
Reconfigurable Architecture for Biological Sequence Comparison in
Reduced Memory Space*

Azzedine Boukerche1, Jan M. Correa2, Alba Cristina M. A. de Melo2, Ricardo P. Jacobi2, Adson F. Rocha3

1 SITE, University of Ottawa, Canada

2Department of Computer Science, University of Brasilia, Brazil
3Department of Electrical Engineering, University of Brasilia, Brazil

boukerch@site.uottawa.ca, {jan, albamm, rjacobi}@cic.unb.br, adson@ene.unb.br

Abstract

 DNA sequence alignment is a very important

problem in bioinformatics. The algorithm proposed by
Smith-Waterman (SW) is an exact method that obtains
optimal local alignments in quadratic space and time.
For long sequences, quadratic complexity makes the
use of this algorithm impractical. In this scenario, the
use of a reconfigurable architecture is a very attractive
alternative. This article presents the design and
evaluation of an FPGA-based architecture that obtains
the similarity score between DNA sequences, as well as
its coordinates. The results obtained in a Xilinx
xc2vp70 FPGA prototype presented a speedup of 246.9
over the software solution to compare sequences of
size 100MBP and 100BP, respectively. Different from
others hardware solutions that just calculate alignment
scores, our design was able to avoid architecture’s
bottlenecks and accelerate the most computer intensive
part of a sequence alignment software algorithm.

1 Introduction

Bioinformatics can be defined as any type of study or
tool used to produce or organize biological information
[9]. Bioinformatics has a great potential to support
research of new medicines and biotechnological-based
materials. Pairwise biological sequence comparison is
one of the most important and basic operations in
bioinformatics since it is often used as a basis to solve
more complex problems such as multiple sequence
alignment, phylogeny relations inference and RNA
second structure prediction [8].

Sequence alignment is in fact a problem of finding
an approximate pattern matching between two
sequences, possibly introducing spaces (gaps) into
them [29]. The most common types of sequence
alignment are global and local. The goal of a global
alignment algorithm is to obtain the similarity between
two sequences as a whole [26]. On the other hand,
local comparison is used to obtain the similarity
between parts of the sequences

Dr. A. Boukerche work is partially sponsored by
NSERC and Canada research Chair Program

 1-4244-0910-1/07/$20.00 ©2007 IEEE.

To solve biological sequence comparison problems,
there have been proposed exact methods based on
dynamic programming such as Smith-Waterman (SW),
Myers and Miller [25] and Gotoh [11]. These methods
have, at least, quadratic time complexity.

In order to obtain results faster, heuristic methods
such as BLAST [1] and Fasta [22] have been proposed.
However, the performance gain is often achieved by
reducing the quality of the results produced. To
produce optimal results faster, parallel algorithms such
as [7], [4] and [3] have been proposed in the literature.
However, for long sequences, execution times are still
high. For instance, to compare two 3MBP (Mega Base
Pairs) DNA sequences with an affine gap model, the
parallel algorithm proposed in [3] takes more than 13
hours, with 16 processors.

One approach to further accelerate the dynamic
programming methods is to design application-specific
hardware. Many dedicated architectures [17] have been
proposed in the literature. Some of them, such as
FPGA (Field Programmable Gate Array) based
solutions that can be integrated to a parallel algorithm,
leading to a hardware-software approach.

 In this article, we propose and evaluate a
reconfigurable architecture that executes the most
compute-intensive phase of the SW algorithm [30] in
linear space, providing, as output, the coordinates and
the value of the similarity between two sequences s and
t. This information can be easily used to retrieve the
actual alignment [14].

2 Biological Sequence Comparison
2.1 Similarity score

To compare two sequences, we need to find the best
alignment between them, which is to place one
sequence above the other making clear the
correspondence between similar characters [30]. In an
alignment, spaces can be inserted in arbitrary locations
along the sequences.

In order to measure the similarity between two
sequences with a linear gap function, a score is
calculated as follows. Given an alignment between
sequences s and t, the following values are assigned,
for instance, for each column: a) +1, if both characters
are identical (match); b) -1, if the characters are not
identical (mismatch); and c) -2, if one of the characters
is a space (gap).

The score is the sum of all these values. The
similarity between two sequences is the highest score.
Figure 1 presents one possible alignment between two
DNA sequences and its associated score.

A C T T G T C C G - A G A
A - T T G T C A G G A G G score
+ - + + + + + - + - + + - 4

Figure 1. Example of alignment and score

2.2 Algorithm SW for local alignment

The algorithm Smith-Waterman (SW) [30] is an
exact method based on dynamic programming to
obtain the best local alignment between two sequences
in quadratic time and space. It is divided in two phases:
create the similarity matrix and obtain the best local
alignment.
2.2.1 Creating the similarity matrix. This phase
receives input sequences s and t, with |s| = m and |t| =
n, where |s| represents the size of sequence s. For
sequences s and t, there are m+1 and n+1 possible
prefixes, respectively, including the empty sequence.
The notation used to represent the n-th character of a
sequence seq is seq[n] and, to represent a prefix with n
characters, we use seq[1..n]. The similarity matrix is
denoted Dm+1,n+1, where Di,j contains the similarity
score between prefixes s[1..i] and t[1..j].

At the beginning, the first row and column are
filled with zeros. The remaining elements of D are
obtained from equation (1). In equation (1), p(i,j) = 1 if
s(i)=t(j) (match) and –1 otherwise (mismatch). In this
case, -2 is the gap penalty. The similarity between
sequences s and t is the highest score.











= max])..1[],..1[(jtissim

sim(s[1..i],t[1..j-1]) -2
sim(s[1..i-1],t[1..j-1]) +p(i,j)
sim(s[1..i-1],t[1..j]) -2
0

(1)

Figure 2 presents the similarity matrix between
sequences s = TATGGAC and t = TAGTGACT. The
arrows indicate the cell from where the value was
obtained.

 T A T G G A C
 0 0 0 0 0 0 0 0
T 0 Ñ2 0 2 0 0 0 0
A 0 0 Ñ4 2 1 0 2 0
G 0 0 Ï2 3 4 3 1 1
T 0 2 0 Ñ4 2 3 2 0
G 0 0 1 2 Ñ6 4 2 1
A 0 0 2 0 4 5 Ñ6 4
C 0 0 0 1 2 3 4 Ñ8
T 0 2 0 2 0 1 2 6

Figure 2. Similarity matrix to locally align two DNA
sequences. The black arrows indicate the traceback to
obtain the actual alignment

2.2.2 Obtaining the best local alignment. In order to
obtain the best local alignment, the algorithm starts
from the cell that contains the highest score and
follows the arrows until the value zero is reached. A
left arrow in Di,j (figure 2) indicates the alignment of
s[i] with a gap in t. An up arrow represents the
alignment of t[j] with a gap in s. Finally, an arrow on
the diagonal indicates that s[i] is aligned with t[j].

Note that many best local alignments can exist,
since many arrows can exist in the same cell Di,j,
indicating that the score value was produced from
more than one cell.

2.3 Obtaining local alignments in linear space

One of the most restrictive characteristics of the
SW algorithm is the quadratic space needed to store the
similarity matrix. For instance, in order to compare two
100Kbps (Kilo Base Pair) DNA sequences, we would
need at least 10GB of memory. This fact was observed
by [25], that proposed the use of Hirschberg´s
algorithm [15] to compute global alignments in linear
space. The algorithm uses a divide and conquer
technique that finds a point where the optimal
alignment occurs and recursively splits the similarity
matrix to obtain the actual alignment. This approach
can double the execution time, in the average case [15],
when compared with the basic dynamic programming
method.

In order to use this approach to calculate local
alignments, the following steps must be done [14].
First, the similarity array is completely calculated in
linear space, in order to obtain the location
(coordinates i and j at the similarity matrix) where the
highest score occurs. This is in fact the position where
the best local alignment ends. Second, the similarity
array is re-calculated from the highest score position
over the reverses of the sequences, in order to obtain
the position where the best local alignment begins.
Having the beginning and end coordinates of the best
alignment, this problem is transformed into a global
alignment problem and Hirschberg´s algorithm [15]
can be used.

2.4 Parallel variations of the basic algorithms

In the SW algorithm, most of the time is spent
calculating the similarity matrix D (figure 2) and this is
the part which is usually parallelized. The access
pattern presented by the matrix calculation is non-
uniform and the parallelization strategy that is
traditionally used in this kind of problem is known as
the wavefront method since the calculations that can be
done in parallel evolve as waves on diagonals.

Figure 3 illustrates the wavefront method where 4
processors (P1-P4) are used to calculate the matrix.
Each processor Pi will calculate a set of columns in
matrix D. In this calculation, the precedence relations
of equation 1 must be obeyed, thus, each anti-diagonal
can be computed in parallel. At the beginning of the
computation, only P1 can compute (figure 3.a). When

P1 finishes calculating the values of a border column,
it sends them to P2, that can start calculating, while P1
continues processing its next block (figure 3.b). In
figure 3.c, the maximum parallelism is attained.

Figure 3. The wavefront method

A parallel exact algorithm that solves the global
sequence alignment problem with affine gap functions
in O((mn)/p) time and requires O((m+n)/p) space is
proposed in [28]. The key idea of this algorithm is to
add an additional phase to find a partial balanced
partition between sequences of s and t. To compute the
partial balanced partition in parallel, three dynamic
matrices are used to find the cells where a recursive
decomposition of the problem can be performed. An
optimal alignment c between sequences A and B is
proved to be the concatenation of optimal alignments
to the subproblems corresponding to each region [28].

In [6], a parallel exact variation of a linear space
algorithm based on SW is proposed that finds a set of
local alignments that are close to the best (near-best).
The algorithm has three phases. In the first phase, the
end coordinates of the best (and near best) alignments
are found. In the second phase, the coordinates of the
beginning of the alignments are found over the
reversed sequences. In the third phase, having the
beginning and the end coordinates of each non-
overlapping alignment (best and near-best), the
Hirschberg algorithm [15] is used to retrieve the actual
alignments.

 In [3], an exact parallel SW variation is proposed
that calculates local alignments in user-restricted
memory space. The algorithm is divided in four
phases. At the first phase, the input sequences s and t
are distributed to the nodes. The second phase is the
most compute-intensive since it calculates the entire
similarity array in linear space over the reverses of the
sequences, obtaining the begin coordinate(s) of the best
alignment(s). In this phase, the number of diagonals
needed to obtain the alignments (superior and inferior
divergences) is also calculated. At the third phase, all
nodes send the best score found and its coordinates to
the master node. The master node decides which one is
the global best. At the last phase, the beginning
coordinates of the optimal alignment(s) are obtained
and the alignment is retrieved using the superior and
inferior divergences. This phase executes in user-
restricted memory space.

3 Dedicated and FPGA Architectures
In contraposition to general-purpose processor

architectures, a dedicated architecture is designed and
optimized to solve a specific problem. Usually,
dedicated architectures can be built by using ASIC
(Application Specific Integrated Circuit) processors or
FPGAs. Although very fast circuits can be obtained
with dedicated ASIC processors, the resulting
architecture is not flexible and often expensive. A very
promising alternative to build dedicated architectures is
by using FPGAs. FPGAs are slower than ASIC
circuits but, as advantages, they can be reconfigured
and the circuit can be obtained in much less time.

The reconfigurability of FPGAs may be exploited to
tailor hardware resources to the problem being solved.
It can be seen as a soft component, which may be
changed to be adapted to a specific application. Indeed,
currently supercomputers start to introduce FPGAs in
order to speed up some critical parts of an application.

 A common parallel organization used in FPGAs is a
systolic array, a hardwired mesh-connected pipe
network of datapath units, using only nearest-neighbor
(NN) interconnects. Each element of the array
performs a simple task and passes its results to the next
connected element [17]. All systolic cells work in
parallel, processing streams of data at the array’s clock
rate. Systolic architectures are normally arranged in
one or two dimension matrices. Nevertheless, there are
some problems that arise when trying to apply FPGAs
to solve specific problems. First, the FPGA
communicates with the host computer to receive data
and instructions. The communication speed is limited
by the channel data rate (in many cases, the PCI).
According to the communication technology adopted,
this channel may be a bottleneck between the host
computer and the FPGA board. For this reason, this
type of communication must be reduced. Second, to be
efficient, an FPGA must be able to do as much work as
possible in parallel and that demands a lot of
computing elements, ideally one for each parallel
computation. Unfortunately, for many problems, this
ideal number of elements goes far from the capacity of
today´s FPGAs.

4 Related Work

There are many bioinformatics algorithms on
FPGAs. Some attempted to use heuristic methods such
as BLAST [1] to solve the sequence alignment
problem such as [5] [18] and [19]. The best results
were obtained by [18] with a speedup of a 100 over a
1.4 GHz AMD Operon but this proposal only finds the
best score and it only can deal with small sequences.
The Blast section implemented in [19] had worse time
than a software implementation. The time required to
transfer the data to the FPGA was already more than
the time to execute the entire algorithm in software
showing that this algorithm is difficult to implement
taking full advantage of the parallel nature of FPGA

and due to the board communication bottleneck
problem.

There are many proposals in the literature of FPGA-
based architectures to accelerate the SW algorithm
([17] [13] [16] [21] [24] [27]]) that calculate the
similarity matrix antidiagonals in parallel, taking full
advantage of the wavefront method (figure 3). This
approach allows using the parallel potential of FPGA
circuit for calculating many matrix cells at the same
time. In this case, the architecture is formed of N
computing elements. Each element is capable of
calculate one matrix score per turn. Thus, an N
elements array can generate N scores at a time.

Figure 4 shows how each anti-diagonal of the
dynamic programming matrix is calculated in parallel
by the systolic array, as shown in figure 2. A query
sequence (ACGAT) is previously put in the elements
of the array and the database sequence (CTTAG) flows
through the systolic array. Each element will calculate
one cell in the current anti-diagonal (shown in gray in
figure 4) at the time.

This approach is very powerful because an FPGA
can calculate billions cells per second for a plain Smith
Waterman [13], [20], [27]]. However, the quadratic
space complexity of the SW algorithm is a great
restriction. For this reason, most of the solutions
proposed in the literature do not store the entire
similarity matrix, obtaining only the similarity score.

Besides that, there is a limited number of computing
elements that can be put in the systolic array. This
number is restricted by the amount of hardware
resources that are available. Usually, the number of
computing elements is very small rarely more than a
few hundreds. To deal with it, the smallest sequence
being aligned is often put on the computing elements
as a query sequence. The other sequence can be of any
size, since it “passes” through the FPGA (figure 4).

Figure 4. Generic systolic array to calculate the
similarity matrix

Frequently, it happens that the query sequence is
greater than the number of computing elements. In this
case, a partitioning technique is needed. To break
query sequences, it is necessary to keep some scores on
the board to allow new scores to be calculated
(according to the recurrence relation). Some designs
like [12] avoid this problem by putting many query
bases on the same computing element. The drawback
of this approach is that to put more bases at each cell

requires more registers per element and thus decreases
the maximum number of computing elements in the
systolic array.

To reduce the amount of resources consumed and
increase the speed of calculations, [13] utilized a
Xilinx JBits toolkit that allows dynamic
reconfiguration. In this case, the query sequence is put
directly in the processing elements using the dynamic
reconfiguration capability instead of being stored by
registers inside. This resulted in a 25% reduction in the
overall circuit sparing 2 flip-flops for each base
storage. A drawback of this approach is that
configuration time that normally takes milliseconds.
That makes it difficult to use for large query
sequences that would require many reconfigurations of
the FPGA to put new splits of the sequence in
processing elements.

One metric used to measure the performance of
FPGA-based approaches is the number of CUPS (Cell
Updates Per Second) where each cell update is a matrix
cell calculation. This measure indicates the
computation power of an architecture but it is highly
dependent of the complexity of the calculation. For
instance, an architecture that generates alignments
cannot be compared fairly with an architecture that
only generates scores in terms of CUPS because the
former is doing more work per cell. To be fair, each
cell must to be doing similar work.

In the following paragraphs, we discuss some FPGA-
based architectures. In [17] is described an
implementation of the SW algorithm using a systolic
array that calculates each anti-diagonal in the matrix in
parallel. It was noted that the Smith-Waterman matrix
has many zeros and many optimizations were made to
shorten memory usage. In addition, with a JDS (Jagged
Diagonal Storage) matrix representation cut by 75 to
80 percent the amount of memory needed.

In [21], it was shown an implementation of SW in a
SAMBA board (Systolic Accelerator for Molecular
Biological Applications). This proprietary board had a
systolic array with 128 processors of 12 bits with a
configurable interface that can be programmed through
C library functions. It was built a systolic linear array
where each element of the anti-diagonal was calculated
in each cycle. The sequence can be split to fit in the
FPGA and each part can be compared against a
database to generate the entire matrix. Comparing
SAMBA with a DEC Alpha 150 MHz for searching a
3000 amino acids sequence in a database sequence of
21210389 it took less than 4 minutes for SAMBA
while the DEC Alpha took 280 minutes, yielding a 83
fold improvement. In [23], a tool called PHG (Parallel
Hardware Generator) was used to generate a VHDL
code and synthesize hardware from the recurrence
relations (equation 1). The basic comparison function
was hand-made. The problem was to search a small
sequence of amino acid (a peptide) in a huge amino
acid database. The implementation was done in a
FPGA Xilinx XV1000-4 and it did a result 5.6 times

better than a Pentium III 1 GHz to search a 24 BP
sequence in a 2MBP database.

An implementation of the SW algorithm with an
affine gap function was proposed in [2]. The scores are
calculated in anti-diagonal on a systolic array. Due the
FPGA memory restrictions, the sequences are
partitioned. The database sequence is divided in parts
that fit on the systolic array. If the query sequence is
bigger than the systolic array, each element in the array
may hold up to 4 bases in its internal registers. If the
query sequence is not a multiple of the array size the
remaining, registers are filled with zeros. The longest
query sequence compared had 1512 BP. In a Virtex II
XC2V6000 FPGA they achieved 1,390 GCUPS (Giga
Cell Updates per Second).

In this proposal, the FPGA calculates the score
matrix and sends it to the host computer CPU that finds
the best alignment. Comparing the results obtained by
an optimized C program in a 1.6 GHz Pentium 4, the
FPGA had a speedup of 170. In [37], an array of
computing elements was also used. If the sequence are
greater than the number of elements available the
sequence is broken in many parts, in a multithreaded

way. In the first stage, the upper half of the anti-
diagonal is calculated and stored in registers (in case
query sequence is divided in 2). In a second stage the
lower half of the anti-diagonal e calculated using the
same elements. It is useful in this particular
implementation where there is an idle cycle between
comparisons.

The procedure is divided in 2 phases. In the first
phase, the database sequence in broken in a way it can
fit in the FPGA internal memory. In the second phase,
the best alignment is computed by the FPGA. In order
to align a 2048 BP sequence against a 64MBP database
in a Xilinx XCV2000E FPGA, a result of 5,76 GCUPS
was obtained. In time, it took 34 seconds on the FPGA
and a speedup of 330 over a 1GHz Pentium III was
achieved. In the second phase, a 1 KBP query sequence
was compared with a 4KBP database sequence. It took
0.007 seconds on the FPGA whereas the Pentium III
did the same work in 0.35 seconds.

Table 2 presents a comparative analysis among some
of these FPGA-based architectures to locally align
biological sequences.

Table 1. Comparative Analysis

In Table1, we can see that sequence splitting was
used in most of the proposals [21][32][37]. In [23],
tests were done with small queries that fit in the
systolic array. It was done probably for performance
results because doing in this way the systolic array is
faster and requires less communication with host
computer.

Although many Smith-Waterman implementations
had excellent results when compared against software
solutions, it is not easy to implement this in FPGA for
real world problems due its constraints. There is a
perspective that, in the future, FPGA boards will have
larger storage spaces and may be connected to higher
speed slots. When that happens most of problems
related to sequence splitting could be improved.

 5 Proposal of an FPGA-based SW
Architecture

The goal of our FPGA-based architecture is to

execute the first phase of the SW algorithm in linear
space (section 2.3). As input, we receive the sequences
to be compared (s and t) and the output produced is the

value of the highest score as well as its coordinates in
the similarity matrix. This solution can be easily
integrated to parallel algorithms such as [3] and [7] that
will produce the alignments in software. As in
[21][23][32] and [37], we will also use a systolic array
to calculate the scores of each antidiagonal of the
similarity matrix in parallel. Figure 5 presents our
systolic array design, which is based on the solution
illustrated in figure 4. In figure 5, the query sequence
ACGC is stored at each systolic element and the
database sequence (ACTA) flows through the
elements. Each anti-diagonal of the similarity matrix is
calculated by our systolic array in a way that is similar
to the one illustrated in figure 4. Besides that, in our
design, each element has two additional fields that
must be calculated by the element’s circuit. The lower
number in figure 5 is the best score calculated in that
column so far. The upper number is the cycle when
that score was calculated. After the entire matrix is
calculated, these fields are used to find out the location
of the best score. With the cycle field, the row
containing the best score is found.

Article FPGA size. Query
Seq /

size.Base Seq

Sequence
Splicing

SpeedUp Type Alingnment

[21] SAMBA 3Kbp / 2.1Mbp Yes 83 DEC 150 MHz No
[23] Xilinx XV1000 24 / 2Mbp No 5.6 Pentium III 1

GHz
No

[32] XC2V6000 1.5kbp/ N.A. Yes 170 Pentium 4 1.6
GHz

No

[37] XCV2000E 2K / 64Mbp Yes 330 PentiumIII 1GHz Yes

Figure 5. Proposed systolic array design

Figure 6. Sequence similarity calculation

Figure 6 illustrates the computation of the similarity
matrix, best score and its position. To calculate each
cell D in the matrix, three cells are needed. Upper cell
B, left cell C and diagonal cell A. In each cycle, values
A, B stored in registers and value C transmitted from
left element are used in D calculation. Two bases are
compared: SP that is fixed in the element and SB that
comes from the left element. If they are equal, it means
that a match occurred and the coincidence value Co is
used.

Figure 7. Sequence partitioning in our design

Otherwise, it is a mismatch and the substitution value

Su is used. In parallel, values B and C are compared
and the greater is added to Insertion and Removal
In/Re score (gap calculation). These two generated

values are compared and the greater one is compared to
zero. If it is greater than zero it doesn’t change
otherwise it is replaced by zero.

To calculate the best score, a comparator is
connected to D. If the new D score is greater than the
value stored in register Bs (best score in that column so
far) it replaces the old value. To recover the
antidiagonal and therefore the row where the best score
was calculated, register Cl is utilized. It is incremented
by one each time a new score is calculated. If the
current score is greater than the one stored in Bs, the
writing on register Bc is enabled and its value is
replaced by the current value of Cl. Therefore, Cl
stores the antidiagonal where Bs is calculated.

In our design, a large database sequence can be put in
the FPGA board SRAM memory that can handle
several megabytes in most modern models. On the
other hand, the query sequence must be put in the
systolic array that has limited space. Large query
sequences can be partitioned in subsequences of size N
where N is the number of elements in systolic array.
Sequence partitioning is shown in figure 7.

In figure 7, the N systolic elements can calculate a

part of the similarity matrix in antidiagonals as
explained before. When the computation of an MxN
part is finished (shown in gray), the next N bases can
be put in the systolic and calculation proceeds.

6 Experimental Results

The designed systolic array was simulated in

SystemC [31], which is a very powerful tool for
circuit design and simulation. SystemC allows a very
high level and flexible simulation.

After the design was tested, it was translated to a
language that could be synthesized in FPGA with a
tool called Forte [10]. Forte takes a customized
SystemC program as input and generates an optimized
Verilog design as output. Verilog can be used for
synthesis in many commercially available FPGAs.

To test the Verilog design on a real platform, we
synthesized the circuit to a Xilinx xc2vp70 using
Xilinx’s ISE 8.1 on a Pentium 4 3 GHz.

The prototype circuit had 100 elements. The ISE
generated three separated diagrams (left, middle and
right). The left and right parts of our circuit are shown
in figures 8 and 9.

Figure 8. Left part of the generated circuit

Figure 9. Right part of the circuit

Figure 8 shows the circuit elements that are used to

calculate the similarity matrix and the highest score
and its row, for each column. As can be seen, there is
space to add much more elements. The right part of the
circuit (figure 9) contains the logic used to control the
matrix calculation as well as the computation of the
highest global score and its coordinates. The circuit’s
operation frequency reported by the ISE tool is
174.749 MHz for 100 elements. The results discussed
here can be considered as a first approximation to the
real performance. In a near future, real tests will be
performed on a prototyping board. Table 2 shows the
amount of resources used in the Xilinx xc2vp70 FPGA.

Table 2. Characteristics of the Generated Circuit

Elements Slices Flip-
flops

Luts IOBs GCLKs Freq.

100 69% 25% 65% 7% 1 174.7

As can be seen in table 2, for 100 elements, only less
than 70% of the FPGA was used. In our tests, we used
a query sequence of size 100 BP, which was compared
with a database of size 10MBP. In this case, it took
0.744 seconds to calculate the similarity array of size
10MBPx100BP as well as the highest score and its
coordinates in our test FPGA (Xilinx xc2vp70).

An optimized C program that implemented the same
algorithm (i.e. computation of the same matrix and
highest score) on a Pentium 4 3 GHz 512 MB, took
183.72 seconds. This means that a FPGA has a
speedup of 246.9.To compare a FPGA fairly with a
software implementation some caution in needed. Only
the CPU time must be taken in account disregarding
I/O operations like file readings. The software must do
the same work as the FPGA. As the systolic array
computes the best score and location the software must
do just it. In this case, the most computer intensive
part of sequence alignment algorithm was done in
FPGA with a speedup more than two hundred of the
equivalent part of software. After the calculation is

done on FPGA, only a few bytes need to be transferred
to the host, and that can be done in few milliseconds
through the PCI bus.

7 Conclusions and Future Work

In this paper, we proposed and evaluated an FPGA-

based solution to accelerate the most compute intensive
part of a linear space variant of the SW algorithm to
locally align biological sequences. As input, our circuit
receives the sequences to be compared. The smallest
one is placed at the FPGA and the longest one is
passed through the circuit. As output, we produce the
similarity score as well as its coordinates at the
similarity matrix. These information are very useful to
retrieve the actual local alignments. The results
obtained in a prototype synthesized for a Xilinx
xc2vp70 board that contained 100 processing elements
were very good. When compared to a software
implementation of the same part of the algorithm, our
prototype achieved a speedup of 246.9, reducing
execution time from more than 3 minutes to less than 1
second.

 References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. &

Lipman, D.J. (1990) "Basic local alignment search
tool." J. Mol. Biol. 215:403-410.

[2] Anish, Alex, Hardware Accelerated Protein
Identification, MSc thesis, University of Toronto, 2003.

[3] Batista, R. B. and Melo, A. C. M. A., Z-align: An Exact
Parallel Strategy for Biological Sequence Alignment in
User-Restricted Memory Space, Proc. of the IEEE Int.
Conf. on Cluster Computing, September, 2006.

[4] Boukerche, A., Melo A. C. M. A., Ayala-Rincon, M. and
Santana, T. M., Parallel Smith-Waterman Algorithm for
Local DNA Comparison in a Cluster of Workstations,
In. Proc. of the 4th Int. Workshop on Experimental and
Efficient Algorithms, LNCS 3503, 2005, p. 464-475.

[5] Chang, Chen, BEE2: A High-End Reconfigurable
Computing System, Technical Report, California
University at Berkeley, 2004

[6] Chen, C. and Schmidt, B. Computing large-scale
alignments on a multi-cluster. In IEEE International
Conference on Cluster Computing, 2003.

[7] Chen, C. and Schmidt, B. An adaptive grid
implementation of DNA sequence alignment”, Future
Generation Computer Systems, 21:988-1003, 2005.

[8] Durbin, R., et. al. , Biological Sequence Analysis,
Cambridge Univ Press, 1998.

[9] European Commission, Prospective Analysis of the
relationship and synergy between Medical Informatics
(MI) and Bioinformatics (BI) White Paper EC-IST
2001-35024, 2002

[10] Forte Design Systems, “Cynthesizer User’s Guide For
Cynthesizer 2.4.0” 2005

[11] Gotoh, O., An improved algorithm for matching
biological sequences. Journal of Molecular Biology,
162:705-708, 1982.

[12] Grate, L. et. al.Sequence Analysis With the Kestrel
SIMD Parallel Processor, Pacific Symposium on
Biocomputing, Hawaii, Estados Unidos, 2001.

[13] Guccione, Steven A. et. al. Matching Using JBits, Field-
Programmable Logic and Applications, Reconfigurable
Computing Is Going Mainstream, LNCS 2002.

[14] Gusfield, Dan, Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology Cambridge University Press, UK, 1997

[15] Hirschberg., D. S. A linear space algorithm for
computing maximal common subsequences.
Communications of the ACM, 18:341–343, 1975.

[16] Hoang, Dzung T. FPGA Implementation of Systolic
Sequence Alignment, Field-Programmable Gate Arrays:
Architectures and Tools for Rapid Prototyping, H.
Grunbacheret. al. Springer-Verlag, 1992, pp. 183-191.

[17] Jacobi, R. P., et. al. Reconfigurable systems for
sequence alignment and for general dynamic
programming. Genetics and molecular research, São
Paulo, Brasil, v. 4, n. 3, p. 543-552, 2005.

[18] Knowles, Greg, Gardner-Stephen, Paul, A New
Hardware Architecture for Genomic Sequence
Alignment, 3rd International IEEE Computer Society
Computational Systems Bioinformatics Conference
2004

[19] Krishna Muriki, Keith Underwood, Ron Sass, RC-

BLAST: Towards an Open Source Hardware
Implementation, HiCOMB 2005 Fourth IEEE
International Workshop on High Performance
Computational Biology

[20] Lavenier, D. Dedicated Hardware for Biological
Sequence Comparison, Journal of Universal Computer
Science, 2 (2) 1996.

[21] Lavenier, D. Speeding up genome computations with a
systolic accelerator, SIAM news, 31 (8) 1998.

[22] Lipman, D. and Pearson, W. Improved tools for
biological sequence comparison , Proc. of the National
Acamemy of Science, USA, 85:2444-2448, 1988.

[23] Marongiu, A. Palazzari, P. Rosato, V., PROSIDIS: a
Special Purpose Processor for PROtein SImilarity
DIScovery,Second IEEE International Workshop on
High Performance Computational Biology

[24] Mosanya, Emeka, “A Reconfigurable Processor for
Biomolecular Sequence Processing”, Phd Thesis , Ecole
Polytechnique Fédérale de Lausanne, 1998.

[25] Myers, E. W. and Miller, W., Optimal alignments in
linear space. Computer Applications in the Biosciences,
4:11-17, 1988.

[26] Needleman S. B. e Wunsch C. D., A General Method
Applicable to the Search for Similarities in the Amino-
Acid Sequence of Two Proteins, Journal of Molecular
Biology, 48, pp. 443–453, 1970.

[27] Puttegowda, K.; Worek, W.; Pappas, N.; Dandapani, A.;
Athanas, P.; Dickerman, A., A run-time reconfigurable
system for gene-sequence searching, Proceedings. 16th
International Conference on VLSI Design, 2003

[28] Rajko, S. and Aluru, S. Space and Time Optimal Parallel
Sequence Alignments, IEEE Transactions on Parallel
and Distributed Systems, 15(2):1070-1081, 2004.

[29] Setubal, J. e Meidanis, J., Introduction to Computational
Molecular Biology. PWS Pub.. 1997

[30] Smith. T.F. and Waterman. M.S. (1981) Identification
of common molecular sub-sequences. Journal of
Molecular Biology, 147 (1) 195-197. PubMed.

