get locked into various execution cycles as
dictated by the inherent timings of the system). Using our
preliminary in-situ model checker, we have been able to lo-
cate the deadlock in the byte-range locking protocol men-
tioned in Section 2.9. A paper is under preparation, and
software releases are planned to occur in mid-2007.

2.11 Formal Semantics Based Testing

While MPI libraries similar to CCS have been derived
from mature libraries such as MPICH, a number of adap-
tations and performance enhancements have, nevertheless,
been performed. These are potentially sources of new bugs.
In addition, rapid advances in cluster hardware technol-
ogy, including new interconnects, will require the MPI li-
brary functions and their supporting devices to be con-
stantly evolved. All this emphasizes the need to be con-
tinually testing MPI library implementations. The Argonne
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group with whom we collaborate are sure to be pioneering
many of these advances, as they have done in the past. Our
collaborations with them put us in a strong position to be
working on formal testing of MPI libraries, driven by real
driving problems. Current testing methods and test suites
for MPI libraries are quite inadequate. To give an example
(learned from our ANL collaborators), there are only about
six tests for the threading aspects of MPI in the MPICH
distribution (considered the state of the art in many ways).
Moreover, these tests are derived almost directly from user
bug reports! The currently popular Intel/DARPA test suite
applies only to MPI-1, and hence cannot be used to test the
new additions in MPI-2 - precisely where bugs are more
likely, because of the many extensions in MPI-2 over MPI-
1. While the tests within the Intel/DARPA test suite are con-
structed with considerable designer insight, with the avail-
ability of a formal semantic definition for MPI, the possi-
bility of conducting formal model based testing is attractive.
We plan to develop this capability in our work, as elaborated
in Section 3.

2.12 Benchmark Examples

We have many active projects in-house that can supply
us with a graded series of benchmarks. We have also ported
all the examples in the popular book by Pacheco on MPI
to run on CCS. The byte-range locking protocol served as
an extremely valuable real-world example. We will con-
tinue to develop more such realistic examples, thanks to the
numerous collaborations (including with ANL) we have de-
veloped.

2.13 Demo at Supercomputing 2006

At Supercomputing 2006, we discussed the development
of a formal semantics for MPI (Section 2.2), the use of the
Phoenix framework (Section 2.3), and demonstrated the use
of direct model checking based on the MPI formal seman-
tics (Section 2.4).

3 Proposed Work

The following work is planned:

Formal Semantics of MPI-1: New work planned in this
area includes the addition of communicators, the one-
sided communication construct, as well as threading
models. The litmus-testing capability that exists in
our Phoenix-based framework will be extended in re-
sponse to these additions.

Phoenix-based Framework: Considerably more features
will be added to our existing Phoenix framework in or-
der to help engineers drive static analysis tools, model

checking tools, and debugging tools in a seamless
manner.

Dedicated Model Checkers: Dedicated model checkers
that directly implement our partial order reduction al-
gorithms will be developed and integrated into our
framework.

Visual Studio Integration: We will work closely with Mi-
crosoft’s HPC researchers and engineers to best ap-
proach this integration.

Reduction Methods: In addition to cluster-based partial
order reduction, other reduction methods (e.g., bank-
ing on the relative data independence exhibited by
many MPI programs, the high degrees of symmetry
available in SPMD programs, etc.) will be investigated
and integrated.

In-situ Model Checkers: The in-situ model checkers will
be made available in our framework, after further de-
veloping them in isolation to enhance their capacities.

Testing and Threading Issues: Heavy emphasis will be
placed on developing testing methods that directly
stem from our work so far. Even without considerable
new work, it would be interesting to turn what we have
into testing opportunities, simply because (i) at the end
of the day, good testing methods are simply indispens-
able, and (ii) every new test is another opportunity to
catch another class of bugs without costing much hu-
man time (machines are relatively inexpensive; expert
humans are not).

4 Concluding Remarks

This paper provided a summary of our ongoing work in
the area of formal methods applied to modeling MPI and
thread-based programs. We described two frameworks for
model extraction and verification, one based on Microsoft’s
Phoenix, while the other is based on GCC. We described
two in-situ model checking methods, one for MPI run-time
model checking, and the other for thread-level model check-
ing. These stateless search techniques are based on dynamic
partial order reduction to minimize the number of interleav-
ings examined. Case studies conducted on published MPI
protocols have enabled us to demonstrate the capability of
model checking to detect errors, and eventually lead to the
discovery of correct protocols that are also correct.

We have outlined an ambitious list of things to achieve
in the coming two years. We plan to look into MPI 1-
sided communication based implementations of high per-
formance distributed algorithms as case studies to exam-
ine using our tools. Our collaborations with Argonne
(Thakur and Gropp) will continue, and new collaborations
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(Lawrence Livermore - de Supinski) are anticipated. The
verification tools mentioned here are expected to be released
towards the end of 2007.

PI Gopalakrishnan organized a successful workshop
“Thread Verification (TV06)” in Seattle, as part of the
FLoC conference series. The URL of this workshop kept
at [10] contains its entire proceedings, and presents both
contributed talks and invited talks. A special issue of pa-
pers selected from this workshop is being prepared for the
ENTCS journal. The TV workshop series will be continued,
with another event planned for the end of 2007.

A complete list of publications from this award are
[5, 6, 7] which have appeared, one special issue journal pa-
per based on [6] under review by the journal STTT, one in-
vited journal paper based on [5] under review by the journal
Parallel Computing, a special issue of selected papers from
the TV06 workshop [10] being guest-edited by the PI and
accepted by the ENTCS journal.

We expect the four PhD students working on this grant
(supplemented also by Microsoft funding) to graduate
shortly: Palmer to graduate in 2007, Yang in 2008, and
Sarvani and Subodh beyond that. MS student Pervez will
also graduate in 2007. Our two undergraduates Sawaya and
DeLisi are expected to graduate in 2007 as well.
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