
Parallel Processing for Multi-objective Optimization in Dynamic Environments

Mario Cámara1, Julio Ortega1, Francisco J. Toro2

1University of Granada

Dept. of Computer Architecture and
Technology,

ETSIIT, 18071, Granada, Spain
{mcamara, julio}@atc.ugr.es

2University of Granada

Dept. of Signal Theory, Telematics, and
Communications,

ETSIIT, 18071, Granada, Spain
ftoro@ugr.es

Abstract

This paper deals with the use of parallel processing for
multi-objective optimization in applications in which the
objective functions, the restrictions, and hence also the
solutions can change over time. These dynamic
optimization problems appear in quite different real-
world applications with relevant socio-economic impact.
The procedure here presented is based on PSFGA, a
parallel evolutionary procedure for multi-objective
optimization. It uses a master process that distributes the
population among the processors in the system (that
evolve their corresponding solutions according to an
island model), and collects and adjusts the set of local
Pareto fronts found by each processor (this way, the
master also allows an implicit communication among
islands). Moreover, the procedure exclusively uses non-
dominated individuals for the selection and variation, and
maintains the diversity of the approximation to the Pareto
front by using a strategy based on a crowding distance.

1. Introduction

Many real-world optimization problems are dynamic
because there are changes in the conditions on which the
cost functions depend, in the restrictions that the solutions
must meet, etc. For example, in a scheduling problem the
characteristics of the resources and the number of tasks to
be allocated could vary over time [1]. In the optimal
control of an industrial plant the conditions change due to
the ageing of the plant, to random intrinsic effects, etc [2].

On the other hand, many of the optimization problems
must optimize more than one objective at a time, which

1-4244-0910-1/07/$20.00 c2007 IEEE.

frequently are in conflict. In this context, the concept of
optimum must be redefined, because instead of providing
only one optimal solution, the procedures applied to these
multi-objective optimization problems should obtain a set
of non-dominated solutions, known as Pareto optimal
solutions [3], from which a decision agent (be human or
not) will choose the most convenient in the current
circumstances. These solutions are optimal in the sense
that there is not any other better solution when all the
objectives are taken into account. The Pareto optimal
solutions form a hypervolume known as Pareto front.
Thus, in the dynamic multi-objective optimization
problems the objective functions and the set of variables
which define the solution space may change over time.

Evolutionary algorithms [3] have been successfully
applied to static multi-objective problems and have
contributed to change the perspective on how these
problems were tackled by using classical procedures [2].
As evolutionary algorithms steer a population of solutions
in a concurrent way by making use of cooperative
searching techniques, it could be relatively easy to adapt
these algorithms to obtain sets of Pareto optimal
solutions.

Our goal in this paper is not only to tackle problems
with more than one objective, but also to consider the
problems where the objective functions and even the
spaces in which the solutions lie (the restrictions they
must meet) may change. It is reasonable to think that
evolutionary algorithms may also prove to be useful in
dynamic optimization problems because they are inspired
in the natural evolution and this is a continuous process of
adaptation. In [7], a summary can be found about the use
of evolutionary algorithms in dynamic optimization
problems (not necessarily multi-objective), together with
other optimization problems in environments with
uncertainty.

A possible way to act whenever a change occurs in the
conditions is trying to solve the problem as if it were a
new problem. However, instead of starting the search
from a random solution set, the process towards the new
solutions could be accelerated if it takes advantage of the
already known solutions, depending on the characteristics
of the change that has happened in the problem.

Anyway, the speed of the reaction to changes is a quite
important topic in the context of dynamic optimization.
Therefore, the use of high performance computers may
turn out very useful for these kinds of problems. Hence, in
section 2 the dynamic multi-objective optimization
problem is defined along with the measures that can be
used to evaluate the performance of the corresponding
procedures. Section 3 considers the use of evolutionary
procedures and the different approaches to reach
convergence in the dynamic optimization problems. In
section 4 the benefits that parallel processing can provide
are reviewed, and a parallel algorithm for dynamic multi-
objective optimization is described. The performance of
this parallel procedure is analyzed in section 5, and
finally, the conclusions of this paper are given in section
6.

2. Dynamic Multi-objective Optimization

A dynamic multi-objective optimization problem (DMO)
can be defined as the problem of finding a vector of
decision variables x(t) ∈ Rn, that satisfies a restriction set
and optimizes a function vector whose scalar values
represent objectives that change over time. Thus,
expressed mathematically, it has to be found a decision
variable vector x*(t) = [x1

*(t), x2
*(t), ..., xn

*(t)] that
satisfies a given restriction set g(x,t) ≤ 0, h(x,t) = 0 and
optimizes the function vector:

f(x,t) = {f1(x,t), f2(x,t),…, fm(x,t)}.

As the objectives are usually in conflict, the

optimization of one of them is carried out at the expense
of the other ones. Thus, a trade-off, that implies the
concept of Pareto optimality, must be reached. In a
dynamic multi-objective optimization problem, a decision
vector x*(t) is said to be a Pareto optimal solution if there
is not any other feasible decision vector, x(t), that
improves one objective without worsening at least one of
the other objectives. The set of all non-dominated
solutions determines the Pareto front in the objective
space. We can define Sp(t) and Fp(t) as the sets of Pareto
optimal solutions at time t, respectively in the decision
and objective spaces. In [2], it is presented a classification
of the dynamic multi-objective optimization problems
onto four groups depending on whether the sets Sp(t) and
Fp(t) change over time or not.

One of the main questions in the research on dynamic
optimization procedures is the evaluation of the
performance of these procedures [8,21]. Three
characteristics can be considered to carry out that
evaluation. They are the accuracy, the stability and the
reaction capability of the optimization procedure [8]. The
accuracy, acc, measures the quality of the solution found;
the stability, stb, gives us an idea about the effect of the
changes in the problem on the algorithm accuracy; and
the reaction capacity, reac, measures the capability of the
optimization algorithm to adapt itself to changes. In [8],
measures for the stability and reaction capacity are
proposed. They are based on the measure of accuracy,
acc:

(1) acc(t)}1)acc(tmax{0,stb(t) −−=

(2)t}-{Mgen
)-(1

acc(t)
)acc(t'
Mgent't

 /min{t'-t)reac(t, ∪

≥

≤<
=

ε
ε

where t’ is a natural number, ε is a fixed real number less
than one; Mgen is the number of generations, and acc(t) is
a measure of the solution accuracy at time t, that ranges
from 0, the worst, to 1, the best. The stability, stb(t), also
takes values from 0 to 1, but in this case the maximum
stability is given by 0. Moreover, as smaller is reac(t), the
bigger is the reaction capacity of the procedure.

The definition of accuracy, acc(t), is not trivial,
because the cost functions change over time, and it is
even more difficult if the optimal values are unknown. In
the case of multi-objective optimization problems, as we
want to reach the Pareto front, it should be considered as
the reference point in order to evaluate the accuracy of the
solutions already found. Moreover, it should be also
considered that the location of the Pareto front is usually
unknown. Thus, to estimate the procedure accuracy, we
use the hypervolume of the non-dominated (in a
minimizing problem) or dominated (a maximizing
problem) space which is given by the set of solutions at
time t, V(t) [9]. From V(t), the measure of acc(t) can be
defined as:

)3(,
)(

)()(max tV
tVtacc =

for minimization problems, and as:

)4(,
)(

)()(
min

tV
tVtacc =

for maximization problems. In the expressions, Vmax(t) is
the maximum hypervolume in the objective space that has
been reached through t iterations, and Vmin(t) is the
minimum hypervolume that has been reached through t
iterations. It can be easily seen that acc(t) takes values
from 0 to 1.

3. Evolutionary Computation for Dynamic
Multi-objective Optimization

Evolutionary algorithms have been widely applied to
multi-objective optimization, bringing a different point of
view on the solution of these problems with regard to the
classic methods previously proposed. They can give a
very good approach to the Pareto front and to reveal the
properties of the optimal solutions [5, 6]. In an
evolutionary algorithm, a trade-off is required between
exploration and exploitation. Thus, the characteristics of
the transformations (mutation, crossover, etc) must be set
in order to find a trade-off between the search for
solutions in new areas of the space and the convergence
towards better solutions in the surroundings of the already
found ones.

Thus, diversity and uniform distribution are required in
the found solutions in order to provide an accurate
description of the Pareto front. Moreover, in dynamic
optimization problems, the population of the evolutionary
algorithm must react to changes as fast as possible. Some
of the main topics that should be addressed are the
following ones [4]:
1. Diversity after the changes. As soon as a change is

detected, diversity should be increased in order to
make it ease the evolution towards a new optimum. If
the mutation probability is too high, the situation is
similar to a re-start of the algorithm and no advantage
is obtained from the already found solutions. There
are some alternatives, as hypermutation [13], a
sudden increment in the mutation probability after the
change of the conditions, and variable local search
[14], where mutation probability is gradually
increased.

2. Diversity along the runtime. It tries to avoid
convergence through the execution of the algorithm
so that the population could adapt itself better to
changes. There are some alternatives: to insert
random migrant solutions in the population in each
generation; the thermodynamic genetic algorithms
[15]; the use of niching techniques [16] for
preserving diversity like sharing or crowding. Of
course, the bigger the diversity, the slower the
convergence.

3. Memory based techniques. The evolutionary
algorithm uses a memory that keeps information
about what has happened in previous generations
[17,18]. This approach is mainly useful when the
problem shows conditions that have appeared before.

4. Multi-population techniques. The population is
divided in subpopulations that hold information about
different regions of the search space [19,20]. The idea
behind this is to evolve different optimal solutions in
each population.

In [7], there is a selection of bibliography on dynamic
optimization where these alternatives can be consulted.

4. Parallel Processing for Dynamic
Optimization and PSFGA

Parallel processing can be useful to efficiently solve
dynamic optimization problems with evolutionary
algorithms, not only by improving the quality of the
solutions found but also by speeding up the execution
times. Two decomposition alternatives are usually
implemented in parallel evolutionary algorithms:
functional decomposition and data decomposition. The
functional decomposition techniques identify tasks that
may be run separately in a concurrent way. The data
decomposition techniques divide the sequential algorithm
in different tasks that are run on different data (i.e. the
individuals of the population). Moreover, hybrids
methods are also possible.

In this paper, data decomposition has been applied as
we consider this alternative more attractive. In an
evolutionary algorithm, the evaluation of the objective
function and the application of operators to the
individuals of the population can be independently done.
This allows data parallelization without modifying the
convergence behaviour of the sequential algorithm. The
fitness evaluation for each individual in the population is
frequently the part of the algorithm with the highest
computational cost. This is particularly true in non-trivial
optimization problems, with large sized populations
and/or individuals codified by complex data structures
that require big computation times. As a consequence, a
suitable parallelization scheme is to concurrently evaluate
the fitness of the individuals, by using a master-worker
structure in which every worker process evaluates a
different and unique group of individuals, returning the
fitness values to the master process which completes the
rest of the algorithm steps. If the individuals are
distributed in a balanced way, acceptable speedups could
be obtained whenever the evaluation of the solutions
require high computation times and the communication
costs associated with the distribution of data structures
and results between processors are kept low enough.

An alternative to improve the achieved speedup (and to
get other benefits as we describe below) is to allow the
different processors not only the evaluation of the fitness,
but also the application of operators to the individuals of
the subpopulation allocated to them. This alternative
corresponds to the so called, island model. So, the initial
population is divided into subpopulations (that could be
also associated to different search subspaces) which are
evolved separately. Sometimes, individuals can be
exchanged between the different subpopulations
(migration). This kind of parallelization can also improve
the diversity of the population during the algorithm

convergence and leads to algorithms with better
performance than the sequential versions. Thus, together
with the advantages derived from the availability of more
memory and the use of several CPUs (it is possible to
approach more complex problems and/or to speedup the
programs execution), the evidences of bigger efficiency
and diversity in the population (very useful elements in
dynamic multi-objective optimization problems, as it has
been indicated in Section 3) justify the use of parallelism
in the field of evolutionary algorithms.

Nevertheless, the selection of individuals and the
operations required to maintain diversity need
comparisons that imply the whole population or a big part
of it. This means that data parallelization at this level,
especially in the case where there is not any mechanism to
share information about the fitness of the individuals
between the processes, modifies the behaviour of the
algorithm with regard to the sequential version. Thus, it is
difficult to predict the behaviour of this kind of
parallelization and must be evaluated for each particular
implementation.

Moreover, in multi-objective optimization several
objectives and the Pareto dominance relationships have to
be evaluated at the same time [10-12]. The calculation of
the Pareto dominance relationships requires, most of the
time, statistics of the whole population. Besides, the
computational bottleneck in most of the applications is the
evaluation of the objective functions, which may be
parallelized by means of distributing the functions
between processors, or with a hybrid approach in which
each processor evaluates a subset of functions for a subset
of the population. After the evaluation of the objective
functions, the algorithms with Pareto front-based
selection usually calculate dominance measures and the
corresponding distances as part of the mechanism for
keeping up the diversity. This mechanism is implemented
in each case, as a previous step to assign the fitness value
to each individual and to select the parents. The
parallelization of these tasks is not easy. For example,
problems appear in algorithms that usually work with
small populations (PAES), in algorithms where the
calculation of distances must be done sequentially after
the determination of dominance relationships (SFGA)
[11], or in those algorithms where the calculation of
dominance relationships, distance, and selection takes
place at the same time (NPGA) [22].

In principle, the benefits that can be obtained from
parallel processing of dynamic multi-objective
optimization problems are the same that with static multi-
objective optimization, but also the possibility of speeding
up the capacity of the algorithm reaction, which in turn
reduces the needed processing time, which leads to reach
a set of non-dominated solutions near to the Pareto front
earlier. Thus, dynamic optimization problems, where the
change rate is faster, could also be tackled.

The algorithm here described is shown in Figure 1. It
is based on PSFGA [11], a parallel algorithm for multi-
objective optimization that uses an island model where
the processors that execute the islands (workers)
implicitly communicate themselves through a master
process that divides the population and send the
corresponding subpopulations of the same size to the
workers. By using the SFGA algorithm, every worker
looks for the optimal solutions in the search space that has
been assigned to it and keeps only those solutions that are
not dominated by the others. After a fixed number of
iterations (genpar), the workers send the solutions found
to the master, who after joining all the solutions into a
new population, rule out the dominated solutions. At the
same time, the master runs an instance of the SFGA
algorithm (along genser iterations) over the whole
population before sending new subpopulations again to
the worker processes. In the master, there is a crowding
mechanism for keeping the diversity and the distribution
of the solutions on the Pareto front founded. So, after
reaching a number of solutions, equal or above to a given
percent of the population size, only the non-dominated
solutions that are far enough of the other ones are chosen.

Figure 1. PSFGA version for dynamic
multi-objective optimization

5. Experimental Results

The algorithm has been evaluated by using two test
functions for dynamic multi-objective that have been

taken from the problems presented in [2]. In the first test
function, FDA1 (5), the Pareto front, Fp(t), is equal to

12 1 ff −= , and does not change, but only the values
of the solutions to the corresponding front, Sp(t). In the
second function, FDA2 (6), besides to the values of the
solutions, Sp(t), also the corresponding Pareto front, Fp(t),
changes. In (5) and (6), nt and τt are intended,
respectively, to control the speed at which the problem
changes and the time interval in which the changes are
being considered. In our tests, and as it is suggested in [2],
it has been taken nt = 10 and τt = 5. The solution sets are |
XI| = 1 and | XII| = 19 for FDA1, and | XI| = 1 and | XII| =
| XIII| = 15 for FDA2.

The experiments were carried out on an 8-node
cluster with two 2 GHz AMD Athlon processors and 2
Gbytes RAM by node, connected via Gigabit Ethernet.

)5(5,10,20

]1,1[),(
],1,0[)(

1),5.0sin()(

1),(

))((1)(
)(

,2

1

1
1

2
11

===

−∈=
∈=

==

−=

−+=

=

∑
∈

tt

nII

I

tt

Xx
iII

I

nnwith

xxx
xx

n
tttG

g
fgfh

tGxxg
xxf

IIi

τ

τ
τπ

…

)6(5,10,16

]1,1[),(,
,],1,0[)(

1),5.0sin(7.075.0)(

1),,(

1)(

)(

,2

1

))(()(
1

1

2
11

1
2

===

−∈=
∈=

=+=

−=

+=

=

−

∈

∑ −+

∈
∑

tt

nIIIII

III

tt

tHxtH

III

Xx
iII

I

nnwith

xxxx
xxx

n
tttH

g
fgfxh

xxg

xxf

IIIXix
i

IIi

τ

τ
τπ

…

The results provided in the following correspond to
five runs of each experiment. In Figure 2, it is shown
the Pareto front for FDA1 in the first five time intervals.
In all of them, the found solutions approximate the
actual Pareto front accurately, although all the values of

the corresponding solutions should change in order to
adapt them to the new dynamic function requirements.

With regard to FDA2, Figure 3 shows the solutions
that have been obtained from t = 50 to t = 150. These
solutions approach the Pareto fronts changed each τt = 5.
However, it is more difficult to reach them in the non-
convex areas of the objective functions. In this case, when
the generation changes, and so the current Pareto front,
the values of the solution space also change accordingly.
Table I shows the values for acc, stb and reac obtained by
our procedure in FDA2. The stability could be improved
in some cases (those in which stb ≠ 0), mainly in the non-
convex areas. On the other hand, the reaction capacity is
also good enough, because reac is always equal to five.
This is the smallest value it could take in our
implementation, as this is the minimum time span in
which functions are evaluated again, and it is long enough
to allow the algorithm to adapt itself to the new Pareto
fronts.

The use of the parallel processing gives a twofold
improvement. It allows a reduction in the execution time
required to reach a good approximation to the new Pareto
fronts, thus widening the field of the problems that can be
tackled (problems with faster rate of change in the Pareto
front). On the other hand, each worker can run more

Figure 2. Pareto front and location of the
solutions for FDA1 in 5 time intervals (between t
= 5 and t = 25).

Figure 3. Location of the solutions (Pareto fronts
approximated by our algorithms) for FDA2, from
iteration t = 50 to t = 150 (with steps τt = 5).

iterations in the same amount of time, thus increasing the
explored search space and making it easy the adaptation
to changes.

Table 2 shows the speedups reached by our parallel
algorithm as more workers are added to the parallel
procedure. The speedups correspond to the rate between
the time required by the parallel algorithm executed in
n+1 processors (the master and n workers) to get the
solutions after τi iterations, and the time required by the

Table 1

Results for acc, stb, and reac in FDA2
τi Hypervolume acc stb reac

(ε = 0.1)
5 0.345 ± 0.005 0.97 ± 0.01 0.000 5

10 0.350 ± 0.005 0.99 ± 0.01 0.000 5
15 0.355 ± 0.005 1.00 ± 0.01 0.000 5
20 0.347 ± 0.005 0.98 ± 0.01 0.012 5
25 0.352 ± 0.005 0.99 ± 0.01 0.000 5
30 0.347 ± 0.005 0.98 ± 0.01 0.015 5
35 0.347 ± 0.005 0.98 ± 0.01 0.000 5
40 0.344 ± 0.005 0.97 ± 0.01 0.010 5
45 0.349 ± 0.005 0.98 ± 0.01 0.000 5
50 0.345 ± 0.005 0.97 ± 0.01 0.009 5
55 0.347 ± 0.005 0.98 ± 0.01 0.000 5
60 0.336 ± 0.005 0.95 ± 0.01 0.029 5
65 0.341 ± 0.005 0.96 ± 0.01 0.000 5
70 0.353 ± 0.005 0.99 ± 0.01 0.000 5
75 0.340 ± 0.005 0.96 ± 0.01 0.035 5
80 0.344 ± 0.005 0.97 ± 0.01 0.000 5
85 0.347 ± 0.005 0.98 ± 0.01 0.000 5
90 0.339 ± 0.005 0.96 ± 0.01 0.021 5
95 0.349 ± 0.005 0.98 ± 0.01 0.000 5
100 0.347 ± 0.005 0.98 ± 0.01 0.006 5
SFGA algorithm (for the same number of iterations).

It can be checked that the speedup is super-linear,
especially for two and four workers.

Although the speedup keeps being super-linear for
eight processes, it does not increase so much between four
and eight processes. Anyway, there is a clear trend
towards a reduction in the computation time. The
improvement in the performance of the parallel algorithm
has much to do with the super-linear behaviour, because it
works with more diversified populations.

Table 2
Speedup results for FDA2.

Number of workers τi
2 4 8 16

5 5,25 8,4 10,5 10,5
10 4,56 8,2 8,2 8,2
15 4,67 10,5 8,4 8,4
20 4,67 8,4 10,5 10,5
25 4,78 8,6 10,75 10,75
30 4,78 8,6 8,6 10,75

To evaluate the quality of the solutions we use the

arithmetic mean of the hypervolumes that have been
obtained for a given time interval. From that measure we
can compare the solutions found by the algorithm when a
different number of worker processes is used. Table 3
shows the values which have been obtained for FDA2
from times 5 to 200, at steps of 5 iterations, and using
between 1 and 32 workers.

Table 3

Quality of the solutions depending on the number
of workers for FDA2.

Workers Mean hypervolume
1 0.2458 ± 0.0007
2 0.2463 ± 0.0007
4 0.2472 ± 0.0007
8 0.2474 ± 0.0007
16 0.2472 ± 0.0007
32 0.2474 ± 0.0007

As it can be seen, the quality of the solutions worsens

slightly as the number of workers used to solve the
problem increases.

6. Conclusions

The first results of our approach to the possibilities of
parallel processing for dynamic multi-objective
optimization are quite acceptable. First of all, it has been
shown the ability of our parallel procedure to reach
solution sets quite near to the changing Pareto fronts. This

procedure is an adaptation to dynamic environments of
the PSFGA algorithm for multi-objective optimization
[11]. It uses a master process to distribute the population
of solutions among the processors that evolve their
corresponding subpopulations for genpar iterations. Then,
the master collects the (partial) Pareto fronts
independently determined by the worker processors,
builds a whole Pareto front from the partial ones, executes
genser iterations of the evolutionary algorithm, and
distributes the obtained population of solutions again.
Thus, the procedure we have proposed allows a
continuous transition between a master-worker operation
model, when genpar is set to 0 (the workers only compute
the fitness of their subpopulations) and an island model
(genpar>0) where the processors communicate through
the master.

On the other hand, the speedup results obtained allow a
reduction in the convergence times, and hence, the ability
to satisfy stronger time restrictions in the dynamic
problem. We consider that the super-linear speedups that
have been observed in some cases show the usefulness of
parallel processing in keeping up the diversity of the
population, in the improvement of the reaction capability
and in the algorithm adaptability.

It is clear that there are many things to do yet. On one
side, we think that many algorithm characteristics and
parameters should be analyzed and optimized, both in the
sequential and parallel versions of the algorithm. Thus,
we plan to study the scalability and performance
behaviour for different versions of the algorithm in which
the worker and master processes run asynchronously, with
different communication schemes (including the ability of
direct communications between workers), and
genser/genpar rates. We also plan to consider other more
flexible schemes where, for example, more than one
process acts as a master at a given time. Furthermore, it is
also necessary to evaluate the performance of the
procedure with a broader set of benchmarks and some real
world applications.

Acknowledgements—This work has been done with
funding from the project TIN2004-01419 (by the Spanish
Ministry of Science and Technology), and the program
for early stage researchers by the Andalusian government,
co financed with FEDER funds.

References

[1] Branke, J.; Mattfeld, D.C.: “Anticipation and flexibility in

dynamic scheduling”. International Journal of Production
Research, Vol.43, No.15, pp.3103-3129. August, 2005.

[2] Farina, M.; Deb, K.; Amato, P.: “Dynamic Multi-objective
Optimization Problems: Test cases, Approximations, and
Applications”. IEEE Trans. on Evolutionary Computation,
Vol.8, No.5, pp.425-342. October, 2004.

[3] Coello, C.A.: “An Updated Survey of GA-Based Multi-
objective Optimization Techniques”, Technical Report
Lania-RD-98-08, Laboratorio Nacional de Informática
Avanzada (LANIA), Mexico, 1998.

[4] Jin, Y.; Branke, J.: “Evolutionary Optimization in Uncertain
Environments – A Survey”. IEEE Trans. on Evolutionary
Computation, Vol.9, No.3, pp.303-317. June, 2005.

[5] Coello Coello, C.A, Van Veldhuizen, D.A, Lamont, G.B.
“Evolutionary Algorithms for Solving Multi-Objective
Problems”. Kluwer Academic Publishers, 2002.

[6] Bibliography on Evolutive Algorithms for Multiobjective
Optimization: http://www.lania.mx/~ccoello/EMOO/

[7] EvoDOP (Evolutionay Algorithms for Dynamic
Optimization Problems): http://www.aifb.uni-
karlsruhe.de/~jbr/EvoDOP/

[8] Waiker, K.: “Performance Measures for Dynamic
Environments”. Parallel Problem Solving from Nature,
LNCS 2439, pp.64-73, 2002.

[9] Zitzler, E.; Deb, K.; Thiele, L.: “Comparison of Multi-
objective Evolutionary Algorithms: Empirical Results”.
Tech. Report 70, ETH Zurich, December, 1999.

[10] Van Velhuizen, D.A.; Zydallis, J.B.; Lamont, G.B.:
“Considerations in Engineering Parallel Multi-objective
Evolutionary Algorithms”. IEEE Trans. Evolutionary
Computation, Vol. 7, No.2, pp.144-173. April, 2003.

[11] Toro, F.; Ortega, J.; Ros, E.; Mota, B.; Paechter, B.; Martín,
J.M.: “PSFGA: Parallel processing and evolutionary
computation for multi-objective optimization”. Parallel
Computing, Vol. 30, pp.721-739, 2004.

[12] Toro, F.; Ros, E.; Mota, S.; Ortega, J.: “Evolutionary
Algorithms for Multi-objective and Multimodal
Optimization of Diagnostic Schemes”. IEEE Trans. on
Biomedical Engineering, Vol.53, No.2, pp. 178-189.
February, 2006.

[13] Cobb, H.J.; Grefenstette, J.J.: “Genetic Algorithms for
tracking changing environments”. Proc. of the 5th Intl.
Conference on Genetic Algorithms (S. Forrest, Ed.), Morgan
Kaufmann Pub., pp.523-530, 1993.

[14] Vavak, F.; Jukes, K.; Fogarty, T.C.: “Adaptive combustion
balancing in multiple burner boiler using a genetic algorithm
with variable range of local search”. 7th Intl. Conference on
Genetic Algorithms (T. Bäck, Ed.), Morgan Kaufmann Pub.,
pp. 719-726, 1997.

[15] Mori, N.; Kita, H.; Nishikawa, Y.: “Adaptation to cahnging
environment by means of the feedback thermodynamical
genetic algorithm”. Parallel Problem Solving from Nature,
LNCS, 1498, Springer, pp.149-158, 1998.

[16] Cedeño, W.; Vemuri, V.R.: “On the use of Niching for
Dynamic Landscapes”. IEEE Intl. Conference on
Evolutionary Computation, pp.361-366. April, 1997.

[17] Branke, J.: “Memory enhanced evolutionary algorithms for
changing optimization problems”. Proc. of the Congress on
Evolutionary Computation, Vol.3, pp.1875-1882, 1999.

[18] Yang, S.: “Population-based incremental learning with
memory scheme for changing environments”. Proc. of the
Genetic and Evolutionary Computation Conference, Vol.1,
pp.711-718, 2005.

[19] Ursem, R.K.: “Multinational Gas Optimization techniques
in dynamic environments”. Genetic and Evolutionary
Conference (D. Whitley et al., Eds.), Morgan Kaufmann
Pub., pp.19-26, 2000.

[20] Branke, J.; Kaussler, T.; Schmidth, C.; Schmeck, H.: “A
multi-population approach to dynamic optimization
problems”. Adaptive Computing in Design and
Manufacturing, pp. 299-308, 2000.

[21] Morrison, R.: “Performance measurement in dynamic
environments”. GECCO Workshop on Evolutionary

Algorithms for Dynamic Optimization Problems (J. Branke,
Ed.), pp.5-8, 2003.

[22] Horn, J; Nafpliotis, N.: “Multiobjective optimization using
the niched Pareto genetic algorithm”. IlliGAL Rep. No.
93005, Illinois Genetic Algorithm Laboratory, University of
Illinois at Urbana-Champaign, 1993.

