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Abstract 
 

Partial differential equations (PDEs) are used to 
model physical phenomena and then appropriate 
convergent numerical algorithms are employed to solve 
them and create computer simulations.  In many 
important applications, such as weather prediction and 
contaminant transport processes, simulation outputs are 
required in real time or even faster, yet the spatial 
component of the problem is very large, thereby 
increasing the computational time.  In addition, often 
times numerical scientists work in groups to create a 
large-scale code, but they work individually on PCs to 
test components of the code, so that speedup of the 
computational algorithms on PCs is desirable.  There is a 
benefit to creating and using custom hardware to 
perform the numerical calculations faster than 
commodity hardware.   This work uses a high-level 
programming language (Java) to behaviorally describe, 
and then implement, a finite difference solution of a 
parabolic PDE as a custom hardware circuit targeted to 
an FPGA.  The results show that the circuits can perform 
the calculations 1 to 2 orders of magnitude faster than 
commodity hardware. 

1.  Introduction 
 

Numerical methods are extensively used in the 
sciences and engineering for simulating models of 
physical phenomenon.  These numerical simulations can 
be very complex, often taking days or even months to 
complete or requiring expensive computing clusters.  
There is always a benefit of speeding up the calculations 
to solve more complex problems in less time.  Another 

benefit of speeding up calculations is to solve problems 
in real time that could not otherwise keep up.   

Using direct hardware methods to achieve speedup for 
calculations can present two major benefits.  A low cost, 
portable solution would result if the slowest part of the 
simulation was implemented in custom hardware while 
the remainder of the algorithm was left to execute on a 
regular processor.  The low cost would make this 
accessible to a wide audience, while the portability 
would be useful for mobile applications.  If cost or 
portability is not a concern then more hardware, in terms 
of a high-density large array of chips, could be allocated, 
resulting in even more speedup. 

Special purpose processors (SPPs) can be used to 
achieve speedup in computing.  Some examples of using 
an SPP for performing specific functions quickly include 
a math co-processor in a CPU for performing floating 
point operations, a graphics card in a personal computer 
(PC), and a hardware encryption co-processor in an 
internet router.  Since SPPs are made to perform a 
specific function, they do not suffer from the overhead 
that a general-purpose processor (GPP) does.  SPPs can 
execute an algorithm much more quickly than a GPP and 
at much lower frequencies therefore requiring far less 
power.  Despite these great benefits, a major roadblock 
to creating SPPs is that designing them is a tedious task 
that can take months to accomplish and require extensive 
expertise in hardware design.  Thus, for every part of a 
numerical algorithm an SPP would have to be designed 
by an expert to achieve speedup.  This would be very 
expensive and could take weeks, months or years.   

Furthermore, the SPP design for a specific part of a 
numerical algorithm would not necessarily work for 
anything else; a new SPP would have to be designed as 
new codes are made.  Clearly, this major roadblock 
makes it impractical to take advantage of great speedup 
using hardware for numerical methods.  Therefore, a 
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method to automatically generate SPPs from programs 
written in a high-level language that is easy to use, 
requires more basic skills, and generates SPPs that can 
be executed at usefully high frequencies would 
overcome this roadblock.  In this way, numerical code 
could automatically generate SPP hardware in minutes 
and execute much more quickly. 

The High-Performance FPGA Laboratory (HPFL) at 
Oakland University, under the direction of Dr. Darrin 
Hanna, has developed such a hardware architecture 
called Flowpaths.  Flowpaths are custom made circuits 
that directly implement an algorithm in hardware; they 
are a class of SPPs.  The HPFL has developed a 
compiler that is able to convert programs written in the 
Java high-level programming language to flowpaths, for 
direct implementation as hardware.  Thus, overcoming 
lengthy design times for creating high-performance 
SPPs, they can be generated in minutes rather than 
months.  More importantly, this is done with little to no 
sacrifice in performance.  Alternative methods for 
generating hardware from a high-level language have 
previously been researched and developed but still suffer 
from performance-limiting problems caused by inherent 
routing bottlenecks and unnecessary execution cycle 
overhead.  Because of unique characteristics, flowpaths 
overcome these problems and have actually been shown 
to perform within a factor of 2 of equivalent hand-
crafted circuits. 

Flowpaths are described in the standard hardware 
description language VHDL.  This VHDL code is used 
to implement hardware solutions on reprogrammable 
logic devices such as FPGAs and the code can also be 
used to fabricate ASICS.  The VHDL is generated 
automatically from Java programs using our compiler.  
The compiler takes as input Java bytecodes generated 
from a Sun Microsystems compliant Java compiler.  The 
ability to exploit and optimize flowpath techniques to 
compile numerical codes would profoundly impact 
researchers’ ability to run numerical simulations in less 
than one-tenth of the time required when compared with 
running it on a PC. 

In this work, we have taken a finite difference code 
for the solution of a three-dimensional parabolic PDE in 
time on a rectangular box domain, compiled it to 
flowpaths, and simulated it.  Using flowpaths, we 
achieved a speedup of 700 times over the Java version, 
480 times over the FORTRAN90 code and a 60 times 
speedup over the C++ version run on a PC.  Section 2 
gives a brief introduction to flowpaths.  Section 3 
describes the numerical method.  A description of our 
experimental results can be found in Section 4.  Finally, 
conclusions and future work are given in Section 5. 
 
 

2.  Flowpaths 
 

Generating a flowpath from Java bytecode can be 
demonstrated with a simple example.  Consider the Java 
code for one of Euclid’s GCD algorithms shown in 
Listing 1 and the corresponding Java bytecodes in 
Listing 2. 
 

Listing 1:  Euclid’s GCD algorithm in Java 
1:  int gcd (int x, int y) 
2:  {  
3:    //Euclid’s GCD 
4:    while (x != y)   
5:    { 
6:      if (x<y) 
7:         y -= x; 
8:      else 
9:         x -= y; 
10:   } 
11:   return x;  } 

 
Listing 2: Java Bytecodes for Euclid’s GCD 
0:  goto 19 
3:  iload_1       //Push x 
4:  iload_2       //Push y 
5:  if_icmpge 15  //if x>=y goto 15 
 
8:  iload_2       //Push y 
9:  iload_1       //Push x 
10: isub   //y-x 
11: istore_2  //Store new y 
12: goto 19 
 
15: iload_1       //Push x 
16: iload_2       //Push y 
17: isub   //x-y 
18: istore_1  //Store new x 
 
19: iload_1  //Push x 
20: iload_2  //Push y 
21: if_icmpne 3  //if x!=y goto 3 
 
24: iload_1  //Push x 
25: ireturn 

 
In general, algorithms can be considered as a set of 

operations, data, and a controller to determine execution 
order.  Others have described methods to convert such 
programs into special-purpose processors where each 
variable is implemented as a register [1, 2].  Using these 
other methods, consider the hardware that would be 
generated from these bytecodes.  It has several 
drawbacks including unnecessary states.  This hardware 
is shown in Figure 1.  Each block is a digital component 
that performs the function as labeled.  The inputs and 
outputs are data busses.  Each of the components is 
executed according to the state diagram in Figure 2.  



 
 

 

Next to each component and state, the line that matches 
Listing 2 is annotated accordingly.  A simple 
optimization can be made by substituting the two isub 
components with a single isub component and a 
multiplexer as shown in Figure 1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although this is a possible approach to generating 

hardware directly from software applied to an 
intermediate representation that is primarily stack-based, 
it is important to note a general problem which will 
become very large, quickly.  Since the Java bytecode 
representation uses local variables that are implemented 
as registers, the inputs to the operations must be routed 
from the registers or memory storing the variables and 
the results must be stored back into the register or 
memory.  This presents a significant routing problem.  
Furthermore, critical path times increase and the 
maximum execution frequency decreases significantly. 

Using a stack-based intermediate representation where 
local variables are stored on a stack and operations are 
done to the top elements of the stack, with results left on 
top of the stack, data flow can be streamlined and the 
problem eliminated.  By placing local variables on a 
stack, stack manipulation words will frequently be used 
to move elements around before and after executing 
operations, but result-loading instructions can be 
eliminated.  This presents a significant advantage while 

using flowpaths since stack manipulation words translate 
into zero-clock-cycle routing.   

In Java, local variables are kept in a local variable 
array resulting in numbered variables.  These variables 
are loaded into the operand stack and loaded with 
successive results.  Since all local variables are ‘passed 
through’ registers in each OP, successive iload_xi 
instructions are translated into copies of the wires 
corresponding to the xi’s  routed in the proper order for 
input into the next OP.   

One can implement stack-based code, e.g. Java 
bytecodes, with a local variable array and achieve 
several orders of magnitude faster performance without 
the routing problem described when using the variable-
to-register methods for special-purpose processors.  
Flowpaths significantly increase the maximum execution 
speed and in most cases distributes routing reasonably.  
Standard OPs that are pre-designed with generic bus-
width and with a variable number of ‘pass-through’ 
registers form a flowpath standard library.  These 
standard OPs perform basic instructions, such as imul, 
iadd, and if_icmpne.  Additionally, custom OPs can be 
designed at a hardware or software level and stored in 
this library where they will be considered standard 
words by the compiler.  This allows one to invoke 
methods that aren’t developed in Java but are OPs that 
follow the standard reset-done flowpath paradigm.   

The flowpath to compute the greatest common divisor 
requires three OPs:  An equality detector (OPEq), a 
magnitude comparator (OPLt), and a subtraction OP 
(OPMinus).  A path using multiplexers and 
demultiplexers connects these OPs and a simple state-
machine controller controls the entire circuit.  Each of 
these OPs requires only one clock-cycle to execute.   

Figure 3 shows the GCD algorithm in Listing 1 
implemented as an optimized flowpath.  The formal 
algorithm for compiling Forth code to flowpaths, an 
initial unoptimized GCD flowpath, and optimization 
techniques are detailed in Hanna (2003) [3].  The data 
are 32-bit integers.  Characteristic of a multi-cycle OP, 
the GCD OP itself has a reset signal and done signal.   

When the reset signal is brought low, the OP begins 
execution and when execution has completed, the done 
signal is asserted high.  Figure 4 shows the state 
transition diagram for the flowpath controller.  Since the 
GCD function requires more than one clock cycle to 
execute, the rst signal must be brought low to begin 
execution.  Execution begins in the Start state.  After the 
final state, F, the state machine returns to the Start state 
and will begin again unless the reset signal is returned to 
high.   
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Figure 2:  A state diagram to control the execution path 
of the hardware in Figure 1 
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Figure 1: Hardware implementing the GCD bytecode 



 
 

 

Flowpaths in general support delays, loops, branches, 
memory access, basic recursion, and other programmatic 
constructs.  Using flowpaths requires less space and has 
a maximum clock frequency much higher than the 
FPGA implementation of the GCD implemented using 
Handel-C [4].  Flowpaths can outperform 
microprocessors at lower clock frequencies and 
therefore consume less power than microprocessors or 
microprocessor cores.  Flowpaths can be partitioned into 
subsets that can take advantage of runtime dynamic 
partial reconfiguration [5]. 
 

3.  Numerical Solution of a 3D Reaction-
Diffusion Equation using a Parabolic PDE 
 
The numerical code that we are implementing using 
flowpaths is a finite difference code for solving the 
diffusion equation with a source term in a domain Ω. Let 
c = c(x, y, z, t) be the concentration of the unknown, let 
D be the diffusion of the medium, and let ρ be the 
growth constant of the material.  The governing equation 
for the flow is given by 

( )( ) ( )c f cuc D c
t φ
∂

+∇ −∇ ∇ =
∂

i i  

where f(c)/φ  =ρc+S(c), is the growth rate and the 
source/sink, φ  is the porosity, and u is the velocity 
(which we take to be zero for this study). 
 

The Dirichlet and Neumann boundary conditions are 
imposed as follows: 
 

0, on ,u v D c v= ∇ = ∂Ωi i  
 

And the initial condition is prescribed as 
 

c(x, 0) = cinit(x), in Ω. 
 

The numerical solution of the PDE begins with a 
discretization in each of the three spatial variables and in 
time. Here, we use a cell-centered finite difference 
method with discretization parameter h in x, y, and z for 
the unknown computational solution c*.  
Let i = (ih, jh, kh), and define 
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and the diffusion coefficient across the faces of the 
rectangles in the grid as follows: 

( , ( 1/ 2) , ( 1/ 2) ),

(( 1/ 2) , , ( 1/ 2) ),

(( 1/ 2) , ( 1/ 2) , ).
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We use the following discretization for the diffusion 
term: 

l l l

3
* * * * *
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Then, the finite difference equation can be written as 
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where Ωh is the discretized domain with the analogous 
boundary and initial conditions.  We use an operator 
splitting method to solve the problem by separating it 
into transport and diffusion as follows: 
 

Transport:  We assume the special case that u = 0. 
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Diffusion:  
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 Solving the transport step is straightforward. We use 
the Conjugate Gradient Method preconditioned by the 
diagonal to solve the diffusion step iteratively.  Then we 
iterate over transport and diffusion at each time step.   
 An application of our PDE is in tracing 
neurochemicals in the brain [6].  To that end, the shape 
of the boundary, ∂Ω , was selected to be an 
approximation of the boundary of a rat brain created 
using MRI slices. 

Figure 4:  Flowpath controller for GCD 
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Table 3: Speedup relative to the Flowpath 
Flowpath Speedup # of 

Points CPU - Java CPU - C++ CPU - FORTRAN Flowpath 
1650 657 64 461 1 

13200 690 65 471 1 
105600 704 65 481 1 

Table 2: Clock cycle counts for each implementation 
Clock Cycle Count (#) # of 

Points CPU - Java CPU - C++ CPU - FORTRAN Flowpath 
1650       1,445,500,000    1,119,552,500       8,042,100,000  1,584,548 

13200       4,690,100,000    7,922,030,600     57,799,500,000  11,157,689 
105600     47,004,600,000  60,176,010,400     42,175,800,000  83,545,716 

4.  Experimental Results 
 

The numerical code was written in FORTRAN90, 
Java, and C++ for benchmarking purposes.  All codes 
were run on a PC.  The CPU used in the benchmarking 
was a 1.10 GHz Intel Pentium M Dothan (90 nm, Family 
6, Model D, Stepping 6, Revision B1) running in normal 
state with 1.25 GB of RAM.  No optimizations were 
done to the compiled code to make use of the 
processor’s SIMD instructions.   

The Java code was compiled into Java bytecode using 
Sun Microsystems Standard Java Compiler, version 
1.5.0_08.  The bytecode was compiled into flowpath 
circuits described in VHDL using the flowpath compiler.  
Xilinx ISE 8.1.03i was used to synthesize and implement 
the flowpaths.  The development board targeted was the 
Xilinx XUP Virtex II Pro Development System which 
includes a Xilinx Virtex2 XC2VP-30 FPGA. 

The flowpath clock cycle counts were obtained using 
Mentor Graphics ModelSim SE 6.2b.  In any cases 
where the running time of the flowpath is displayed, it is 
assumed that the flowpath is running at 100 MHz, unless 
otherwise specified. The actual maximum clock 
frequency of the flowpath was 97.675 MHz, based on 
the synthesis reports.  The frequency was limited by the 
un-optimized floating point addition operation that was 
used. Once this operation is optimized, the minimum 
clock period would reach approximately 7 ns, which 
would result in a clock frequency of about 140 MHz. 
This is a sufficiently fast frequency for testing purposes, 
because the actual system architecture considered 
assumed that the flowpath would be communicating 
with the DDR memory over the IBM CoreConnect on-
chip peripheral bus (OPB) which has a maximum 
frequency of 125 MHz [7]. During simulation, it was 
assumed that the bus introduced an average of 1 
additional clock cycle of latency when accessing the 
memory to account for either a synchronous bus 
connection or asynchronous bus arbitration. 

Table 1 shows the running 
time comparison between the 
different platforms.  Obviously, 
as the grid becomes finer and 
the number of points increases, 
the running time increases by a 
proportional factor. 

 Table 2 shows a comparison of the clock 
cycle count among the different platforms.  
The clock cycle counts for the CPU were 
extrapolated from the algorithm run time.  
The Pentium is a superscalar processor and it 
can be difficult to get exact clock cycle 
counts.  

 Table 3 shows the speedup between each of the 
implementations including three different experiments 
with increasing number of points.  In each case, the 
flowpath is considered the ideal (unit) case.  As the 
number of points increase, C++ scales almost the same 
as the flowpath.  FORTRAN is second-best in terms of 
scaling and Java is the worst since the Java Virtual 
Machine (JVM) introduces additional overhead.  This 
table does not imply that flowpaths or C++ scale linearly 
with the algorithm size; it is a comparison to the 
flowpath.  Figure 5 shows the runtime as a function of 
the relative algorithm size (a multiple increase in the 
number of points).  While runs with more points require 
more time from Java, Fortran, and C++, the increase in 
time required from the flowpath is much smaller since 
the flowpath does not have load-execute-store overhead 
or worse, that of the JVM. 

Table 1: Runtime for each implementation 
Algorithm Runtime (milliseconds) # of 

Points CPU –  
Java 

CPU –  
C++ 

CPU –  
FORTRAN Flowpath 

1650 10,405 1,018   7,311 16 
13200 76,991 7,202  52,545 112 

105600 588,186 54,705  401,978 835 

Figure 5:  Runtime vs. relative algorithm 

0

100

200

300

400

500

600

700

0 20 40 60 80
Relative Algorithm Size

R
un

tim
e 

(s
)

Java
FORTRAN
C++
Flowpath



 
 

 

Depending on the target technology, the flowpath may 
require more space than available on the FPGA.  In that 
case, it may be desirable to implement only part of the 
code as a flowpath while the remaining code executes on 
a microprocessor core.  FPGAs such as the Xilinx Virtex 
2 Pro family of chips contain embedded processor cores 
that can interact with the reconfigurable FPGA resources 
for implementing this type of cooperative scheme.  Of 
course, since some of the code is executed on the 
processor, the speedup is reduced.  Speedup can be 
maximized by identifying the code that brings the most 
overhead to the program and implementing those as 
flowpaths on the available FPGA real estate. 

To that end, the code was arbitrarily partitioned into a 
reasonable number of functions or modules to help 
identify bottlenecks in the code.  Table 4 shows the Java 
code profile and Table 5 shows the C++ code profile.  
According to the results shown in Table 4, the partition 
chosen reveals an opportunity to significantly improve 
performance by implementing even just one of the first 
two functions listed in hardware.  Often, a portion of 
code what is responsible for much of the processing 
overhead does not require a proportionate amount of 
space to implement using flowpaths.  Instead, much less 
space is required if the function contains little code. 

Partitioning the algorithm to implement bottleneck 
code portions as flowpaths and other portions to run on 
an embedded core has another advantage.  These 
separate functions could also be implemented as 
flowpaths on different FPGAs wired together.  The top-
level state machine could even be implemented on its 
own FPGA with the necessary wires connected to the 
other FPGAs for the control logic.  Indeed, flowpaths 
resolve data dependency issues which makes them 
naturally suited to this type of architecture.  The number 
of I/O must also be considered.  In fact, a similar 
architecture exists that uses only 2 FPGAs [5]. This is an 
advantage of flowpaths over using other methods, such 
as Handel-C, for generating hardware from software. 

5.  Conclusions and Future Work 
 
This work has shown how flowpaths make it possible 

to execute a numerical algorithm in less running time 
than on conventional computers, up to two orders of 
magnitude faster than a computer.  Flowpaths are able to 
achieve this performance by utilizing large amounts of 
chip area; however, the modularity of flowpaths 
naturally allows them to be split into smaller circuits for 
easier implementation when space is a concern. 

There are many opportunities to increase this 
performance gain.  These include optimizing floating-
point operations, exploiting constructs that are common 
to many numerical codes to optimize flowpaths 
specifically for speeding up numerical codes, and 
implementing numerical codes using parallel flowpaths.  
Much remains to be explored in terms of limitations 
from large data sets that require significant memory, 
ways to best partition algorithms to maximize the value 
of limited FPGA space, and characterizing the 
relationship between the numerical code compiled to 
flowpaths and the FPGA space required.  Currently, we 
are exploring these opportunities, challenges, and 
limitations using several different well-known numerical 
methods and applications. 
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Table 4:  Java code 
profile 
Java 

Function Count 
doit2 54.76% 
doit2a 42.66% 
doit3a 1.38% 
iterate 0.50% 
doit4 0.42% 
doit1a 0.12% 
doit1 0.05% 
doit1b 0.05% 
brainy 0.02% 

Table 5:  C++ code 
profile 
C++ 

Function Count 
doit2a 40.00%
doit2 23.10%
doit3a 20.30%
iterate 8.20%
doit4 8.00%
alloc3d 0.20%
doit1a 0.10%
doit1b 0.00%
mulit2 0.00%


