
Recurrent neural networks towards detection of SQL attacks

Jaroslaw Skaruz1, Franciszek Seredynski1,2,3

1Institute of Computer Science 2Institute of Computer Science
University of Podlasie Polish Academy of Sciences

Sienkiewicza 51, 08-110 Siedlce Poland Ordona 21, 01-237 Warsaw Poland
jaroslaw.skaruz@ap.siedlce.pl sered@ipipan.waw.pl

3Polish-Japanese Institute of Information Technology
Koszykowa 86, 02-008 Warsaw Poland

Abstract

In the paper we present a new approach based on ap-
plication of neural networks to detect SQL attacks. SQL
attacks are those attacks that take advantage of using SQL
statements to be performed. The problem of detection of
this class of attacks is transformed to time series predic-
tion problem. SQL queries are used as a source of events
in a protected environment. To differentiate between nor-
mal SQL queries and those sent by an attacker, we divide
SQL statements into tokens and pass them to our detection
system, which predicts the next token, taking into account
previously seen tokens. In the learning phase tokens are
passed to recurrent neural network (RNN) trained by back-
propagation through time (BPTT) algorithm. Teaching data
are shifted by one token forward in time with relation to in-
put. The purpose of the testing phase is to predict the next
token in the sequence. All experiments were conducted on
Jordan and Elman networks using data gathered from PHP
Nuke portal. Experimental results show that the Jordan net-
work outperforms the Elman network predicting correctly
queries of the length up to ten.

1. Introduction

Integrity, confidentiality and availability are the main
features of computer security. Large number of Web ap-
plications, especially those deployed for companies to e-
business purpose must meet these requirements. Such ap-
plications are written in script languages like PHP embed-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

ded in HTML allowing to establish connection to databases,
retrieving data and putting them in WWW site. Besides that
all Web contents is often based on the retrieved data, a data-
base also stores sensitive user typed data like credit card
numbers and personal information. Security violations con-
sist in not authorized access and modification of data in the
database. SQL is one of languages used to manage data in
databases. Its statements can be one of sources of events for
potential attacks. One of the ideas to detect an intruder us-
ing SQL statements is to build a profile of normal behavior
and in detection stage compare it with observed events.

In the literature there are some approaches to intrusion
detection in Web applications. In [1] the authors developed
anomaly-based system that learns the profiles of the normal
database access performed by web-based applications using
a number of different models. A profile is a set of models,
to which parts of SQL statement are fed to in order to train
the set of models or to generate an anomaly score. Dur-
ing training phase models are built based on training data
and anomaly score is calculated. For each model, the max-
imum of anomaly score is stored and used to set an anom-
aly threshold. During detection phase, for each SQL query
anomaly score is calculated. If it exceeds the maximum of
anomaly score evaluated during training phase, the query
is considered to be anomalous. Decreasing false positive
alerts involves creating models for custom data types for
each application to which this system is applied.

Besides that work, there are some other works on detect-
ing attacks on a Web server which constitutes a part of in-
frastructure for Web applications. In [2] detection system
correlates the server-side programs referenced by clients
queries with the parameters contained in these queries. It is
similar approach to detection to the previous work. The sys-

tem analyzes HTTP requests and builds data model based
on attribute length of requests, attribute character distribu-
tion, structural inference and attribute order. In a detection
phase built model is used for comparing requests of clients.

In [3] logs of Web server are analyzed to look for secu-
rity violations. However, the proposed system is prone to
high rates of false alarm. To decrease it, some site-specific
available information should be taken into account which is
not portable. Tan et al. [4] discuss some hints for intrud-
ers to be not detected by intrusion detection systems.The
study shows weakness of intrusion detectors and shows how
an attacker can effectively modify common exploits to take
advantage of those weakness in order to craft an offensive
mechanism that renders an anomaly-based intrusion detec-
tor blind to the on-going presence of those attacks.

In this work we present a new approach to intrusion de-
tection in Web application. Rather than building profiles of
normal behavior we focus on a sequence of tokens within
SQL statements observed during normal use of application.
Two architectures of RNN are used to encode stream of such
SQL statements.

The paper is organized as follows. The next section dis-
cusses SQL attacks. In section 3 we present two architec-
tures of RNN. Section 4 shows training and testing data
used for experiments. Next, section 5 contains experimental
results. Last section summarizes results and shows possible
future work.

2. SQL Attacks

2.1 SQL Injection

SQL injection attack consists in such a manipulation of
an application communicating with a database, that it al-
lows a user to gain access or to allow it to modify data for
which it has not privileges. To perform an attack in the most
cases Web forms are used to inject part of SQL query. Typ-
ing SQL keywords and control signs an intruder is able to
change the structure of SQL query developed by a Web de-
signer. It is possible because parts of SQL statements de-
pend on the data typed by a user. If variables used in SQL
query are under control of a user, he can modify SQL query
which will cause change of its meaning. Consider an exam-
ple of a poor quality code written in PHP presented below.

$connection=mysql_connect();
mysql_select_db("test");
$user=$HTTP_GET_VARS[’username’];
$pass=$HTTP_GET_VARS[’password’];
$query="select * from users where

login=’$user’ and password=’$pass’";
$result=mysql_query($query);
if(mysql_num_rows($result)==1)

echo "authorization successful"
else

echo "authorization failed";

The code is responsible for authorizing users. User data
typed in a Web form are assigned to variables user and pass
and then passed to the SQL statement. If retrieved data in-
clude one row it means that a user filled in the form login
and password the same as stored in the database. Because
data sent by a Web form are not analyzed, a user is free to
inject any strings. For example, an intruder can type: ”’ or
1=1 –” in the login field leaving the password field empty.
The structure of SQL query will be changed as presented
below.

$query="select * from users where login
=’’ or 1=1 --’ and password=’’";

Two dashes comments the following text. Boolean expres-
sion 1=1 is always true and as a result user will be logged
with privileges of the first user stored in the table users.

2.2 Cross Site Scripting

Cross Site Scripting known as XSS is another class of
attacks on Web applications, which through inserting ma-
licious data into a database can cause hijacking network
connection of a privileged user. Often Web sites includes
scripts written in JavaScript or in VBScript embedded in
HTML, which executes on a client side making application
more functional providing mechanisms for checking cor-
rectness of data types in forms or executing any function.
Attackers exploit trust relationship between a Web server
and a browser. This class of attack can occur when data sent
to the server are not checked and then they are downloaded
by other users and put into web site. If the data typed in a
form is a malicious script, it will be executed by a victim’s
browser. In the simplest case, a user will be shown pop-up
window with his session id, which completely identifies a
user. The code below is responsible for such an action.

<script>alert(document.cookie);</script>

When the script is retrieved from the server it is parsed and
executed by a browser. A window with contents of a cookie
is displayed to a user. Because string identificating a user is
stored in a cookie, stealing cookie leads to session hijacking
allowing an intruder to masquerade as a victim.

2.3 Other Attacks

Common architecture of a software needs application
communicating with a database, which purpose is to deliver
data to a user software. The software can be written in any
programming languages like C or Java with graphical user

2

interface different than WWW sites. Because once installed
software uses constant set of SQL statements, each occur-
rence of different than previously recorded SQL statements
can be treated as threatening. One of the causes of their
presence can be an intruder activity. On the other hand if a
new software is deployed, some new SQL statements will
be sent to a database. This time these statements are legal.
The presence of threatening SQL statements should be de-
tected. Our approach to detection SQL attacks described in
the next section can be applied to all discussed classes of
attacks.

2.4 Proposed approach

The way we detect intruders can be easily transformed
to time series prediction problem. According to [5] a time
series is a sequence of data collected from some system by
sampling a system property, usually at regular time inter-
vals. One of the goal of the analysis of time series is to fore-
cast the next value in the sequence based on values occurred
in the past. The problem can be more precisely formulated
as follows:

st−2, st−1, st −→ st+1, (1)

where s is any signal, which is dependent on a solving prob-
lem and t is a current moment in time. Given st−2, st−1, st,
we want to predict st+1. In the problem of detection SQL
attacks, each SQL statement is divided into some signals,
which we further call tokens. The idea of detecting SQL
attacks is based on their key feature. SQL injection and
XSS attacks involve modification of SQL statement, which
lead to the fact, that the sequence of tokens extracted from
a modified SQL statement is different than the sequence of
tokens derived from a legal SQL statement. For example,
let S means recorded SQL statement and T1, T2, T3, T4, T5

tokens of this SQL statement. The original sequence of to-
kens is as follows:

T1, T2, T3, T4, T5. (2)

If an intruder performs an attack, the form of SQL state-
ment changes. Transformation of the modified statement to
tokens results in different tokens than these shown in eq.(2).
The example of a sequence of tokens related to modified
SQL query is as follows:

T1, T2, Tmod3, Tmod4, Tmod5. (3)

Tokens number 3, 4, 5 are modified due to an intruder ac-
tivity. We assume that intrusion detection system trained
on original SQL statements is able to predict the next to-
ken based on the tokens from the past. If the token T1 oc-
curs, the system should predict token T2, next token T3 is
expected. In case of attacks token Tmod3 occurs which is
different than T3, which means that an attack is performed.

Various techniques have been used to analyze time series
[6, 7]. Besides statistical methods, RNNs have been widely
used for that problem. In our study presented in this paper
we selected two RNNs, the Elman and the Jordan networks.

3. Recurrent Neural Networks

3.1 General issues

Application of neural networks to solving any problem
involves three steps. The first is training, during which
weights of network connections are changed. Network out-
put is compared to training data and the network error is
evaluated. In the second step the network is verified. Val-
ues of connections weights are constant and the network is
checked if its output is the same as in the training phase.
The last step is generalization. The network output is eval-
uated for such data, which were not used for training the
network. Good generalization is a desirable feature of all
networks because it means that the network is prepared for
processing data, which may occur in the future.

In comparison to feedforward neural networks RNN
have feedback connections which provide dynamics. When
they process information, output neurons signal depends
on input and activation of neurons in the previous steps of
teaching RNN. However, RNNs suffer vanishing gradient
[8]. This is the main reason why gradient-descent algo-
rithms are not sufficiently powerful to map relationship be-
tween output of RNN and input that occur much earlier in
time. In [8] the authors compared the Elman network with
neural network based on NARX model. The model assumes
that output neuron signals from n times in back are passed
to the hidden layer neurons. This partially overcome van-
ishing gradient effect. Some researchers introduce modifi-
cations to known architectures of RNN to improve teaching
process. In [9] additional self-feedback connection to con-
text layer neurons of the Elman network was added. Exper-
imental results show that error of network when weight of
additional connection is fixed is smaller than error of the El-
man network. In the next section we show two architectures
of RNNs presented in figures 1 and 2.

3.2 RNN architectures

There are some differences between the Elman and the
Jordan networks. The first is that input signal for context
layer neurons comes from different layers and the second is
that Jordan network has additional feedback connection in
the context layer. While in the Elman network the size of
the context layer is the same as the size of the hidden layer,
in the Jordan network the size of output layer and context
layer is the same. In both networks recurrent connections
have fixed weight equal to 1.0. Networks were trained by

3

BPTT and the following equations are applied for the Elman
network:

x(k) = [x1(k), ..., xN (k), v1(k − 1), ..., vK(k − 1)], (4)

uj(k) =
N+K∑

i=1

w
(1)
ij xi(k), vj(k) = f(uj(k)), (5)

gj(k) =
K∑

i=1

w
(2)
ij vi(k), yj(k) = f(gj(k)), (6)

E(k) = 0.5
M∑

i=1

[yi(k) − di(k)]2, (7)

δ
(o)
i (k) = [yi(k) − di(k)]f ‘(gi(k)), (8)

δ
(h)
i (k) = f ‘(ui(k))

M∑

j=1

δ
(o)
j (k)w(2)

ij , (9)

wij(k+1)(2) = wij(k)(2)+
sql−length∑

k=1

[vi(k)δ(o)
j (k)], (10)

wij(k+1)(1) = wij(k)(1)+
sql−length∑

k=1

[xi(k)δ(h)
j (k)]. (11)

y1 y
M

h1 hK

x1 xN

1.0

Figure 1. Elman network

In the equations (4)-(11), N, K, M stand for the size of
the input, hidden and output layers, respectively. x(k) is an
input vector, uj(k) and gj(k) are input signals provided to
the hidden and output layer neurons. Next, vj(k) and yj(k)
stand for the activations of the neurons in the hidden and
output layer at time k, respectively. The equation (7) shows
how RNN error is computed, while neurons error in the out-
put and hidden layers are evaluated according to (8) and (9),
respectively. Finally, in the last step values of weights are
changed using formulas (10) for the output layer and (11)
for the hidden layer.

y1 y
M

h1 hK

x1 xN

1.0

Figure 2. Jordan network

Table 1. A part of a list of tokens and their
indexes

token index
... ...

WHERE 7
... ...

FROM string 28
... ...

SELECT string 36
... ...

string=number 47
... ...

INSERT INTO 54

3.3 Training

The training process of RNN is performed as follows.
The tokens of the SQL statement become input of a net-
work. Activations of all neurons are computed. Next, an
error of each neuron is calculated. These steps are repeated
until last token has been presented to the network. Next,
all weights are evaluated and activation of the context layer
neurons is set to 0. For each input data, teaching data are
shifted by one token forward in time with relation to input.
Training a network in such a way ensures that it will posses
prediction capability.

Training data consists of 276 SQL queries without rep-
etition. The following tokens are considered: keywords of
SQL language, numbers, strings and combinations of these
elements. We used the collection of SQL statements to de-
fine 54 distinct tokens. Each token has a unique index. The
table 1 shows selected tokens and their indexes. The in-
dexes are used for preparation of input data for neural net-
works. The index e.g. of a keyword WHERE is 7. The
index 28 points to a combination of keyword FROM and

4

any string. The token with index 36 relates to a grammat-
ical link between SELECT and any string. Finally, when
any string is compared to any number within a SQL query,
the index of a token equals to 47. Figure 3 presents an ex-
ample of SQL statement, its representation in the form of
tokens and related binary four inputs of a network. SQL

a)

b)

vector 1
vector 2
vector 3
vector 4

SELECT user_password FROM nuke_users WHERE user_id = 2

token 7token 36 token 28 token 47

000000000000000000000000000000000001000000000000000000
000000000000000000000000000100000001000000000000000000
000000100000000000000000000100000001000000000000000000
000000100000000000000000000100000001000000000010000000

Figure 3. Preparation of input data for a
neural network: analysis of a statement in
terms of tokens (a), input neural network data
corresponding to the statement (b)

statement is encoded as k vectors, where k is the number of
tokens constituting the statement (see figure 3). The num-
ber of neurons on the input layer is the same as the number
of defined tokens. Networks have 55 neurons in the output
layer. 54 neurons correspond to each token similarly to the
input layer but the neuron 55 is included to indicate that just
processing input data vector is the last within a SQL query.
Training data, which are compared to the output of the net-
work have value either equals to 0.1 or 0.9. If a neuron
number n in the output layer has small value then it means
that the next processing token can not have index n. On the
other hand, if output neuron number n has value of 0.9, then
the next token in a sequence should have index n.

At the beginning, SQL statement is divided into tokens.
The indexes of tokens are: 36, 28, 7 and 47. Each row is
an input vector for RNN (see figure 3). In the figure 3 the
first token that has appeared is 36. As a consequence, in the
first step of training output signal of all neurons in the input
layer is 0 except neuron number 36, which has value of 1.
Next input vectors indicate current indexes of tokens and the
index of a token that has been processed by RNN. The next
token in a sequence has index equals to 28. It follows that
only neurons 36 and 28 have output signal equal to 1. The
next index of a token is 7, which means that neurons: 36,
28 and 7 send 1 and all remaining neurons send 0. Finally,
neurons 36, 28, 7, 47 have activation signal equal to 1. In
that moment weights of RNN are updated and the next SQL
statement is considered.

4 Training and Testing Data

We evaluated our system using data collected from PHP
Nuke portal[10]. It is well known application with many
holes in older versions. Similarly to [1] we installed this
portal in version 7.5, which is susceptible to some SQL in-
jection and XSS attacks. A function of the portal related to
executing SQL statements was modified. Besides its orig-
inal purpose, each executed SQL query is written to a log
file. Data without attacks were gathered by visiting the Web
sites using a browser. Each time a Website is downloaded
by a browser either a link is clicked or filled forms are ex-
ecuted, SQL queries are sent to a database and logged to a
file simultaneously. During operation of the portal we col-
lected nearly 100000 SQL statements. It turned out that
the medium length of a typical SQL query is quite big. To
overcome this we used a compression mechanism, which
consists in linking a keyword and data type into a new to-
ken. The length of encoded SQL statements decreased but
it resulted in greater number of tokens, which requires more
neurons in output layer of RNN. The set of all SQL queries
was divided into 12 subsets, each containing SQL state-
ments of different length. 80% of each data set was used
for training and remaining data used for examining general-
ization. Teaching data are shifted one time forward in time.

Data with attacks are the same as reported in [1].
Below, we present SQL statements, which are the result
of data typed in Web forms by an intruder. For a detailed
description see [1]. The goal of the system is to recognize
these queries as dangerous by predicting the next token,
which is different than that, which was inserted by an
intruder modifying a SQL query.

Attack 1

SELECT active, view FROM nuke_modules
WHERE title=’Statistics’;
UPDATE nuke_users SET user_password=’<
new md5pass>’ WHERE username=’<user>’;
--’

Attack 2

SELECT uname FROM nuke_session WHERE
uname=’’ OR username LIKE ’A%’; --’

Attack 3

SELECT user_password, user_id FROM
nuke_users WHERE username=’’ OR
user_password=’<md5 password>’ ;’

Attack 4

SELECT time FROM nuke_session WHERE
uname=’\’ OR user_password=\’<md5
password> \’ ;’

5

Table 2. Value of parameters for training algo-
rithm of Elman and Jordan Networks

index of length of η α η α
data subset data subset Elman Elman Jordan Jordan

1 2-4 0.2 0.2 0.2 0.0
2 5 0.3 0.2 0.6 0.1
3 6 0.2 0.05 0.5 0.05
4 7 0.2 0.05 0.4 0.1
5 8 0.1 0.05 0.3 0.05
6 9 0.2 0.0 0.3 0.1
7 10 0.1 0.05 0.2 0.0
8 11 0.1 0.05 0.2 0.2
9 12 0.1 0.05 0.2 0.05

10 13-14 0.1 0.0 0.1 0.1
11 15-16 0.05 0.1 0.1 0.1
12 17-20 0.05 0.1 0.1 0.05

Attack 5

INSERT INTO nuke_referer VALUES (NULL,
’"onclick="alert(document.domain);"’)

5 Experimental Results

Experimental study was divided into four stages. In the
first one, we wanted to evaluate the best parameters of both
RNNs and learning algorithm. These features are: a number
of neurons in the hidden layer, α used in momentum, acti-
vation function of neurons in the hidden and output layer,
η that determines the extent of weights update. The table 2
presents the best values of parameters for each subset of
SQL queries. For the Elman network all neurons in the
hidden layer have sigmoidal activation function while all
neurons in the output layer have tanh function. For the Jor-
dan network tanh function was chosen for the hidden layer
and sigmoidal function for the output layer. For such as-
signment of activation functions, the obtained RMS error
was minimal. Ranges 2-4, 13-14, 15-16 and 17-20 of the
data subset (see Table 2) means that these subsets include
SQL queries of length between 2 and 4, 13 and 14, 15 and
16, 17 and 20. All remaining subsets contain fixed length
statements. For each data subset we run RNNs 10 times for
various initial value of weights, specifying different value
of η and a constant value of α. Next, having the best value
of η we modified α parameter. These tests were repeated
for all combination of settings of function activation for the
hidden and output layer neurons. η and α parameters were
taken in the range from 0.05 to 0.9. The table 2 summarizes
this phase of experiments. For values presented in table 2
obtained error of RNN was minimal. The number of neu-
rons in the hidden layer was also evaluated during experi-
ments - for 58 neurons RMS error was minimal. One can
see (see table 2) that in 75% cases η does not exceed 0.2
and α value in 87,5% of experiments is less than 0.2. In
each epoch these values were constant.

The other approach is to set η value about 0.8 at the be-
ginning and decrease it down to small value within next
epochs. It results in moves of a point related to initial so-
lution towards local minimum fast and then continuously
slow down oscillating near local minimum.

In the second phase of the experimental study we trained
12 RNNs, one for each training data subset, using values
from the first stage. Figure 4 shows how error of both net-
works changes through epochs. Input for both networks

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

er
ro

r

epoch

Error of neural networks during training

Jordan network error
Elman network error

Figure 4. Neural networks training process
for data subset with 10-length SQL queries

was a subset containing sequences of the length equals to
10. From the beginning of the training, the error of the Jor-
dan network was much smaller than error of the Elman net-
work. In the next a few epochs the error of both networks
decreased quickly but the Jordan network error remained
much smaller than the Elman network error. Figures 5 and 6
show how error of networks changes for all subsets of SQL
queries. The figures also depict how well the networks are
verified. Here, a statement is considered as well predicted
if for all input vectors, all neurons in the output layer have
values according to training data. All values presented in
figures are averaged on 10 runs of RNNs. One can see that
nearly for all data subsets the Jordan network outperforms
the Elman one. Only for data subsets 11 and 12 (see ta-
ble 2) the error of the Jordan network is greater than the
error of the Elman network. Despite of this for all data sub-
sets percentage number of wrong predicted SQL queries for
the Jordan network is less than the number of wrong pre-
dicted SQL statements for the Elman network. RMS (root
mean square - eq.(4)) error of two RNNs varies for different
data subsets and sometimes for longer queries it is less than
error for shorter SQL statements. This is caused by differ-
ent number of SQL statements included in each data subset.
The number of input vectors depends on the number of SQL
queries and the length of SQL query. What is important is
a verification of a neural network. It states how good a net-

6

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

R
M

S

%
 n

o.
 o

f w
ro

ng
 p

re
di

ct
ed

 S
Q

L
qu

er
ie

s

Index of training data subset

Jordan’s network performance

Jordan RMS
Jordan Verification

Figure 5. Error and number of wrong pre-
dicted SQL queries for each subset of data
for Jordan’s network

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

R
M

S

%
 n

o.
 o

f w
ro

ng
 p

re
di

ct
ed

 S
Q

L
qu

er
ie

s

Index of training data subset

Elman’s network performance

Elman RMS
Elman Verification

Figure 6. Error and number of wrong pre-
dicted SQL queries for each subset of data
for Elman’s network

work is trained. In the sense of the detecting of attacks, it
means that the better verification, the less false alarms of a
system. The Jordan network is able to predict all tokens of
10 length statements (20.6% false alarms).

In the third part of experiments we checked if RNNs cor-
rectly detect attacks from section 4. Each experiment was
conducted using trained RNNs from the second stage. Fig-
ure 7 presents the typical RNN output if an attack is per-
formed. The left column depicts the number of input vector
for RNN, while the right column shows the number of cases
in which the index of the token indicated by network output
is different than the index of the next processed by RNN
token. It is common for each network, that nearly each out-
put vector of a network has a few errors. This phenomenon
is present for all attacks used in this work. Based on that

SQL statement

1 7

2 2

3 1

4 2

5 2

6 1

7 2

8 0

index of input vector number of errors

Figure 7. RNN output for an attack

observation, a decision about good or bad verification and
generalization of a network can be taken in the correlation
with a form of network output against attacks. Figure 8
shows RNN output for SQL statements derived from the
training set and that, which was not present in the training
set. The description of the figure 8 is similar to the descrip-
tion of the figure 7. The second column relates to the case if
the SQL query was in the training set and the third column
concerns the SQL query, which was not in the training set.
It is easy to see that the number of errors during verification

SQL statement
index of input vector num. of errors−ver num. of errors−gen

1 0 0

2 1 1

3 1 2

4 0 1

5 0 1

6 1 1

7 1 1

8 1 0

Figure 8. RNN output for known and unknown
SQL statement

and generalization is much smaller than the number of er-
rors when an attack is processed by RNN. Moreover, there
is also more output vectors free of errors. Easily noticeable
difference between an attack and normal activity allows us
to re-evaluate obtained results presented in figures 5 and 6.
Figure 8 presents typical outcomes for all trained RNNs and
our training data. To distinguish between an attack and a le-
gitimate SQL statement we define the following rule for the
Jordan network: an attack occurred if the average number
of errors for each output vector is not less than 2.0 and 80%
of output vectors include any error. When the Elman net-
work is used, the threshold equals to 1.6 and the percentage
of output vectors possessing errors equals to 90%. Apply-

7

Table 3. Results of verification and general-
ization of Elman and Jordan networks

Data Elman Elman Jordan Jordan
subset ver gen ver gen

2-4 0 0 0 0
5 0 1.4 0 0
6 0 24.2 0 12.8
7 0 15.7 0 1.4
8 0 5 0 1.6
9 0 3.33 0 0
10 0 2.5 0 0
11 0 10 0 13.33
12 0 0 0 6.66

13-14 0 0 0 0
15-16 0 3.33 0 3.33
17-20 0 40 0 13.33

ing these rules ensures that all attacks are detected by both
RNN. The table 3 presents the percentage number of SQL
statements wrongly predicted during verification and gener-
alization if results were processed by the rules. For the most
cases the Jordan network outperforms the Elman network.
Only for data subsets containing statements made from 11
and 12 tokens, the Elman network is a little better than the
Jordan network. The important outcome of defined rules is
that both RNNs thought all statements and only few legit-
imate statements, which were not in the training set were
detected as attacks.

6 Conclusions

In the paper we have presented a new approach to detect-
ing SQL-based attacks. The problem of detection was trans-
formed to time series prediction problem and two RNNs
were examined to show their potential use for such a class
of attacks. It turned out that the Jordan network is easily
trained by BPTT algorithm. Despite the fact that large ar-
chitecture of RNN was used, that network is able to predict
sequences of up to ten length with acceptable error mar-
gin. However, the Elman network characterizes greater er-
ror and because of large false alarms rate it is not supposed
to detect attacks. The reason for why the Jordan network
is much better than the other one is not obvious. We think
that additional self feedback connection between neurons in
the context layer can affect quality of a solution. The other,
more important feature is the recurrent connection between
different layers in both networks. The ability of prediction
depends on the knowledge about gradient in the past. Be-
cause error of neurons in the output layer is greater than
error of neurons in the hidden layer, more pressure is put
on the hidden layer through the context layer in the Jordan

network. Gradient ingredient in the Elman network is small
and this causes that prediction is not based on the informa-
tion about the past.

Deep analysis of the experimental results lead to the de-
finition of rules used for distinguishing between an attack
and legitimate statement. When these rules are applied,
both networks are completely trained for all SQL queries
included in the all training subsets . Accuracy of the results
very strongly depends on the rules. The advisable part of
experimental study is to apply defined rules to the other data
set, which can confirm efficiency of the proposed approach
to detecting SQL attacks.

This work shows that the Jordan network can be used
to detect SQL-based attacks. To make proposed approach
more robust, some additional features can be added to the
attack representation. These features can be URL or IP ad-
dress of a client connecting to a database. The lack of ability
to detect attacks, that take advantage of longer SQL queries
can be resolved by deploying other learning algorithms for
RNN. In the future we are going to compare gradient-based
algorithms with nature inspired algorithms, especially co-
evolutionary genetic algorithms.

References

[1] F. Valeur, D. Mutz, G. Vigna, ”A Learning-Based Approach
to the Detection of SQL Attacks”, Proceedings of the Confer-
ence on Detection of Intrusions and Malware and Vulnerabil-
ity Assessment (DIMVA), Austria, 2005

[2] C. Kruegel, G. Vigna, ”Anomaly Detection of Web-based At-
tacks”, Proceedings of the 10th ACM Conference on Com-
puter and Communication Security (CCS ’03), 2003, pp. 251-
261

[3] M. Almgren, H. Debar, M. Dacier, ”A lightweight tool for de-
tecting web server attacks”, In Proceedings of the ISOC Sym-
posium on Network and Distributed Systems Security, 2000

[4] K.M.C. Tan, K.S. Killourhy, R.A. Maxion, ”Undermining an
Anomaly-Based Intrusion Detection System Using Common
Exploits”, In Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection, 2002, pp. 54-73

[5] I. Nunn, T. White, ”The Application of Antigenic Search
Techniques to Time Series Forecasting”, In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO
2005), USA

[6] M. Kendall, J. Ord, ”Time Series”, third edition, 1999
[7] D. Pollock, ”A Handbook of Time-Series Analysis, Signal

Processing and Dynamics”, Academic Press, London, 1999
[8] T. Lin, B.G. Horne, P. Tino, C.L. Giles, ”Learning long-term

dependencies in NARX recurrent neural networks”, IEEE
Transactions on Neural Networks, 1996, pp. 1329

[9] P.R. Drake, K.A. Miller, ”Improved Self-Feedback Gain in
the Context Layer of a Modified Elman Neural Network”,
Mathematical and Computer Modelling of Dynamical Sys-
tems, 2002, pp. 307-311

[10] http://phpnuke.org/

8

