

This work supported by NSF grant #0636895.
1-4244-0910-1/07/$20.00 © 2007 IEEE.

Abstract

Partial differential equations (PDEs) are used to
model physical phenomena and then appropriate
convergent numerical algorithms are employed to solve
them and create computer simulations. In many
important applications, such as weather prediction and
contaminant transport processes, simulation outputs are
required in real time or even faster, yet the spatial
component of the problem is very large, thereby
increasing the computational time. In addition, often
times numerical scientists work in groups to create a
large-scale code, but they work individually on PCs to
test components of the code, so that speedup of the
computational algorithms on PCs is desirable. There is a
benefit to creating and using custom hardware to
perform the numerical calculations faster than
commodity hardware. This work uses a high-level
programming language (Java) to behaviorally describe,
and then implement, a finite difference solution of a
parabolic PDE as a custom hardware circuit targeted to
an FPGA. The results show that the circuits can perform
the calculations 1 to 2 orders of magnitude faster than
commodity hardware.

1. Introduction

Numerical methods are extensively used in the
sciences and engineering for simulating models of
physical phenomenon. These numerical simulations can
be very complex, often taking days or even months to
complete or requiring expensive computing clusters.
There is always a benefit of speeding up the calculations
to solve more complex problems in less time. Another

benefit of speeding up calculations is to solve problems
in real time that could not otherwise keep up.

Using direct hardware methods to achieve speedup for
calculations can present two major benefits. A low cost,
portable solution would result if the slowest part of the
simulation was implemented in custom hardware while
the remainder of the algorithm was left to execute on a
regular processor. The low cost would make this
accessible to a wide audience, while the portability
would be useful for mobile applications. If cost or
portability is not a concern then more hardware, in terms
of a high-density large array of chips, could be allocated,
resulting in even more speedup.

Special purpose processors (SPPs) can be used to
achieve speedup in computing. Some examples of using
an SPP for performing specific functions quickly include
a math co-processor in a CPU for performing floating
point operations, a graphics card in a personal computer
(PC), and a hardware encryption co-processor in an
internet router. Since SPPs are made to perform a
specific function, they do not suffer from the overhead
that a general-purpose processor (GPP) does. SPPs can
execute an algorithm much more quickly than a GPP and
at much lower frequencies therefore requiring far less
power. Despite these great benefits, a major roadblock
to creating SPPs is that designing them is a tedious task
that can take months to accomplish and require extensive
expertise in hardware design. Thus, for every part of a
numerical algorithm an SPP would have to be designed
by an expert to achieve speedup. This would be very
expensive and could take weeks, months or years.

Furthermore, the SPP design for a specific part of a
numerical algorithm would not necessarily work for
anything else; a new SPP would have to be designed as
new codes are made. Clearly, this major roadblock
makes it impractical to take advantage of great speedup
using hardware for numerical methods. Therefore, a

Speedup using Flowpaths for a Finite Difference Solution
of a 3D Parabolic PDE

Darrin M. Hanna1, Anna M. Spagnuolo2, and Michael DuChene3

1Oakland University
Dept. of Comp. Sci. & Engineering

Rochester, MI 48309
dmhanna@oakland.edu

2Oakland University
Dept. of Mathematics & Statistics

Rochester, MI 48309
spagnuol@oakland.edu

3Oakland University
Dept. of Comp. Sci. & Engineering

Rochester, MI 48309
mjduchen@oakland.edu

method to automatically generate SPPs from programs
written in a high-level language that is easy to use,
requires more basic skills, and generates SPPs that can
be executed at usefully high frequencies would
overcome this roadblock. In this way, numerical code
could automatically generate SPP hardware in minutes
and execute much more quickly.

The High-Performance FPGA Laboratory (HPFL) at
Oakland University, under the direction of Dr. Darrin
Hanna, has developed such a hardware architecture
called Flowpaths. Flowpaths are custom made circuits
that directly implement an algorithm in hardware; they
are a class of SPPs. The HPFL has developed a
compiler that is able to convert programs written in the
Java high-level programming language to flowpaths, for
direct implementation as hardware. Thus, overcoming
lengthy design times for creating high-performance
SPPs, they can be generated in minutes rather than
months. More importantly, this is done with little to no
sacrifice in performance. Alternative methods for
generating hardware from a high-level language have
previously been researched and developed but still suffer
from performance-limiting problems caused by inherent
routing bottlenecks and unnecessary execution cycle
overhead. Because of unique characteristics, flowpaths
overcome these problems and have actually been shown
to perform within a factor of 2 of equivalent hand-
crafted circuits.

Flowpaths are described in the standard hardware
description language VHDL. This VHDL code is used
to implement hardware solutions on reprogrammable
logic devices such as FPGAs and the code can also be
used to fabricate ASICS. The VHDL is generated
automatically from Java programs using our compiler.
The compiler takes as input Java bytecodes generated
from a Sun Microsystems compliant Java compiler. The
ability to exploit and optimize flowpath techniques to
compile numerical codes would profoundly impact
researchers’ ability to run numerical simulations in less
than one-tenth of the time required when compared with
running it on a PC.

In this work, we have taken a finite difference code
for the solution of a three-dimensional parabolic PDE in
time on a rectangular box domain, compiled it to
flowpaths, and simulated it. Using flowpaths, we
achieved a speedup of 700 times over the Java version,
480 times over the FORTRAN90 code and a 60 times
speedup over the C++ version run on a PC. Section 2
gives a brief introduction to flowpaths. Section 3
describes the numerical method. A description of our
experimental results can be found in Section 4. Finally,
conclusions and future work are given in Section 5.

2. Flowpaths

Generating a flowpath from Java bytecode can be
demonstrated with a simple example. Consider the Java
code for one of Euclid’s GCD algorithms shown in
Listing 1 and the corresponding Java bytecodes in
Listing 2.

Listing 1: Euclid’s GCD algorithm in Java
1: int gcd (int x, int y)
2: {
3: //Euclid’s GCD
4: while (x != y)
5: {
6: if (x<y)
7: y -= x;
8: else
9: x -= y;
10: }
11: return x; }

Listing 2: Java Bytecodes for Euclid’s GCD
0: goto 19
3: iload_1 //Push x
4: iload_2 //Push y
5: if_icmpge 15 //if x>=y goto 15

8: iload_2 //Push y
9: iload_1 //Push x
10: isub //y-x
11: istore_2 //Store new y
12: goto 19

15: iload_1 //Push x
16: iload_2 //Push y
17: isub //x-y
18: istore_1 //Store new x

19: iload_1 //Push x
20: iload_2 //Push y
21: if_icmpne 3 //if x!=y goto 3

24: iload_1 //Push x
25: ireturn

In general, algorithms can be considered as a set of

operations, data, and a controller to determine execution
order. Others have described methods to convert such
programs into special-purpose processors where each
variable is implemented as a register [1, 2]. Using these
other methods, consider the hardware that would be
generated from these bytecodes. It has several
drawbacks including unnecessary states. This hardware
is shown in Figure 1. Each block is a digital component
that performs the function as labeled. The inputs and
outputs are data busses. Each of the components is
executed according to the state diagram in Figure 2.

Next to each component and state, the line that matches
Listing 2 is annotated accordingly. A simple
optimization can be made by substituting the two isub
components with a single isub component and a
multiplexer as shown in Figure 1.

Although this is a possible approach to generating

hardware directly from software applied to an
intermediate representation that is primarily stack-based,
it is important to note a general problem which will
become very large, quickly. Since the Java bytecode
representation uses local variables that are implemented
as registers, the inputs to the operations must be routed
from the registers or memory storing the variables and
the results must be stored back into the register or
memory. This presents a significant routing problem.
Furthermore, critical path times increase and the
maximum execution frequency decreases significantly.

Using a stack-based intermediate representation where
local variables are stored on a stack and operations are
done to the top elements of the stack, with results left on
top of the stack, data flow can be streamlined and the
problem eliminated. By placing local variables on a
stack, stack manipulation words will frequently be used
to move elements around before and after executing
operations, but result-loading instructions can be
eliminated. This presents a significant advantage while

using flowpaths since stack manipulation words translate
into zero-clock-cycle routing.

In Java, local variables are kept in a local variable
array resulting in numbered variables. These variables
are loaded into the operand stack and loaded with
successive results. Since all local variables are ‘passed
through’ registers in each OP, successive iload_xi
instructions are translated into copies of the wires
corresponding to the xi’s routed in the proper order for
input into the next OP.

One can implement stack-based code, e.g. Java
bytecodes, with a local variable array and achieve
several orders of magnitude faster performance without
the routing problem described when using the variable-
to-register methods for special-purpose processors.
Flowpaths significantly increase the maximum execution
speed and in most cases distributes routing reasonably.
Standard OPs that are pre-designed with generic bus-
width and with a variable number of ‘pass-through’
registers form a flowpath standard library. These
standard OPs perform basic instructions, such as imul,
iadd, and if_icmpne. Additionally, custom OPs can be
designed at a hardware or software level and stored in
this library where they will be considered standard
words by the compiler. This allows one to invoke
methods that aren’t developed in Java but are OPs that
follow the standard reset-done flowpath paradigm.

The flowpath to compute the greatest common divisor
requires three OPs: An equality detector (OPEq), a
magnitude comparator (OPLt), and a subtraction OP
(OPMinus). A path using multiplexers and
demultiplexers connects these OPs and a simple state-
machine controller controls the entire circuit. Each of
these OPs requires only one clock-cycle to execute.

Figure 3 shows the GCD algorithm in Listing 1
implemented as an optimized flowpath. The formal
algorithm for compiling Forth code to flowpaths, an
initial unoptimized GCD flowpath, and optimization
techniques are detailed in Hanna (2003) [3]. The data
are 32-bit integers. Characteristic of a multi-cycle OP,
the GCD OP itself has a reset signal and done signal.

When the reset signal is brought low, the OP begins
execution and when execution has completed, the done
signal is asserted high. Figure 4 shows the state
transition diagram for the flowpath controller. Since the
GCD function requires more than one clock cycle to
execute, the rst signal must be brought low to begin
execution. Execution begins in the Start state. After the
final state, F, the state machine returns to the Start state
and will begin again unless the reset signal is returned to
high.

Start B
5

C
10

D
11

true

J
25

F
17

G
18

H
21

I
24

false

true

false

Figure 2: A state diagram to control the execution path
of the hardware in Figure 1

y

x

y

if_icmpne (21)

if_icmpge (5)

isub (17)

isub (10) isub (17/10)

2-
to

-1
 M

U
X

x
y

x

A
ll

R
es

ul
ts

 w
ire

d
to

 v
ar

ia
bl

e
re

g/
m

em

All Variables wired from variable reg/mem

Figure 1: Hardware implementing the GCD bytecode

Flowpaths in general support delays, loops, branches,
memory access, basic recursion, and other programmatic
constructs. Using flowpaths requires less space and has
a maximum clock frequency much higher than the
FPGA implementation of the GCD implemented using
Handel-C [4]. Flowpaths can outperform
microprocessors at lower clock frequencies and
therefore consume less power than microprocessors or
microprocessor cores. Flowpaths can be partitioned into
subsets that can take advantage of runtime dynamic
partial reconfiguration [5].

3. Numerical Solution of a 3D Reaction-
Diffusion Equation using a Parabolic PDE

The numerical code that we are implementing using
flowpaths is a finite difference code for solving the
diffusion equation with a source term in a domain Ω. Let
c = c(x, y, z, t) be the concentration of the unknown, let
D be the diffusion of the medium, and let ρ be the
growth constant of the material. The governing equation
for the flow is given by

()() ()c f cuc D c
t φ
∂

+∇ −∇ ∇ =
∂

i i

where f(c)/φ =ρc+S(c), is the growth rate and the
source/sink, φ is the porosity, and u is the velocity
(which we take to be zero for this study).

The Dirichlet and Neumann boundary conditions are
imposed as follows:

0, on ,u v D c v= ∇ = ∂Ωi i

And the initial condition is prescribed as

c(x, 0) = cinit(x), in Ω.

The numerical solution of the PDE begins with a
discretization in each of the three spatial variables and in
time. Here, we use a cell-centered finite difference
method with discretization parameter h in x, y, and z for
the unknown computational solution c*.
Let i = (ih, jh, kh), and define

*

*

= ((1/ 2) , (1/ 2) , (1/ 2)),

((1/ 2) , (1/ 2) , (1/ 2)),

f f i h j h k h

c c i h j h k h

+ + +

= + + +
i

i

and the diffusion coefficient across the faces of the
rectangles in the grid as follows:

(, (1/ 2) , (1/ 2)),

((1/ 2) , , (1/ 2)),

((1/ 2) , (1/ 2) ,).

D D ih j h k h

D D i h jh k h

D D i h j h kh

= + +

= + +

= + +

1,i

2,i

3,i

We use the following discretization for the diffusion
term:

l l l

3
* * * * *

, , ,2
1

i+ e i+ e i i i i- e
1() (() ()h l l

l
h h hD c D c c D c c

h =

∇ ∇ = − − −∑ii

Then, the finite difference equation can be written as

*, *, 1 *,
*,

,() on ,
n n n

n
hh

c c f
D c

t φ

−−
− ∇ ∇ = Ω

∆
i i i

ii

where Ωh is the discretized domain with the analogous
boundary and initial conditions. We use an operator
splitting method to solve the problem by separating it
into transport and diffusion as follows:

Transport: We assume the special case that u = 0.

*, *, 1n t nc e cρ∆ −=i i

Diffusion:

*, *,
*, *,

,()
n n

n n
h

c c
D c S

t
−

− ∇ ∇ =
∆

i i
iii

 Solving the transport step is straightforward. We use
the Conjugate Gradient Method preconditioned by the
diagonal to solve the diffusion step iteratively. Then we
iterate over transport and diffusion at each time step.
 An application of our PDE is in tracing
neurochemicals in the brain [6]. To that end, the shape
of the boundary, ∂Ω , was selected to be an
approximation of the boundary of a rat brain created
using MRI slices.

Figure 4: Flowpath controller for GCD

Start B C
Reset = '0'

Reset = '1'

Done is
asserted

high

D

OPEq
Flag='1' E

F

OPEq
Flag='0'

= NOT

;

THEN
= NOT /
ELSE
= NOT

-

WHILE / <

if_icmpne

if_icmpge
Flag=’0'

if_icmpge

if_icmpge
Flag=’1'

ireturn

isub

if_icmpne

DP Controller

reset done

OPEq
(=)

OPLt
(<) OPMinus

(-)D
1

M
2

D
2

M
3M

1

IN 1
(x)

IN2
(y)

32

32

32
Out1
(gcd)

if_icmpge
(active low)

isub
if_icmpne

Figure 3: Flowpath datapath for GCD

Table 3: Speedup relative to the Flowpath
Flowpath Speedup # of

Points CPU - Java CPU - C++ CPU - FORTRAN Flowpath
1650 657 64 461 1

13200 690 65 471 1
105600 704 65 481 1

Table 2: Clock cycle counts for each implementation
Clock Cycle Count (#) # of

Points CPU - Java CPU - C++ CPU - FORTRAN Flowpath
1650 1,445,500,000 1,119,552,500 8,042,100,000 1,584,548

13200 4,690,100,000 7,922,030,600 57,799,500,000 11,157,689
105600 47,004,600,000 60,176,010,400 42,175,800,000 83,545,716

4. Experimental Results

The numerical code was written in FORTRAN90,
Java, and C++ for benchmarking purposes. All codes
were run on a PC. The CPU used in the benchmarking
was a 1.10 GHz Intel Pentium M Dothan (90 nm, Family
6, Model D, Stepping 6, Revision B1) running in normal
state with 1.25 GB of RAM. No optimizations were
done to the compiled code to make use of the
processor’s SIMD instructions.

The Java code was compiled into Java bytecode using
Sun Microsystems Standard Java Compiler, version
1.5.0_08. The bytecode was compiled into flowpath
circuits described in VHDL using the flowpath compiler.
Xilinx ISE 8.1.03i was used to synthesize and implement
the flowpaths. The development board targeted was the
Xilinx XUP Virtex II Pro Development System which
includes a Xilinx Virtex2 XC2VP-30 FPGA.

The flowpath clock cycle counts were obtained using
Mentor Graphics ModelSim SE 6.2b. In any cases
where the running time of the flowpath is displayed, it is
assumed that the flowpath is running at 100 MHz, unless
otherwise specified. The actual maximum clock
frequency of the flowpath was 97.675 MHz, based on
the synthesis reports. The frequency was limited by the
un-optimized floating point addition operation that was
used. Once this operation is optimized, the minimum
clock period would reach approximately 7 ns, which
would result in a clock frequency of about 140 MHz.
This is a sufficiently fast frequency for testing purposes,
because the actual system architecture considered
assumed that the flowpath would be communicating
with the DDR memory over the IBM CoreConnect on-
chip peripheral bus (OPB) which has a maximum
frequency of 125 MHz [7]. During simulation, it was
assumed that the bus introduced an average of 1
additional clock cycle of latency when accessing the
memory to account for either a synchronous bus
connection or asynchronous bus arbitration.

Table 1 shows the running
time comparison between the
different platforms. Obviously,
as the grid becomes finer and
the number of points increases,
the running time increases by a
proportional factor.

 Table 2 shows a comparison of the clock
cycle count among the different platforms.
The clock cycle counts for the CPU were
extrapolated from the algorithm run time.
The Pentium is a superscalar processor and it
can be difficult to get exact clock cycle
counts.

 Table 3 shows the speedup between each of the
implementations including three different experiments
with increasing number of points. In each case, the
flowpath is considered the ideal (unit) case. As the
number of points increase, C++ scales almost the same
as the flowpath. FORTRAN is second-best in terms of
scaling and Java is the worst since the Java Virtual
Machine (JVM) introduces additional overhead. This
table does not imply that flowpaths or C++ scale linearly
with the algorithm size; it is a comparison to the
flowpath. Figure 5 shows the runtime as a function of
the relative algorithm size (a multiple increase in the
number of points). While runs with more points require
more time from Java, Fortran, and C++, the increase in
time required from the flowpath is much smaller since
the flowpath does not have load-execute-store overhead
or worse, that of the JVM.

Table 1: Runtime for each implementation
Algorithm Runtime (milliseconds) # of

Points CPU –
Java

CPU –
C++

CPU –
FORTRAN Flowpath

1650 10,405 1,018 7,311 16
13200 76,991 7,202 52,545 112

105600 588,186 54,705 401,978 835

Figure 5: Runtime vs. relative algorithm

0

100

200

300

400

500

600

700

0 20 40 60 80
Relative Algorithm Size

R
un

tim
e

(s
)

Java
FORTRAN
C++
Flowpath

Depending on the target technology, the flowpath may
require more space than available on the FPGA. In that
case, it may be desirable to implement only part of the
code as a flowpath while the remaining code executes on
a microprocessor core. FPGAs such as the Xilinx Virtex
2 Pro family of chips contain embedded processor cores
that can interact with the reconfigurable FPGA resources
for implementing this type of cooperative scheme. Of
course, since some of the code is executed on the
processor, the speedup is reduced. Speedup can be
maximized by identifying the code that brings the most
overhead to the program and implementing those as
flowpaths on the available FPGA real estate.

To that end, the code was arbitrarily partitioned into a
reasonable number of functions or modules to help
identify bottlenecks in the code. Table 4 shows the Java
code profile and Table 5 shows the C++ code profile.
According to the results shown in Table 4, the partition
chosen reveals an opportunity to significantly improve
performance by implementing even just one of the first
two functions listed in hardware. Often, a portion of
code what is responsible for much of the processing
overhead does not require a proportionate amount of
space to implement using flowpaths. Instead, much less
space is required if the function contains little code.

Partitioning the algorithm to implement bottleneck
code portions as flowpaths and other portions to run on
an embedded core has another advantage. These
separate functions could also be implemented as
flowpaths on different FPGAs wired together. The top-
level state machine could even be implemented on its
own FPGA with the necessary wires connected to the
other FPGAs for the control logic. Indeed, flowpaths
resolve data dependency issues which makes them
naturally suited to this type of architecture. The number
of I/O must also be considered. In fact, a similar
architecture exists that uses only 2 FPGAs [5]. This is an
advantage of flowpaths over using other methods, such
as Handel-C, for generating hardware from software.

5. Conclusions and Future Work

This work has shown how flowpaths make it possible

to execute a numerical algorithm in less running time
than on conventional computers, up to two orders of
magnitude faster than a computer. Flowpaths are able to
achieve this performance by utilizing large amounts of
chip area; however, the modularity of flowpaths
naturally allows them to be split into smaller circuits for
easier implementation when space is a concern.

There are many opportunities to increase this
performance gain. These include optimizing floating-
point operations, exploiting constructs that are common
to many numerical codes to optimize flowpaths
specifically for speeding up numerical codes, and
implementing numerical codes using parallel flowpaths.
Much remains to be explored in terms of limitations
from large data sets that require significant memory,
ways to best partition algorithms to maximize the value
of limited FPGA space, and characterizing the
relationship between the numerical code compiled to
flowpaths and the FPGA space required. Currently, we
are exploring these opportunities, challenges, and
limitations using several different well-known numerical
methods and applications.

6. References

[1] F. Vahid and T. Givargis, Embedded System

Design: A Unified Hardware/Software
Introduction: John Wiley & Sons, Inc., 2002.

[2] J. M. P. Cardoso and H. C. Neto, "Compilation for
FPGA-Based Reconfigurable Hardware," IEEE
Design & Test of Computers Magazine, vol. 20, pp.
65-75, 2003.

[3] D. M. Hanna, "A Novel Method for Generating
Microprocessor-less Systems with Applications in
Bioengineering," in Dept. of Comp. Science and
Eng. Rochester, MI: Oakland University, 2003.

[4] D. M. Hanna and R. E. Haskell, "Flowpaths:
Compiling Stack-Based IR to Hardware,"
Microprocessors and Microsystems, vol. 30, pp.
125-136, 2006.

[5] D. M. Hanna and M. Duchene, "Executing Large
Algorithms on Low-Capacity FPGAs using
Algorithm Partitioning and Runtime
Reconfiguration," Microprocessors and
Microsystems, in press 2007.

[6] K. R. Swanson, C. Bridge, J. D. Murray, and E. C.
A. Jr., "Virtual and real brain tumors: using
mathematical modeling to quantify glioma growth
and invasion," Journal of the Neurological Sciences,
vol. 216, pp. 1-10, 2003.

[7] Xilinx Inc., "OPB Usage in Xilinx FPGAs,"
September, 2005.

Table 4: Java code
profile
Java

Function Count
doit2 54.76%
doit2a 42.66%
doit3a 1.38%
iterate 0.50%
doit4 0.42%
doit1a 0.12%
doit1 0.05%
doit1b 0.05%
brainy 0.02%

Table 5: C++ code
profile
C++

Function Count
doit2a 40.00%
doit2 23.10%
doit3a 20.30%
iterate 8.20%
doit4 8.00%
alloc3d 0.20%
doit1a 0.10%
doit1b 0.00%
mulit2 0.00%

