
An Artificial Immune System for Heterogeneous Multiprocessor Scheduling with
Task Duplication

Young Choon Lee and Albert Y. Zomaya
Advanced Networks Research Group, School of Information Technologies,

The University of Sydney, NSW 2006, Australia
{yclee,zomaya}@it.usyd.edu.au

Abstract

In this study, we investigate the task scheduling
problem in heterogeneous computing environments and
propose a novel scheduling algorithm, called the Artificial
Immune System with Duplication (AISD) algorithm that
efficiently tackles the problem. The AISD algorithm
incorporates the clonal selection principle in the immune
system and task duplication into the scheduling process.
Based on the performance results obtained from extensive
experiments conducted with a comprehensive set of both
randomly generated and well-known application task
graphs and various system configurations, AISD
consistently outperformed the two existing algorithms by a
noticeable margin, especially when scheduling
communication intensive task graphs.

1. Introduction

Task scheduling problems have been extensively
studied for many years. However, due to the NP-complete
nature of the problem in most cases heuristic algorithms
account for a myriad of existing scheduling algorithms [1].
Most of these scheduling heuristics have been designed
for homogeneous computing systems, whereas only a
handful of efficient heuristics for heterogeneous
computing systems has been proposed. Heuristic based
scheduling algorithms are normally the ones favored by a
large number of researchers.

In attempts to obtain better schedules a noticeable
number of metaheuristics, mostly inspired by nature,
including genetic algorithms, ant colonies, tabu search and
simulated annealing, have also been adopted. More
recently, another biologically-inspired approach emerged
which is based on the immune system.

The immune system of an organism, the vertebrate
immune system in particular, is regarded as an extremely
effective defence system against virtually an unlimited

number of biological attackers, such as microorganisms,
parasites and viruses. It protects the host from these
invaders by coordinating a complex, yet sophisticated set
of immune features. Due to the self-organizing,
cooperative and robust characteristics of the immune
system its applicability to various areas, such as pattern
recognition, network security and anomaly detection has
been actively studied in the past decade [2, 3, 4].
However, only recently immune system based scheduling
algorithms have been developed by researchers to target
different instances of the problem [5, 6, 7, 8].

This paper proposes an artificial immune system for
heterogeneous multiprocessor scheduling with task
duplication known as the Artificial Immune System with
Duplication (AISD). It first generates and refines a set of
schedules using a modified clonal selection algorithm and
then attempts to further improve the schedules with task
duplication. The AISD algorithm schedules tasks in a task
graph via three carefully designed phases: clonal selection,
task duplication and ineffectual task removal. The
performance gain of the proposed algorithm is obtained
not from a particular one of these phases, but from the
careful coordination of them. Despite the adoption of
immune features (i.e., clonal selection and affinity
maturation), task insertion and task duplication, the AISD
algorithm remains at an affordable level of time
complexity.

The remainder of this paper is organized as follows.
Sections 2 and 3 introduce some background material on
scheduling problems and the immune system, respectively.
The proposed algorithm is described in detail in Section 4.
In Section 5, the evaluation results are presented and
explained with conclusions following in Section 6.

2. Scheduling Problem

Parallel programs, in general, can be represented by a
directed acyclic graph (DAG). A DAG, G = (V, E),
consists of a set V of v nodes and a set E of e edges. A
DAG is also called a task graph or macro-dataflow graph.

1-4244-0910-1/07/$20.00 ©2007 IEEE

In general, the nodes represent tasks partitioned from an
application and the edges represent precedence
constraints. An edge (i, j) ∈ E between task ni and task nj
also represents the inter-task communication. In other
words, the output of task ni has to be transmitted to task nj
in order for task nj to start its execution. A task with no
predecessors is called an entry task, nentry, whereas an exit
task, nexit, is one that does not have any successors. Among
the predecessors of a task ni, the predecessor which
completes the communication at the latest time is called
the most influential parent (MIP) of the task denoted as
MIP(ni).

In general, the nodes represent tasks partitioned from an
application and the edges represent precedence
constraints. An edge (i, j) ∈ E between task n

Task P0 P1 P2 b-level
0 14 16 9 162.33
1 13 19 18 129.67
2 11 13 19 137.33
3 13 8 17 132.67
4 12 13 10 121.67
5 13 16 9 120.67
6 7 15 11 100.00
7 5 11 14 93.00
8 28 12 20 97.00
9 14 7 16 72.00
10 16 25 12 44.67
11 17 10 20 38.67
12 9 14 19 14.00

Figure 1. A sample task graph

The weight on a task ni denoted as wi represents the
computation cost of the task. In addition, the computation
cost of the task is on a processor pj, is denoted as wi,j and
its average computation cost is denoted as

The weight on a task n

i and task nj
also represents the inter-task communication. In other
words, the output of task ni has to be transmitted to task nj
in order for task nj to start its execution. A task with no
predecessors is called an entry task, nentry, whereas an exit
task, nexit, is one that does not have any successors. Among
the predecessors of a task ni, the predecessor which
completes the communication at the latest time is called
the most influential parent (MIP) of the task denoted as
MIP(ni).

i denoted as wi represents the
computation cost of the task. In addition, the computation
cost of the task is on a processor pj, is denoted as wi,j and
its average computation cost is denoted as iw .

The weight on an edge, denoted as ci,j represents the
communication cost between two tasks, ni and nj.
However, communication cost is only required when two
tasks are assigned to different processors. In other words,
the communication cost when they are assigned to the
same processor can be ignored, i.e., 0.

The target system used in this work consists of a set P
of p heterogeneous processors/machines that are fully
interconnected. The inter-processor communications are
assumed to perform with the same speed on all links
without contentions. It is also assumed that a message can
be transmitted from one processor to another while a task
is being executed on the recipient processor which is
possible in many systems.

The earliest start time of, and the earliest finish time of,
a task ni on a processor pj is defined as

⎪
⎩

⎪
⎨

⎧
=),(ji pnEST

0

PppnMIPEFT kki ∈),),((
inMIPkki i

cPppnMIPEFT),(),),((+∈ if j ≠ k

if ni = nentry
if j = k

=),(ji pnEFT jiji wpnEST ,),(+

Note that the actual start and finish times of a task ni on
a processor pj, denoted as AST(ni, pj) and AFT(ni, pj) can
be different from its earliest start and finish times, EST(ni,
pj) and EFT(ni, pj), if the actual finish time of another task
scheduled on the same processor is later than EST(ni, pj).

In the case of adopting task insertion the task can be
scheduled in the idle time slot between two consecutive
tasks already assigned to the processor as long as no
violation of precedence constraints is made. This insertion
scheme would contribute in particular to increasing the
processor utilization for a communication intensive task
graph with fine-grain tasks.

A simple task graph with its details is shown in Figure
1. The values presented in the last column of the table in
Figure 1 are computed using a frequently used task
prioritization method, b-level. The b-level of a task is

computed by adding the computation and communication
costs along the longest path of the task from the exit task
in the task graph (including the task).

The communication to computation ratio (CCR) is a
measure that indicates whether a task graph is
communication intensive, computation intensive or
moderate. For a given task graph, it is computed by the
average communication cost divided by the average
computation cost on a target system.

The task scheduling problem in this study is the process
of allocating a set V of v tasks to a set P of p processors
aiming to minimize schedule length (SL), also called
makespan, without violating precedence constraints. The
schedule length is defined as SL=max{AFT(nexit)} after the
scheduling of v tasks in a task graph G is completed.

3. The Immune System: Principles and
Processes

The immune system is a biological defence mechanism
designed to protect a given organism primarily from
microbes, such as bacteria, archaea, fungi, protists and
viruses. Using allied forces of cells, tissues and organs, it
battles against foreign invaders.

At the highest level, two defence lines (the innate and
the adaptive immune systems) are embodied. The core
forces of both systems are different types of white blood
cells.

The innate or non-specific immune system is the first
line of defence that uniformly combats any invader very
directly and immediately with chemical substances and
specific types of white blood cells. However, during the
lifetime of an organism it encounters numerous different
attackers (antigens) that the innate immune system is not
able to handle effectively. The adaptive or specific
immune system comes into play in such a circumstance.

Among a number of immune features in the adaptive
immune system clonal selection with affinity maturation is
the particular interest in this study in that it is incorporated
with the proposed algorithm.

3.1. Adaptive Immune System

As a host experiences constant encounters of various
antigens it is quite necessary for immune entities to be
equipped with memory, learning and adaptive functions.
The adaptive immune system protects the host by a
sophisticated coordination of these functions.

The two key components in the adaptive immune
system are B lymphocytes (B cells) and T lymphocytes (T
cells) of white blood cells that are produced by stem cells
in the bone marrow. While T cells take charge of the
cellular immunity B cells, more precisely
immunoglobulins or antibodies, oversee the humoral
immunity.

Now the question is how the adaptive immune system
can respond against a virtually unlimited and diverse set of
antigens. A sequence of phases for battling against these
immunological enemies shown in Figure 2 can answer this
question.

3.2. Clonal Selection

One of the most powerful features of the immune

system is its adaptability. The clonal selection principle
[9] in the adaptive immune system plays an important role
in this property. Although clonal selection occurs on both
T and B cells the focus in the field of AIS is often aimed
at B cells. This is primarily due to the fact that B cell
clonal selection involves mutation that further enhances
the adaptability of B cells. Hereafter, clonal selection
simply refers to that of B cells.

The rationale behind the clonal selection theory is that
superior B cells are preserved with a minor degree of
mutation and become prevalent, and inferior ones are
mutated at a high rate hoping to be improved and become
rare. More specifically, when a foreign intruder (antigen)
attacks the host, B cells matching the antigen will be
cloned (i.e., clonal expansion) and mutated (i.e., affinity
maturation) at rates directly proportional to and inversely
proportional to the degree of the match (or affinity),
respectively. Note that the superiority of a B cell actually
refers to that of its antibody.

3.3. Artificial Immune Systems

The biological immune system has been shown to be a
great mechanism to effectively deal with a virtually
unlimited number of threats in very stochastic
environments. It has been used in an increasing number of

ar
an
(A
w
o
fo

ar
th
im
su
im
m
p
o

4
D

m
p
T
3

4

p
an
sc
h
si

Figure 2. The primary steps involved in the

adaptive immune system

eas, such as computer and network security, data mining
d pattern recognition. An artificial immune system
IS) can be defined as a methodology for solving a real-

orld problem by using abstractions inspired by features
f the immune system. Several other definitions can be
und in the literature [10].
The two most favored immune entities modeled in AIS

e antibodies and antigens since they are key players in
e adaptive immune system. In cooperation with these
mune entities several other immunological theories,
ch as negative/positive selection, clonal selection,
mune networks and danger model have been actively

odeled [11]. Note that, these are only some of the
opular instances that have been modeled using a rich set
f immune characteristics.

. The Artificial Immune System with
uplication (AISD) Algorithm

The AISD algorithm performs scheduling through three
ajor phases, a clonal selection phase, a task duplication

hase and an ineffectual task removal phase in this order.
he workings of these three phases are shown in Figures
, 4 and 5, respectively.

.1. Clonal Selection Phase

The AISD algorithm adopts the clonal selection
rinciple in the immune system as a key player to generate
d refine schedules, eventually resulting in good quality
hedules. Here, a schedule is denoted as an antibody. The

euristic achieves its competitive performance not by
mply incorporating immune features, but by intuitively

Function ClonalSelection
/**
Input:
 minG: min #groups;
 maxG: max #groups;
 c: #clones to generate for each base antibody
 sr: maximum antibody selection rate
 basemr: mutation rate
Output:
 A set AB of antibodies **/
1. Compute b-level(ni) ∀ Vni ∈

2. Sort the tasks ∈ in decreasing order by b-level value V
3. Let b = v / (minG + v / p % maxG)
4. Let AB = Ø
5. while (∃ │ni is unscheduled) do Vni ∈

6. Remove first b tasks from V and insert them to B
7. Let newAB = Ø
8. do
9. Let prevab = the first antibody in AB
10. Generate a base antibody baseAB(B) based on

taking prevab into account ∀),(min jiPp pnAFT
j∈ Bni ∈

11. Let abP = prevab + baseAB(B)
12. Generate a set C of c-1 clones of baseAB(B)
13. for each clone do Cck ∈

14. Mutate ck based on basemr /* b×basemr times */
15. Add (prevab + ck) to abP
16. end for
17. Let AB = AB – prevab
18. Add abP to newAB
19. while (AB ≠ Ø)
20. Select best antibodies in newAB based on sr and store
them in nextAB
21. for each abi∈nextAB do
22. Let ci = a clone of abi
23. Mutate abi based on affinity (schedule length)
24. Replace abi with ci if sl(ci) shorter than sl(abi)
25. end for
26. Let AB = nextAB
27. end while
28. return AB

Figure 3. The Clonal selection algorithm

adapting and carefully coordinating them for scheduling
purposes.

 The adaptations to typical characteristics of clonal
selection AISD makes include group-wise task scheduling
and judicious base schedule generation. That is, tasks in a
given task graph are grouped into a number of scheduling
batches based primarily on the number of processors with
time complexity taken into consideration (step 3). Tasks in
each batch are initially scheduled based on their earliest
actual finish times (step 10). The schedule of the batch is
called a base antibody (schedule). This base antibody
should not violate any precedence constraints; that is, the

schedule for tasks in the previous batches is considered
when computing the earliest actual finish times of the
tasks in the batch. This preceding schedule is denoted as
prevab at step 9. The base antibody is cloned and the
clones are mutated based on a uniform mutation rate
specified as an input parameter (steps 13-16). This
mutation process in addition to the base antibody
generation scheme is adopted in order to ensure the
antibody population is generated at a certain level of
quality. Each antibody in an antibody population is a
concatenation of the preceding antibody and a currently
generated one (step 15). After generating a set of antibody
populations antibodies in each population are evaluated
based on schedule length and a set of best ones are
selected, with the probability of selection directly
proportional to affinity. More formally,

NAB(abP) = max{0, │abP│× (sr – (ssl(abP) – mssl) / mssl)},

where NAB(abP) is the number of antibodies to select in
antibody population abP, sr is the maximum antibody
selection rate (e.g., 0.3 for 30%) specified as an input
parameter, ssl(abP) is the shortest schedule length in abP,
and mssl is the minimum shortest schedule length in all
antibody populations. Note that, there is an inverse
relationship between schedule length and affinity. These
selected antibodies further undergo a process called
hypermutation, with the probability of mutation inversely
proportional to its affinity. The number of mutations per
antibody is defined to be

NM(ab) = 2 + (sl(ab) – mssl) / mssl * 10 * λ,

where NM(ab) is the number of mutations antibody ab
undergoes and sl(ab) is the schedule length of ab. The
minimum number of mutations is set to 2. The number of
mutations is characterized primarily by the mutation rate
parameter λ.

Actual mutations are carried out by the two types of
mutation (point mutation and point-point swapping)
adopted in the proposed algorithm. Any time a mutation is
required a mutation type is randomly selected. As the
names of the two mutation types are self explanatory they
perform random point by point replacements and point to
point swaps, respectively. More specifically, for each
mutation the former randomly selects a point (processor)
in an antibody and replaces it with a randomly chosen one,
whereas the latter swaps two randomly selected points. If
the mutated clone of an antibody exhibits stronger affinity
than that of the antibody, it supersedes the original
antibody (step 24). This series of steps repeats until tasks
in all batches are scheduled.

4.2. Task Duplication Phase

Function IneffectualTaskRemoval
/**
Input: An antibody ab
Output: A refined antibody ab **/
1. Remove the one, among the replicas of the exit task
in ab, whose actual finish time is the latest
2. for each task ni from the back of ab do
3. Let IPi = a set of immediate predecessor tasks of ni
4. for each replica ri,j of ni do
5. if (ri,j ≠ nexit and useful(ri,j) ≠ true) then
6. Remove ri,j
7. else
8. for each immediate predecessor task ipi,k ∈ IPi do
9. Let RIPi,k = a set of replicas of ipi,k
10. Let uip=min { }

jimkikimki rripmkimkiRIP cpripAFT
,,,,,, ,,,,,),(+∈rip

11. Let useful(uip) = true
12. end for
13. end if
14. end for
15. end for
16. return ab

Figure 5. The ineffectual task removal algorithm

Function TaskDuplication
/**
Input: A set AB of antibodies
Output: An antibody (schedule) of V onto P **/
1. Let sl(bestab) = ∞
2. for each abi∈ do AB
3. for each task ni,k encoded in abi do
4. Compute AFT(ni,k, pj) Pp j ∈∀

5. Let ndups = min{p-1, max{1, # grand children of ni,k}}
6. Duplicate ni,k as many as ndups times based on AFT
7. end for
8. Recompute schedule length of abi
9. Replace bestab with abi if sl(abi) is shorter than
sl(bestab)
10. end for
11. return bestab

Figure 4. The task duplication algorithm

As a result of the clonal selection phase of AISD a set
of best antibodies is obtained. Task duplication, as an
attempt to further reduce the schedule length, then takes
place with these resultant antibodies. Each task encoded in
a selected antibody is considered for duplication. Tasks
are duplicated only if duplications do not increase the
schedule length associated with the selected antibody. The
number of duplications ranges from at least one up to as
many as whichever is the minimum: the number of its
grand child tasks and one fewer than the number of
processors (step 5). Note that there is at most one instance
of a task on each processor. This duplication policy
ensures that the higher priority and more successor tasks a
task has the more duplications it is considered for. At the
end of this task duplication phase the best antibody (the
one with the shortest schedule length) is selected and
passed into the ineffectual task removal phase.

4.3. Ineffectual Task Removal Phase

Now the best antibody, generated and selected via the
clonal selection and task duplication phases, is scrutinized
to see if there are any unnecessarily duplicated tasks. If
so, those useless replicas are removed.

The first step in the ineffectual task removal phase is to
ensure there is only one exit task scheduled. Since any
task in a task graph can be duplicated at least once
including the exit task there might be two copies of the
exit task in the schedule (step 1).

For each task, its immediate predecessor (parent) tasks
including their replicas are examined to find out which
parent tasks are most effectively scheduled (steps 8-12).
The decisions are made based on their actual finish times.
For a particular task if it is not regarded to be useful for
any of its child tasks after checking the usefulness of all its
child tasks it is removed (step 6).

Note that the ineffectual task removal algorithm
assumes that there is only one exit task in a task graph. In
case of a task graph with multiple exit tasks a dummy exit
task, to which the actual exit tasks are connected, is added.
Thus, any costs (i.e., computation and communication)
associated with this addition are set to 0.

5. Performance Evaluation

In this section the performance of the AISD algorithm
is evaluated based on its performance results obtained
from experiments conducted with two extensive sets of
task graphs: randomly generated and well-known
application task graphs. The three well-known parallel
applications used for our experiments are the Laplace
equation solver [12], the LU-decomposition [13] and Fast
Fourier Transformation [14]. The proposed algorithm is
also compared with two previously proposed heuristics,
i.e., HEFT [15] and DBUS [16]. The selection was
determined mainly by two main factors. The first is that
they have both been shown to perform well in terms of the
schedule length. Secondly, the target system
configurations of the two heuristics are compatible with
AISD. To the best of our knowledge, none of existing
scheduling schemes for heterogeneous computing systems
incorporates the immune system as a core component.

The comparison results in this work are presented with
intermediate results of AISD, i.e., schedules generated by
the AIS (the clonal selection phase) without the task
duplication and ineffectual task removal phases. This is

because it is not clearly seen, from the performance results
of AISD, the contribution that the AIS makes.

Typically, the schedule length of a task graph generated
by a scheduling algorithm is used as the main performance
measure of the algorithm. The performance metric used
for the comparison is the normalized schedule length
(NSL). The normalized schedule length is defined to be
schedule length obtained by a particular algorithm over
schedule length obtained by the HEFT algorithm.

As implied in Section 4.1 the performance of AISD
tends to be influenced by its input parameters, i.e., minG,
maxG, c, sr and λ. The actual values of these parameters
used for our experiments are: (1) minG = 3, (2) maxG =
10, (3) sr = 30%, (4) c = 10 and (5) λ = 2. It should be
noted that they are chosen with the time complexity in
mind.

5.1. Experiment Configuration

The parameters used in the experiments are
summarized in Table 1. The total number of experiments
conducted with various both randomly generated and real-
world application task graphs on the five different
numbers of processors is 84,000. More specifically, the
random task graph set consists of 210 base task graphs
generated with combinations of 10 graph sizes, 7 CCRs
and 3 processor heterogeneity settings. For each
combination 20 task graphs are randomly generated
retaining the base one’s characteristics. These 4,200
graphs are then experimented on with 5 different numbers
of processors. Furthermore, each of the three applications
is experimented on with the same number of task graphs
(i.e., 21,000); hence the figure 84,000.

Table 1. Experimental parameters

Parameter Value
The number of tasks U(10, 600)

CCR {0.1, 0.2, 0.5, 1, 2, 5, 10}
The number of processors {2, 4, 8, 16, 32}
Processor heterogeneity {100, 200, random}

The computation and communication costs of the tasks

in each task graph were randomly selected from a uniform
distribution with the mean equal to the chosen average
computation and communication costs. The processor
heterogeneity value of 100 is defined to be the percentage
of the speed difference between the fastest processor and
the slowest processor in a given system. For the well-
known application task graphs, the matrix sizes and the
number of input points are varied, so that the number of
tasks can range from about 10 to 600.

Although the experiments are carried out with seven
different CCRs as stated in Table 1 only experimental

results obtained with three significant CCRs of 0.1, 1 and
5 are presented. This is due to the fact that these results are
good enough to represent the performance of the three
heuristics (AISD, HEFT and DBUS) for three
fundamental task graph types (computation-intensive,
moderate, communiation-intensive). What is more, the rest
of the test results obtained from the task graphs with
CCRs of 0.2, 0.5, 2 and 5 tend to be similar to those
obtained from the task graphs with close CCRs. For
instance, the test result acquired from the task graphs with
CCR 5 does not show significant difference from the test
result acquired from the task graphs with CCR 10.

5.2. Experimental Results

It is clearly shown in Figures 6 and 7 that the AISD
algorithm delivers quite competitive schedule lengths
irrespective of different application and system
characteristics, e.g., graph sizes and the number of
processors. The schedule lengths obtained from
communication intensive task graphs indicate that the
AISD algorithm is better suited for task graphs consisting
of fine-grain tasks with large communication costs. This is
also true for the DBUS algorithm. However, its
performance drops noticeably with computation intensive
task graphs. Moreover, when the number of processors in
a given system is small even DBUS poorly performs with
communication intensive task graphs. More precisely, the
larger the ratio between the number of tasks and the
number of processors, the poorer DBUS performs. This is
due to the fact that a task with a single child may have to
be assigned to more than one processor if the child task
has been duplicated multiple times in order to cover the
multiple child tasks of its own. This takes place
recursively leading to increasing the schedule length
significantly. The AISD algorithm, however, overcomes
this drastic degradation by performing initial scheduling
and task duplication separately. In other words, task
duplication only takes place after all tasks in a task graph
are scheduled without duplication.

Two major sources of the performance gain of AISD
are its clonal selection and task duplication schemes as
shown in Figures 6 and 7. The former refines and leads to
decent quality schedules, and the latter makes efforts
towards reducing the communication overhead.

The average schedule length of AISD computed based
on communication intensive task graphs in the randomly
generated task graph set, shown in Figure 6, is 18% on
average and 32% at best, smaller than that of HEFT. The
results on task graphs of the well-known applications in
Figure 7 reconfirm this superior performance of AISD.

Although DBUS tends to deliver significantly smaller
schedule lengths than those of HEFT for communication

intensive task graphs its applicability is limited to those
systems consisting of a large number of processors.

6. Conclusion

In this paper, we have presented a novel scheduling
algorithm, called the AISD algorithm, for heterogeneous

CCR = 0.1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32
Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

CCR = 1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32

Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

CCR = 10

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32

Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

Figure 6. Average NSL of random DAGs

CCR = 0.1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32
Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

CCR = 1

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32

Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

CCR = 10

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32
Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

(a)

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32

Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32
Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32

Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

(b)

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32
Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32

Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2 4 8 16 32

Number of Processors

A
ve

ra
ge

 N
SL

HEFT DBUS AIS AISD

(c)

Figure 7. Average NSL for DAGs of (a) Laplace, (b) LU and (c) FFT

computing systems. AISD incorporates the clonal
selection in the vertebrate immune system and task
duplication, as its core components, into its scheduling. It
is proved that these two irrefutably contribute to the
superior performance of the proposed algorithm. Based on
the performance results obtained from extensive
experiments conducted with a comprehensive set of both
randomly generated and well-known application task
graphs and various system configurations, AISD
consistently outperformed the two existing algorithms by a
noticeable margin, especially when scheduling
communication intensive task graphs.

References

[1] M.R. Garey and D.S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman and
Co., pages 238–239, 1979.
[2] L.J. Gonzales and J. Cannady. A self-adaptive negative
selection approach for anomaly detection. In Proceedings of
Congress on Evolutionary Computation, volume 2, pages 1561–
1568, Jun. 2004.
[3] J. Kim and P.J. Bentley. Towards an artificial immune
system for network intrusion detection: an investigation of clonal
selection with a negative selection operator. In Proceedings of
Congress on Evolutionary Computation, volume 2, pages 1244–
1252, May 2001.
[4] T. Stibor, J. Timmis and C. Eckert. On the appropriateness of
negative selection defined over Hamming shape-space as a
network intrusion detection system. In Proceedings of Congress
on Evolutionary Computation, volume 2, pages 995–1002, Sep.
2005.
[5] A. Swiecicka, F. Seredynski, and A.Y. Zomaya.
Multiprocessor scheduling and rescheduling with use of cellular
automata and artificial immune system support. IEEE
Transactions on Parallel and Distributed Systems, 17(3):253–
262, Mar. 2006.
[6] A. M. Costa, P. A. Vargas, F. J. Von Zuben and P. M.
Franca. Makespan minimization on parallel processors: an
immune-based approach. In Proceedings of Congress on
Evolutionary Computation, volume 1, pages 920 – 925, May
2002.
[7] Z. X. Ong, J. C. Tay and C. K. Kwoh. Applying the Clonal
Selection Principle to Find Flexible Jop-Shop Schedules. In
Proceedings of International Conference on Artificial Immune
Systems (ICARIS), pages 442–455, Aug. 2005.
[8] O. Engin and A. Doyen. A new approach to solve hybrid
flow shop scheduling problems by artificial immune system.
Future Generation Computer Systems, 20(6):1083–1095, Aug.
2004.
[9] F. M. Burnet. The Clonal Selection Theory of Acquired
Immunity. Cambridge University Press, 1959.
[10] L. N. de Castro and J. Timmis. Artificial Immune Systems:
A New Computational Intelligence Approach, 1st ed., Springer-
Verlag, London, page 58, 2002.
[11] S. Garrett. How Do We Evaluate Artificial Immune
Systems?. Evolutionary Computation, 13(2): 145–177, Jun.
2005.

[12] M.-Y. Wu and D.D. Gajski. Hypertool: A Programming Aid
for Message-Passing Systems. IEEE Transactions on Parallel
and Distributed Systems, 1(3):330–343, Jul. 1990.
[13] R.E. Lord, J.S. Kowalik, and S.P. Kumar. Solving Linear
Algebraic Equations on an MIMD Computer. Journal of the
ACM, 30(1):103–117, Jan. 1983.
[14] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction
to Algorithms. MIT Press, 1990.
[15] H. Topcuoglu, S. Hariri and M. Wu. Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous
Computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3):260–274, Mar. 2002.
[16] D. Bozdag, U. Catalyurek and F. Ozguner. A task
duplication based bottom-up scheduling algorithm for
heterogeneous environments. In Proceedings of International
Parallel and Distributed Processing Symposium (IPDPS), Apr.
2005.

