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ABSTRACT 
Emerging heterogeneous multiprocessors will 
have custom memory and bus architectures 
that must balance resource sharing and 
system partitioning to meet cost constraints. 
We propose an augmented simulated 
annealing synthesis tool that uses system 
performance and layout evaluation to drive 
simultaneous data mapping, memory 
allocation and bus synthesis. A detailed look 
at the resulting automated design process 
reveals an approach that, contrary to prior 
approaches, optimizes bus topology first 
rather than last, providing design insight for 
the development of future tools.  

1. INTRODUCTION 
The future of most embedded applications 
lies in single-chip low-power heterogeneous 
multiprocessors. These systems-on-chips will 
consist of tens of individually programmable 
processing elements (PEs). These systems 
will be heavily customized to obtain the best-
tuned architecture for the set of applications 
specified. Given that both the underlying 
technology and the size of systems being 
designed are adding complexity to the design 
process, new synthesis techniques are needed 
to address design productivity. We present 

and analyze the foundation of a synthesis tool 
aimed at the architectural design of single-
chip multiprocessor systems optimized for 
low latency and manufacturing cost. 
Prior work has suggested a variety of 
approaches to exploring this design space. 
Many of the prior tools, however, impose 
limitations on the design space exploration by 
dividing synthesis into multiple exploration 
phases or iteration loops, exploring a different 
axis of the space in each. This approach 
makes the assumption that decisions made in 
earlier phases won’t prevent exploration from 
finding globally optimal solutions.  
We present and analyze a novel synthesis tool 
that searches for optimal embedded 
multiprocessor systems without the above 
limitation. Given a set of concurrent tasks and 
their processor assignments and a library of 
components, our augmented simulated 
annealing approach simultaneous performs 
data mapping, memory allocation, and bus 
architecture synthesis, all within a single 
iteration loop. 
This unconstrained, single-phase approach 
allows our tool to consider a wider range of 
designs than the prior work. Our analysis 
reveals that as a result, our tool consistently 
approaches design in an unconventional 
fashion, providing insight into best practices 
for embedded multiprocessor design and for 
the development of future exploration tools. 
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2. PRIOR WORK 
A large body of work has already been done 
to optimize both system memory organization 
and system interconnect. [1][2][3] all perform 
bus topology exploration, but require a 
description of the memories in the system and 
the data assigned to them (derived from 
memory allocation and data mapping, 
respectively) as inputs. [4] performs bus 
topology exploration after deriving a data 
mapping and memory allocation in a separate 
phase. [5] also explores bus topology after 
data mapping and memory allocation, but if 
constraints can’t be satisfied with a mapping 
and allocation, the tool derives a new one 
before returning to bus topology exploration. 
Unlike our approach, these approaches all 
conduct bus topology exploration in isolation 
from data mapping and memory allocation. 
While [6][7] propose simultaneous mapping, 
allocation, and topology exploration, unlike 
our tool they do not floorplan to jointly 
optimize systems for performance and cost. 

Many of the above approaches perform data 
mapping and memory allocation separately 
from bus topology exploration, or require 
mapping and allocation as input parameters. 
This makes the assumption that data mapping 
and memory allocation can be decided 
independently of bus topology without 
limiting design optimality. Our tool makes no 
such assumption, freeing it to best optimizing 
performance and cost for the target system. 

3. SYNTHESIZING MPSOC 
ARCHITECTURES 
This section defines the trade-offs in bus and 
memory system organization at this level and 
describes our synthesis formulation. 

3.1 Design Space 
There are two basic memory system 
organizations for handling the concurrency 
inherent in multiprocessor systems, the 
extremes of which are partitioning a system 
into a collection of subsystems to reduce 

contention, and globally sharing all resources 
to enable more cost effective implementation. 
Optimal bus and memory system design 
strikes a balance between resource sharing 
and system partitioning, driven by the 
conflicting goals of sharing to reduce cost 
(e.g., area) and partitioning to improve 
performance (e.g., bus utilization, execution 
time). Our synthesis approach meets this need 
by optimally distributing, sharing and 
segregating memory and interconnect 
resources to balance performance and cost in 
concurrent embedded systems. 

3.2 Formulation 
We have developed a synthesis tool that 
augments simulated annealing techniques 
with closed-form decision-making that prunes 
the design space and legalizes initially illegal 
system modifications. This formulation is 
intended to lay the groundwork for the 
development of more sophisticated and direct 
solutions by identifying the critical issues in 
the optimal design of embedded 
multiprocessor memory architectures.  
Our simulated annealing approach iteratively 
permutes and evaluates the system in search 
of the global optimal design. Each 
exploration iteration (1) selects and performs 
a move, (2) prunes the system and 
redistributes data, and (3) evaluates the 
objective function and probabilistically 
accepts or rejects the permutation. 
There are three basic move types, two of 
which are further broken into sub-types. Data 
mapping randomly moves a data array from 
one memory to another, enlarging the 
destination memory as necessary. Bus moves 
randomly change the bus topology by: 
connecting (disconnecting) a processor or 
memory to (from) a bus in the system or, 
splitting a highly utilized bus into two buses. 
Memory moves randomly change memory 
allocation by: absorbing a small, 
underutilized memory (and its data) into 
another larger memory, or splitting a large 



 

underutilized memory (and its data) into two 
smaller, better-utilized memories. Unlike the 
prior work, we allow all system modification 
steps in a single exploration phase. 

Any move that modifies the system topology 
is followed by pruning. Pruning adjusts the 
size of memories that are too large for the 
data they contain and removes unutilized 
memories and buses, eliminating unnecessary 
cost. Any move that changes which bus(es) a 
memory (or processor) is connected to is 
followed by redistribution. Redistribution 
applies a simple heuristic to reassign data to 
memories, legalizing any illegal data 
mappings, since for example, when a 
processor is arbitrarily moved it may not be 
able to access all of its data. 

3.3 Modeling System Cost 
System cost, the objective function minimized 
by our annealing approach, is evaluated after 
each move is completed (possibly including 
pruning and redistribution) and is used to 
probabilistically determine if the move in 
question should be accepted or rejected. 
System cost is the weighted combination of 
total execution cost, or latency, and the 
system’s physical cost: 

 
where α determines the relative importance of 
latency and physical cost. The goal of our 
synthesis tool is to minimize system cost for a 
given α. Unlike the prior work, cost and 
performance are evaluated after each system 
modification. 
Latency is evaluated by determining the total 
system execution time. The total system 
execution time is calculated by performing 
trace-based discrete event simulation (DES) 
on the dependency graph generated by 
combining memory access traces for each 
task in the system. 

Physical cost is itself a weighted combination 
of system layout area, total bus wire length, 

and a penalty factor that increases the cost of 
systems with aspect ratios greater than one:  

 
where β has been chosen so that system area 
and total bus wire length contribute equally to 
physical cost. Area, wire length and the 
aspect ratio are all determined with 
floorplanning. Area is the bounding box of 
the design and wire length is the sum of half-
perimeter wire lengths of all buses. 
Floorplanning is performed by annealing a 
slicing tree representation of the system. 

4. EXPERIMENTS AND RESULTS 
We conducted a set of experiments to 
evaluate our technique and gain insight into 
effective embedded multiprocessor design 
practices. Using an example workload and 
fixed task-processor assignments, we 
explored the design space in search of pareto-
optimal systems composed of elements from 
a component library. We performed design 
space exploration for a variety of α values 
and then examined the exploration process for 
a subset of the resulting design points. 

 
Figure 1: Software pipeline and task-
processor mapping. 

4.1 Workload 
Our experimental workload is a DSP software 
pipeline executing on a concurrent hardware 
pipeline, illustrated in Figure 1. Data is 
introduced to the system by a hardware DMA 
engine (P0), and fed to a least-mean-squared 
(LMS) adaptive filter (on processor P1) for 
noise cancellation. Two different FIR filters 
are then separately applied (P2 and P3), 
followed by an FFT transform and more 



 

filtering (P4). IFFT is then applied to each 
filtered stream (P5 and P6) before the output 
is collected and sent off-chip by another 
hardware DMA engine (P7). Processors that 
execute more than one task execute each task 
to completion before starting the next. 
Memory access traces were generated for 
each task from optimized assembly kernels. 

4.2 Library Components 
The library of components used in our 
experiment consists of a small collection of 
processors, memories, and interconnect 
modules in a 90 nm process. 

The basic processing element is an ARM7; all 
processors except P0 and P7, the DMA 
engines, are ARM7s. The DMA engines are 
modeled as small buffers for area 
consumption purposes. Processing elements 
are allowed multiple bus connections, but 
with a fixed area penalty applied for each 
connection after the first. All memories are 
SRAMs with a single read/write port, and are 
allowed only a single bus connection. The 
library contains SRAMs varying in size from 
256B to 32kB by powers of two. There is 
only one bus in the component library, a 
single-transaction bus with no data buffering. 

4.3 Design Space Exploration 
To find a set of latency-cost pareto-optimal 
architectures, we conducted nine experiments 
over which we manipulated α, and therefore 
the relative importance of execution latency 
and physical cost. We selected α values over 
a range of 9e-4 to 1.1e-5, covering latency-
cost ratios of 9:1 to 1:9. The results are 
summarized in Figure 2, which plots latency 
vs. cost for each resulting design. 
Nearly all of the resulting design points are 
pareto-optimal, indicated with black 
diamonds. The non-pareto points are 
indicated with red squares. The designs have 
area ranging from 1.81-2.5 mm2, and all have 
an aspect ratio under 1.25.  The low cost 
designs experience heavy bus utilization, up 

to 94%, while the high performance designs 
experience much lower bus utilization, as low 
as 66%. 
Despite the obvious differences between 
designs implementing anywhere from two to 
five buses, the systems have much in 
common.  This stems from the common goal 
of balancing performance and cost in some 
proportion.  Each system takes advantage of 
the structure of the given workload in some 
way, the most obvious of which is spatial 
partitioning into three macro pipeline stages: 
input (DMA, LMS), processing (FIR, FFT, 
FILT), and output (IFFT, DMA). 

 
Figure 2: Latency vs. physical system cost 
for variable α . 

When only two buses are available (low α), 
the input and output stages share a bus, while 
the processing stage makes use of the second.  
In systems with more resources (up to four 
buses), the partitioning is more obvious; e.g., 
input and output stages have their own bus, 
while the processing stage shares two buses.  
When five buses are available (high α), the 
partitioning is less strict in order to minimize 
bus utilization (therefore maximizing 
performance), but remains present. 

4.4 Move Acceptance Trends 
To gain insight into embedded multiprocessor 
design, we will now look more closely at 
three specific design points from the previous 
section: cost-centric design when α = 1.1e-5, 
balanced cost-performance design when 
α = 1e-4, and performance-centric design 



 

when α = 9e-4. If design exploration 
proceeded in a consistent fashion for these 
three very different design points, we may 
gain insight into principles of effective design 
for embedded multiprocessors.  Figure 3 
illustrates the change in move acceptance for 
each of these three different design points. 

 
Figure 3: Accepted moves per iteration for 
three design points. 
The lettered markers in Figure 3 indicate 
specific events in the course of design space 
exploration.  For all three of the graphs, A 
marks the point when bus split moves are no 
longer accepted, B, when bus moves are no 
longer accepted, C, when memory moves are 
no longer accepted, and D, when the system 
is beginning to "freeze", i.e., accepted moves 
no longer appreciably change the system cost. 

It is immediately clear from Figure 3 that 
exploration at the three design points exhibit 
the same basic progression: bus topology is 
fixed before memory allocation, which is 
fixed before data mapping. First, bus moves 
are no longer accepted, setting the number of 
buses in the system and the assignment of 
nodes to buses. At this point, the number of 
memories per bus can still change through 
local reallocation. Next, memory moves are 
no longer accepted, fixing the number of 
memories per bus, though data mapping 
moves and pruning may still change the size 
of the existing memories.  
With only slight variations between them, this 
occurs for all three design points, in spite of 
the very different optimization targets (low 
cost, top; balanced cost and performance, 
middle; and high performance, bottom). For 
the low-cost and balanced designs, bus split 
moves stop being accepted before bus moves 
in general are no longer accepted.  This 
means that the number of buses in the system 
is fixed before the location of nodes in the 
system, unlike what occurs in the high-
performance design. 

5. DISCUSSION 
The results in section 4.3 illustrate our tool’s 
ability to incrementally trade performance 
and cost, balancing system partitioning and 
resource sharing.  Our investigation in section 
4.4 makes it clear that this balancing and 
sharing proceeded in a consistent fashion for 
very different design points: first the bus 
topology was fixed, then the memory 
allocation, and finally the data mapping.  This 
approach, however, is contrary to the 
literature. For most bus synthesis approaches, 
allocation and mapping are fixed before bus 
topology exploration and not revisited later. 
The historical synthesis approach makes a 
critical assumption: data mapping and 
memory allocation can be selected 
independently of bus topology without any 
impact on design optimality.  This is the same 



 

as assuming that optimal allocation and 
mapping can be performed without 
knowledge of the cost of system organization.  
If this were the case for our workload and 
component library, then we would expect to 
see the acceptance of all basic move types 
converge to zero at approximately the same 
time, implying parallel optimization.  Instead, 
for three very different design points, at least 
partially serial optimization occurs. Further, 
bus topology is finalized first and within the 
context of allocation and mapping, rather than 
last and in isolation. This implies a co-
dependence of allocation and mapping with 
bus topology, rather than independence. 
In the context of our application and design 
space, there are several reasons not to fix 
memory allocation before bus topology.  
Physical cost is a function both of wire length 
and area.  Selecting a particular memory 
allocation early assumes that a different 
allocation couldn't improve the system 
significantly. For example, [4] breaks the 
memory space into pieces based on usage 
alone: memory shared by two processors is 
allocated to a single node, and each processor 
gets a single local memory. This assumes that 
breaking one shared memory into two or 
combining multiple scratch-pad memories 
into one is inherently a worse solution, where 
the realities of floorplanning may prove 
otherwise.  
Our approach makes no assumptions about 
the order in which parts of the system should 
be optimized. As a result, in the discussed 
design points the average system cost was 
optimized up to an additional 24% after the 
bus topology was fixed. This provides the 
insight that optimization order matters, and 
optimizing the bus topology in isolation may 
not be the best approach. Rather, because of 
the implicit codependence of optimal 
allocation and mapping with topology, 
approaches that are sensitive to this are more 
likely to find truly globally optimal solutions. 

6. CONCLUSIONS 
We presented a synthesis tool targeting 
multiprocessor embedded system memory 
and bus architecture. Our tool uses an 
augmented simulated annealing approach to 
simultaneously explore the design space of 
data mapping, memory allocation, and bus-
based interconnect, given a target application, 
task-processor mapping and component 
library, and is driven by the joint optimization 
of latency and cost.  
Our tool effectively balance global resource 
sharing and system partitioning. Further, our 
results suggest a design approach contrary to 
the literature: resolve the bus topology first, 
followed by memory allocation and data 
mapping. This insight into the design process 
for such systems will help shape future design 
automation approaches. 
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