
Abstract
Assessing reliability at early stages of software develop-

ment, such as at the level of software architecture, is desir-
able and can provide a cost-effective way of improving a
software system’s quality. However, predicting a compo-
nent’s reliability at the architectural level is challenging
because of uncertainties associated with the system and its
individual components due to the lack of information. This
paper discusses representative uncertainties which we
have identified at the level of a system’s components, and
illustrates how to represent them in our reliability model-
ing framework. Our preliminary evaluation indicates
promising results in our framework's ability to handle such
uncertainties.

1. Introduction

Software reliability prediction techniques are important
tools in the process of ensuring and improving quality in
software systems. Conventional software engineering wis-
dom suggests that assessing reliability (or any other soft-
ware quality) at later stages of the Software Development
Life-Cycle (SDLC), such as testing or maintenance, can be
costly. Therefore, assessing reliability at early stages of
SDLC is desirable and can provide a more cost-effective
way of improving a software system’s quality. 

It is widely accepted that software architecture is the
linchpin of the software development process [10]. Archi-
tectural modeling and analysis can provide meaningful
insights into a software system’s structure, intended behav-
ior, and key properties. Existing research has recognized
that software architectural modeling and analysis can be
used as a building block for reliability prediction. Several
existing techniques have used system structure and behav-

ior as a basis for predicting reliability [3,5,8,14]. However,
when viewed at the architecture level, these techniques
invariably assume that the reliabilities of the individual
components in a system (in the case of system-level reli-
ability modeling), or the reliabilities of a component’s ele-
ments such as its services (in the case of component-level
reliability modeling), are known. We do not believe this
assumption to be reasonable. It is unclear how the compo-
nent reliabilities are obtained in these approaches. The pre-
vailing assumption appears to be that the components have
already been implemented and one of the code-level reli-
ability estimation techniques has been applied to them.
[3,11,14]. We recognize that since a software system typi-
cally comprises multiple components, component reliabili-
ties have a significant affect on system reliability, and
therefore component reliability prediction is an important
first step in system reliability prediction. 

A major challenge for predicting reliability at the archi-
tectural level is the presence of uncertainties due to the lack
of information about the intended behavior of an artifact,
e.g., operational profile, implementation details, failure
behavior, etc. Existing reliability prediction techniques
usually assume that information about the artifact’s behav-
ior is either available or can be easily obtained, and do not
investigate how these uncertainties are handled. 

We have identified several sources of uncertainty and
points of variation when considering a software system
early in its development, from an architectural perspective:
(1) Different modeling techniques for reliability predic-

tion may be effective in different situations. For exam-
ple, system modelers may choose to model a software
system using (a) Markov Chains (MC), (b) Hidden
Markov Models (HMM), (c) Bayesian Networks
(BN), etc.; 

(2) Software developers may work within different devel-
opment scenarios. Example development scenarios
may include (a) implementing entirely new systems1-4244-0910-1/07/$20.00 ©2007 IEEE.
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from scratch, (b) reusing components and/or architec-
tures from previous projects, (c) purchasing software
from a vendor, etc.;

(3) The granularity of the architectural models may vary
significantly. A system may be accompanied by
(a) coarse-grained models for very large components,
(b) partial models for commercial-off-the-shelf com-
ponents, (c) very detailed models for safety-critical
components, etc.; and

(4) Different sources of information about the system’s
likely usage may be available. Developers may have at
their disposal (a) little or no information about an
unprecedented system, (b) a functionally similar sys-
tem whose usage will also likely be similar, (c) access
to experts or extensive domain knowledge, etc.; 

We posit that an architecture-level software reliability
modeling framework should be flexible enough to accom-
modate this range of possibilities. Our previous work [1]
has investigated uncertainties due to different development
scenarios and choices of techniques (sources of uncertainty
1 and 2 above). Our focus in this paper will be on uncer-
tainties with regard to granularity of architectural models
and different sources of information (sources 3 and 4). 

This paper discusses and evaluates how well our com-
ponent reliability prediction framework proposed in [1,12]
addresses these uncertainties. Specifically, we discuss the
sensitivity of our results to changes in system parameters,
using as a baseline the reliability of a prototype implemen-
tation of an existing component. Our preliminary results
indicate that our framework is well equipped to handle the
uncertainties described above.

The rest of the paper is organized as follows. Section 2
briefly discusses the related research. Section 3 gives an
overview of our component reliability prediction frame-
work. Section 4 discusses uncertainties involved in predict-
ing a component’s reliability at the architectural level.
Preliminary results to date are presented in Section 5.
Finally, we conclude this paper in Section 6.

2. Related Work

The central role in our approach to component reliabil-
ity estimation is played by a collection of modeling views
commonly used to represent a software system’s architec-
ture. Our previous work has identified four functional
views (called the Quartet) on which architectural specifica-
tion predominantly focuses [13].

Modeling, estimating, and analyzing software reliabil-
ity—during testing—is a discipline with over 30 years of
history. Many reliability models have been proposed: Soft-
ware Reliability Growth Models (SRGMs) are used to pre-
dict and estimate software reliability using statistical
approaches [4,6,7,9]. The common theme across all of

these approaches, however, is their applicability to imple-
mentation-level artifacts, and reliability estimation during
testing. At the architectural level, existing reliability esti-
mation approaches consider only the structure of the sys-
tem. The only exceptions are [5,11,14]. However, none of
these approaches consider the effect of a component’s
internal behavior on its reliability. They simply assume that
the component’s reliability, or the reliability of some of its
elements (such component services) is known. They then
use these values to obtain system reliability.

3. Component Reliability Prediction 
Framework

Here, we give an overview of our component reliability
prediction framework. A more detailed description of the
framework can be found in [1,12]. Broadly, our framework
leverages a component’s architectural models and behav-
ioral information to construct a stochastic process model of
that component. Appropriate solution of that stochastic
model gives us the component’s predicted reliability. 

To construct our stochastic process model for reliability
prediction, we need to determine the states and transitions
of the stochastic process. For ease of exposition, we
present our reliability prediction framework as a three-
phase process. 
Phase 1: Determining states. This phase is concerned
with determining the states of the reliability model; this is
done through the use and analysis of architectural models.
Specifically, we determine the states corresponding to a
component’s desirable behavior by leveraging its architec-
tural models, and we determine the states corresponding to
undesirable (failure) behavior by detecting inconsistencies
between architectural models [13]. Different software
architects may come up with models of different granular-
ity, which may have an impact on the prediction. Uncer-
tainties with regard to models of different granularity will
be discussed in Section 4.3. 
Phase 2: Determining transitions. This phase is con-
cerned with determining state transitions between the states
generated in Phase 1 above. This involves predicting the
component’s desired behavior (i.e., operational profile) and
undesirable behavior (i.e., failure information) before it has
been implemented. As a result, this phase greatly depends
on the type of information available about the component,
which will be discussed in detail in Section 4.2. 
Phase 3: Computing reliability. This phase is concerned
with computing the reliability prediction by solving the
model constructed in the first two phases. 



4. Uncertainties in Architecture-Level 
Reliability Modeling

As foreshadowed earlier, this section discusses two of
the sources of uncertainty we have identified in predicting
a component’s reliability at the architectural level. To facil-
itate our discussion, we first present an example applica-
tion we will use throughout in the remainder of the paper. 

4.1. Example Application

We use the Controller component of SCRover as an
example application. SCRover is a component-based
robotics testbed based on NASA JPL’s Mission Data Sys-
tem (MDS) [2]. Here, we focus on the behavior of the robot
in a wall-following mission: it should maintain a certain
distance from the wall; if the robot is too far from or too
close to the wall, it has to turn in an appropriate direction to
correct this. The robot has to avoid obstacles by turning in
an appropriate direction. As soon as the state of the robot
changes, it has to update a database with its new state. 

The dynamic behavior model is illustrated using a state-
based diagram in Figure 1. Transitions between states are
triggered by events, each of which may in turn result in the
invocation of an action. Note that an event corresponds to
the component’s provided interface. For instance, once in
the estimating sensor data state, the event move may trig-
ger the transition to either turning or the going straight
state. The two cases are determined based upon the transi-
tions’ guards: if there is an obstacle ahead, or when the dis-
tance from the wall is smaller than d1 or larger than d2,
then the robot will transition into the turning state; other-
wise it will transition to the going straight state. 

4.2. Information Sources

As discussed earlier, the lack of information about the
behavior of a software artifact is a major constraint for reli-
ability prediction at the architectural level. Here, we
explore and identify possible sources of such information
and discuss how our reliability prediction framework deals
with them. We note here that while our emphasis in this
paper is on individual component reliability, the discussion
in this section is applicable to both component- and sys-
tem-level reliability models.

Consider the following example which we use below to
illustrate each of the information scenarios. Let us try to
estimate the probability, p, of going from the estimating
sensor data state to the turning state in our Controller com-
ponent depicted in Figure 1. 

We now present several potential information sources,
and how we handle each of them in our component reliabil-
ity modeling framework.
Data from a functionally similar system.If we have a
functionally similar system, we may use its operational
profile in reliability prediction. This would provide us with
training data needed to apply our HMM-based approach
[1] to obtain the corresponding reliability model. In the
Controller example, such a system may be a robot that per-
forms different missions. The corresponding operational
profile will allow us to generate the training data needed
toestimate the value of p.
Domain knowledge supplied by an expert. If we have an
expert at our disposal, we can ask her to suggest possible
operational profiles for reliability prediction. In the Con-
troller example, if an expert says the robot is moving
straight most of the time, we can estimate p to be relatively
small.
Little or no information. When we are missing informa-
tion about the intended behavior of a component, we may
generate a large number of operational profiles to predict
the component’s reliability in set increments. In our Con-
troller example, this may involve varying p from 0 to 1. 

4.3. Models of Different Granularities

A component’s software architectural model may be
provided at different levels of granularity. A software
architect may choose to elaborate or elide certain details
about the system being modeled depending on the current
development context (e.g., whether the model is to be for-
mally analyzed for correctness, passed on to system devel-
opers for implementation, or communicated to non-
technical stakeholders such as managers or customers). 

For example, Figure 2 shows two other possible
dynamic behavior models of the Controller component at
different levels of abstraction. In modeling the Controller

Figure 1. Dynamic behavior model of the 
Controller component.
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5. Preliminary Results

For illustration, we will present a set of preliminary
results that have emerged from our work to date, focusing
specifically on the sensitivity analysis of the SCRover
Controller component. 

5.1. Sensitivity to Information Sources

Here, we study the sensitivity of our technique to differ-
ent information sources. To validate our results, we con-
structed a detailed behavioral (control-flow) model of the
Controller from a prototype implementation of the compo-
nent that had existed previously. This code-level model is
based on a directed graph that represents the component’s
control structure. We then built a Markov model by lever-
aging this graph, where a node in the graph translates to a
state in the Markov model. Based on the available compo-
nent maintenance records, we injected defects into the code
to simulate failure behavior. We should note that we were
not interested in implementation-level faults in this model
(e.g., division by zero), but only in architectural defects.
We then introduced failure states and transitions in the con-
trol structure to represent erroneous behavior correspond-
ing to the injected defects. The results obtained from this

model were used as “ground truth” in a large number of
experiments.

The following sources of component usage information
were considered in this evaluation. Here, we present the
parameter values we used in generating Figures 3 and 4.
We have performed similar analyses with different inputs,
and we obtained qualitatively similar results.
Case (i) – Data from a functionally similar component:
As a functionally similar component we selected a robot
that walks from one point to another, and avoids obstacles
along the way. We then used an operational profile of this
component in our reliability prediction of the Controller
component using our HMM-based approach [1].
Case (ii) – Lack of domain knowledge: We are given the
architectural models, and we explore the design space by
randomly generating a large set of operational profiles in
order to explore the design space. In our Controller compo-
nent example, we vary the probability of turning from 0 to
1 at intervals of 0.01.
Case (iii) – Domain knowledge supplied by an expert:
This is similar to the previous case, except that the opera-
tional profiles are suggested by the expert, and hence, this
reduces the space of operational profiles we consider. In
our example, since our expert predicted the robot to be
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Figure 2. Dynamic behavior models 
of the Controller component at two 
different levels of granularity. The 
transition labels are omitted from 

diagram (b) for clarity.

component, a software
architect may decide to
abstract away Figure 1’s
estimating sensor data and
updating states, as shown in
the model in Figure 2a. In
another situation, the archi-
tect may decide that it is
necessary to model the
underlying MDS frame-
work that SCRover runs on,
and thus describe the Con-
troller component using the
model in Figure 2b.

There is a trade-off
between the resulting accu-
racy and complexity of the
model: a more detailed
model is very likely pro-
duce more accurate results,
but is also likely result in a
more complex reliability
model that will be more dif-
ficult to solve. In Section
5.1, we will study the sensi-
tivity of the results to the
model’s granularity.



walking straight most of the time, we varied the probability
of turning from 0.05 to 0.15.

In one set of experiments, we were interested in the sen-
sitivity of the component reliability when the probabilities
of recovering from defects change. To this end, we fixed
the failure probability, and varied recovery probabilities
from 0.2 to 1.0 in 0.2 increments. We repeated the experi-
ments for different failure probabilities. One set of these
experiments was performed by using only a single active
class of defect at a time (i.e., by assigning zero probability
to failures associated with all other classes of defect). In
turn, this resulted in the Controller component’s dynamic
behavior model with only one failure state. Specifically, in
Figure 3 we introduced a sensor defect, affecting the reli-
ability of the turning state, and in Figure 4 we introduced a
turn defect, affecting the reliability of the turning state. 

Not surprisingly, we observe that the trends conform to
our expectations in all three cases: as recovery probability
increases, the reliability of the component increases since
the time taken to recover from a failure becomes shorter.
Moreover, as failure probability increases, component reli-
ability decreases. 

We note that in Figure 4 (turn defect), the slope of the
curves in Case (iii), where we have domain knowledge, is
different from other cases. The reason is that our expert
incorrectly predicted the robot to be walking mostly
straight: in the prototype the robot walked at an angle most
of the time, such that occasionally it was too far from, or
too close to, the wall, and had to turn. As a result, the robot
spends less time in the turning state of the model generated

based on our expert’s predictions for Case (iii) than it does
in the turning state of the actual system. Hence, the turn
defect had less impact on the component’s reliability. 

5.2. Sensitivity to Model Granularity 

We have performed sensitivity analysis on models at
different levels of abstraction. Figures 5 and 6 show the
results of such analysis using the sensor and turn defect,
respectively for Case (iii) discussed in Section 5.1. The
five-state model is the example we have used throughout
this paper (depicted in Figure 1). The eleven-state and
three-state models are depicted in Figure 2. We observe
that in both cases, when recovery probability is fixed and
failure probability increases from 0.05 to 0.2, reliability
values are most sensitive in the three-state model. The
other observation is that the three-state model is more sen-
sitive than the five-state model to recovery probability,
while the eleven-state model is least sensitive. 

This trend can be explained as follows. Failures corre-
sponding to the turn defect only occur in the turning state
in the eleven-state model. On the other hand, time spent in
the turning state in the five-state model also includes the
time spent in the selecting turn parameters state in the
eleven-state model. As a result, the robot spends more time
in the turning state in the five-state model than in the
eleven-state model, hence the sensitivity is higher in the
five-state model. Analogously, since time spent in the turn-
ing state in the three-state models includes the time spent in
estimating sensor data and updating states in the five-state

Figure 3. Sensitivity Analysis of Different 
Information Sources (sensor defect)

Figure 4. Sensitivity Analysis of Different 
Information Sources (turn defect)



model, the sensitivity of the three-state model is higher
than that of the five-state model.

We realize the Controller component is small as com-
pared to real world applications. Our on-going evaluation
efforts are targeted at several larger-scale systems.

6. Conclusions

The presence of uncertainties, due to the lack of infor-
mation about a software system, is a major challenge to
any architectural-level reliability modeling technique. We
identified several sources of uncertainties, and illustrated
how to incorporate them into our reliability modeling
framework. We performed a preliminary evaluation of our
framework, and our initial results indicate that our pro-
posed framework is a promising direction. Our current
research direction focuses on a study of how to model
uncertainty in the context of system-level reliability esti-
mation. We will also further evaluate our reliability predic-
tion framework on more realistic examples. We will
particularly study the trade-off between the accuracy of our
framework, as a result of models of different levels of
granularity, and the complexity of solving those models.
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