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Abstract 

 
 DNA sequence alignment is a very important 

problem in bioinformatics. The algorithm proposed by 
Smith-Waterman (SW) is an exact method that obtains 
optimal local alignments in quadratic space and time. 
For long sequences, quadratic complexity makes the 
use of this algorithm impractical. In this scenario, the 
use of a reconfigurable architecture is a very attractive 
alternative. This article presents the design and 
evaluation of an FPGA-based architecture that obtains 
the similarity score between DNA sequences, as well as 
its coordinates. The results obtained in a Xilinx 
xc2vp70 FPGA prototype presented a speedup of 246.9 
over the software solution to compare sequences of 
size 100MBP and 100BP, respectively. Different from 
others hardware solutions that just calculate alignment 
scores, our design was able to avoid architecture’s 
bottlenecks and accelerate the most computer intensive 
part of a sequence alignment software algorithm. 
 
1    Introduction 

Bioinformatics can be defined as any type of study or 
tool used to produce or organize biological information 
[9]. Bioinformatics has a great potential to support 
research of new medicines and biotechnological-based 
materials. Pairwise biological sequence comparison is 
one of the most important and basic operations in 
bioinformatics since it is often used as a basis to solve 
more complex problems such as multiple sequence 
alignment, phylogeny relations inference and RNA 
second structure prediction [8]. 

Sequence alignment is in fact a problem of finding 
an approximate pattern matching between two 
sequences, possibly introducing spaces (gaps) into 
them [29]. The most common types of sequence 
alignment are global and local. The goal of a global 
alignment algorithm is to obtain the similarity between 
two sequences as a whole [26]. On the other hand, 
local comparison is used to obtain the similarity 
between parts of the sequences 
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To solve biological sequence comparison problems, 
there have been proposed exact methods based on 
dynamic programming such as Smith-Waterman (SW), 
Myers and Miller [25] and Gotoh [11]. These methods 
have, at least, quadratic time complexity.  

In order to obtain results faster, heuristic methods 
such as BLAST [1] and Fasta [22] have been proposed. 
However, the performance gain is often achieved by 
reducing the quality of the results produced. To 
produce optimal results faster, parallel algorithms such 
as [7], [4] and [3] have been proposed in the literature. 
However, for long sequences, execution times are still 
high. For instance, to compare two 3MBP (Mega Base 
Pairs) DNA sequences with an affine gap model, the 
parallel algorithm proposed in [3]  takes more than 13 
hours, with 16 processors. 

One approach to further accelerate the dynamic 
programming methods is to design application-specific 
hardware. Many dedicated architectures [17] have been 
proposed in the literature. Some of them, such as  
FPGA (Field Programmable Gate Array) based 
solutions that can be integrated to a parallel algorithm, 
leading to a hardware-software approach. 

 In this article, we propose and evaluate a 
reconfigurable architecture that executes the most 
compute-intensive phase of the SW algorithm [30] in 
linear space, providing, as output, the coordinates and 
the value of the similarity between two sequences s and 
t. This information can be easily used to retrieve the 
actual alignment [14]. 
 
2    Biological Sequence Comparison  
2.1 Similarity score 

To compare two sequences, we need to find the best 
alignment between them, which is to place one 
sequence above the other making clear the 
correspondence between similar characters [30]. In an 
alignment, spaces can be inserted in arbitrary locations 
along the sequences. 

In order to measure the similarity between two 
sequences with a linear gap function, a score is 
calculated as follows. Given an alignment between 
sequences s and t, the following values are assigned, 
for instance, for each column: a) +1, if both characters 
are identical (match); b) -1, if the characters are not 
identical (mismatch); and c) -2, if one of the characters 
is a space  (gap).  



The score is the sum of all these values. The 
similarity between two sequences is the highest score. 
Figure 1 presents one possible alignment between two 
DNA sequences and its associated score. 
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Figure 1. Example of alignment and score 

 
2.2 Algorithm SW for local alignment 

The algorithm Smith-Waterman (SW) [30] is an 
exact method based on dynamic programming to 
obtain the best local alignment between two sequences 
in quadratic time and space. It is divided in two phases: 
create the similarity matrix and obtain the best local 
alignment. 
2.2.1 Creating the similarity matrix. This phase 
receives input sequences s and t, with |s| = m and |t| = 
n, where |s| represents the size of sequence s. For 
sequences s and t, there are m+1 and n+1 possible 
prefixes, respectively, including the empty sequence. 
The notation used to represent the n-th character of a 
sequence seq is seq[n] and, to represent a prefix with n 
characters, we use seq[1..n]. The similarity matrix is 
denoted Dm+1,n+1, where Di,j contains the similarity 
score between prefixes s[1..i] and t[1..j]. 

At the beginning, the first row and column are 
filled with zeros. The remaining elements of D are 
obtained from equation (1). In equation (1), p(i,j) = 1 if 
s(i)=t(j) (match) and –1 otherwise (mismatch). In this 
case, -2 is the gap penalty. The similarity between 
sequences s and t is the highest score. 
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sim(s[1..i],t[1..j-1]) -2
sim(s[1..i-1],t[1..j-1]) +p(i,j)
sim(s[1..i-1],t[1..j]) -2
0
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Figure 2 presents the similarity matrix between 
sequences s = TATGGAC and t = TAGTGACT. The 
arrows indicate the cell from where the value was 
obtained. 
 

  T A T G G A C 
 0 0 0 0 0 0 0 0 
T 0 Ñ2 0 2 0 0 0 0 
A 0 0 Ñ4 2 1 0 2 0 
G 0 0 Ï2 3 4 3 1 1 
T 0 2 0 Ñ4 2 3 2 0 
G 0 0 1 2 Ñ6 4 2 1 
A 0 0 2 0 4 5 Ñ6 4 
C 0 0 0 1 2 3 4 Ñ8 
T 0 2 0 2 0 1 2 6 
 
Figure 2. Similarity matrix to locally align two DNA 
sequences. The black arrows indicate the traceback to 
obtain the actual alignment 

2.2.2 Obtaining the best local alignment. In order to 
obtain the best local alignment, the algorithm starts 
from the cell that contains the highest score and 
follows the arrows until the value zero is reached. A 
left arrow in Di,j (figure 2) indicates the alignment of  
s[i] with a gap in t. An up arrow represents the 
alignment of t[j] with a gap in s. Finally, an arrow on 
the diagonal indicates that s[i] is aligned with t[j].  

Note that many best local alignments can exist, 
since many arrows can exist in the same cell Di,j, 
indicating that the score value was produced from 
more than one cell.   

 
2.3 Obtaining local alignments in linear space 

One of the most restrictive characteristics of the 
SW algorithm is the quadratic space needed to store the 
similarity matrix. For instance, in order to compare two 
100Kbps (Kilo Base Pair) DNA sequences, we would 
need at least 10GB of memory. This fact was observed 
by [25], that proposed the use of Hirschberg´s 
algorithm [15]  to compute global alignments in linear 
space. The algorithm uses a divide and conquer 
technique that finds a point where the optimal 
alignment occurs and recursively splits the similarity 
matrix to obtain the actual alignment. This approach 
can double the execution time, in the average case [15], 
when compared with the basic dynamic programming 
method.  

In order to use this approach to calculate local 
alignments, the following steps must be done [14]. 
First, the similarity array is completely calculated in 
linear space, in order to obtain the location 
(coordinates i and j at the similarity matrix) where the 
highest score occurs. This is in fact the position where 
the best local alignment ends. Second, the similarity 
array is re-calculated from the highest score position 
over the reverses of the sequences, in order to obtain 
the position where the best local alignment begins. 
Having the beginning and end coordinates of the best 
alignment, this problem is transformed into a global 
alignment problem and Hirschberg´s algorithm [15] 
can be used. 

 
2.4 Parallel variations of the basic algorithms 

In the SW algorithm, most of the time is spent 
calculating the similarity matrix D (figure 2) and this is 
the part which is usually parallelized. The access 
pattern presented by the matrix calculation is non-
uniform and the parallelization strategy that is 
traditionally used in this kind of problem is known as 
the wavefront method since the calculations that can be 
done in parallel evolve as waves on diagonals. 

Figure 3 illustrates the wavefront method where 4 
processors (P1-P4) are used to calculate the matrix. 
Each processor Pi will calculate a set of columns in 
matrix D. In this calculation, the precedence relations 
of equation 1 must be obeyed, thus, each anti-diagonal 
can be computed in parallel. At the beginning of the 
computation, only P1 can compute (figure 3.a). When 



P1 finishes calculating the values of a border column, 
it sends them to P2, that can start calculating, while P1 
continues processing its next block (figure 3.b). In 
figure 3.c, the maximum parallelism is attained. 

 

 
 

Figure 3. The wavefront method 
 

A parallel exact algorithm that solves the global 
sequence alignment problem with affine gap functions 
in O((mn)/p) time and requires O((m+n)/p) space is 
proposed in [28]. The key idea of this algorithm is to 
add an additional phase to find a partial balanced 
partition between sequences of s and t. To compute the 
partial balanced partition in parallel, three dynamic 
matrices are used to find the cells where a recursive 
decomposition of the problem can be performed. An 
optimal alignment c between sequences A and B is 
proved to be the concatenation of optimal alignments 
to the subproblems corresponding to each region [28]. 

In [6], a parallel exact variation of a linear space 
algorithm based on SW is proposed that finds a set of 
local alignments that are close to the best (near-best). 
The algorithm has three phases. In the first phase, the 
end coordinates of the best (and near best) alignments 
are found. In the second phase, the coordinates of the 
beginning of the alignments are found over the 
reversed sequences. In the third phase, having the 
beginning and the end coordinates of each non-
overlapping alignment (best and near-best), the 
Hirschberg algorithm [15] is used to retrieve the actual 
alignments. 

    In [3], an exact parallel SW variation is proposed 
that calculates local alignments in user-restricted 
memory space. The algorithm is divided in four 
phases. At the first phase, the input sequences s and t 
are distributed to the nodes. The second phase is the 
most compute-intensive since it calculates the entire 
similarity array in linear space over the reverses of the 
sequences, obtaining the begin coordinate(s) of the best 
alignment(s). In this phase, the number of diagonals 
needed to obtain the alignments (superior and inferior 
divergences) is also calculated. At the third phase, all 
nodes send the best score found and its coordinates to 
the master node. The master node decides which one is 
the global best. At the last phase, the beginning 
coordinates of the optimal alignment(s) are obtained 
and the alignment is retrieved using the superior and 
inferior divergences. This phase executes in user-
restricted memory space. 

 

3  Dedicated and FPGA Architectures    
In contraposition to general-purpose processor 

architectures, a dedicated architecture is designed and 
optimized to solve a specific problem. Usually, 
dedicated architectures can be built by using ASIC 
(Application Specific Integrated Circuit) processors or 
FPGAs. Although very fast circuits can be obtained 
with dedicated ASIC processors, the resulting 
architecture is not flexible and often expensive. A very 
promising alternative to build dedicated architectures is 
by using FPGAs.  FPGAs are slower than ASIC 
circuits but, as advantages, they can be reconfigured 
and the circuit can be obtained in much less time. 

The reconfigurability of FPGAs may be exploited to 
tailor hardware resources to the problem being solved. 
It can be seen as a soft component, which may be 
changed to be adapted to a specific application. Indeed, 
currently supercomputers start to introduce FPGAs in 
order to speed up some critical parts of an application.  

 A common parallel organization  used in FPGAs is a 
systolic array, a hardwired mesh-connected pipe 
network of datapath units, using only nearest-neighbor 
(NN) interconnects.  Each element of the array  
performs a simple task and passes its results to the next 
connected element [17]. All systolic cells work in 
parallel, processing streams of data at the array’s clock 
rate. Systolic architectures are normally arranged in 
one or two dimension matrices.  Nevertheless, there are 
some problems that arise when trying to apply FPGAs 
to solve specific problems. First, the FPGA 
communicates with the host computer to receive data 
and instructions. The communication speed is limited 
by the channel data rate (in many cases, the PCI). 
According to the communication technology adopted, 
this channel may be a bottleneck between the host 
computer and the FPGA board. For this reason, this 
type of communication must be reduced.  Second, to be 
efficient, an FPGA must be able to do as much work as 
possible in parallel and that demands a lot of 
computing elements, ideally one for each parallel 
computation. Unfortunately, for many problems, this 
ideal number of elements goes far from the capacity of 
today´s FPGAs.  
 
4  Related Work 

There are many bioinformatics algorithms on 
FPGAs. Some attempted to use heuristic methods such 
as BLAST [1] to solve the sequence alignment 
problem such as [5] [18] and [19]. The best results 
were obtained by [18] with a speedup of a 100 over a 
1.4 GHz AMD Operon but this proposal only finds the 
best score and it only can deal with small sequences. 
The Blast section implemented in [19] had worse time 
than a software implementation. The time required to 
transfer the data to the FPGA was already more than 
the time to execute the entire algorithm in software 
showing that this algorithm is difficult to implement 
taking full advantage of the parallel nature of FPGA 



and due to the board communication bottleneck 
problem. 

There are many proposals in the literature of FPGA-
based architectures to accelerate the SW algorithm 
([17] [13] [16] [21] [24] [27]]) that calculate the 
similarity matrix antidiagonals in parallel, taking full 
advantage of the wavefront method (figure 3). This 
approach allows using the parallel potential of FPGA 
circuit for calculating many matrix cells at the same 
time. In this case, the architecture is formed of N 
computing elements. Each element is capable of 
calculate one matrix score per turn. Thus, an N 
elements array can generate N scores at a time.  

Figure 4 shows how each anti-diagonal of the 
dynamic programming matrix is calculated in parallel 
by the systolic array, as shown in figure 2. A query 
sequence (ACGAT) is previously put in the elements 
of the array and the database sequence (CTTAG) flows 
through the systolic array.  Each element will calculate 
one cell in the current anti-diagonal (shown in gray in 
figure 4) at the time.  

This approach is very powerful because an FPGA 
can calculate billions cells per second for a plain Smith 
Waterman [13], [20], [27]]. However, the quadratic 
space complexity of the SW algorithm is a great 
restriction. For this reason, most of the solutions 
proposed in the literature do not store the entire 
similarity matrix, obtaining only the similarity score. 

Besides that, there is a limited number of computing 
elements that can be put in the systolic array. This 
number is restricted by the amount of hardware 
resources that are available. Usually, the number of 
computing elements is very small rarely more than a 
few hundreds.  To deal with it, the smallest sequence 
being aligned is often put on the computing elements 
as a query sequence. The other sequence can be of any 
size, since it “passes” through the FPGA (figure 4).  
 

 
Figure 4.  Generic systolic array to calculate the 
similarity matrix 

Frequently, it happens that the query sequence is 
greater than the number of computing elements. In this 
case, a partitioning technique is needed. To break 
query sequences, it is necessary to keep some scores on 
the board to allow new scores to be calculated 
(according to the recurrence relation). Some designs 
like [12] avoid this problem by putting many query 
bases on the same computing element. The drawback 
of this approach is that to put more bases at each cell 

requires more registers per element and thus decreases 
the maximum number of computing elements in the 
systolic array. 

To reduce the amount of resources consumed and 
increase the speed of calculations, [13] utilized a 
Xilinx JBits toolkit that allows dynamic 
reconfiguration. In this case, the query sequence is put 
directly in the processing elements using the dynamic 
reconfiguration capability instead of being stored by 
registers inside. This resulted in a 25% reduction in the 
overall circuit sparing 2 flip-flops for each base 
storage.  A drawback of this approach is that 
configuration time that normally takes milliseconds. 
That  makes it difficult to use for large query 
sequences that would require many reconfigurations of 
the FPGA to put new splits of the sequence in 
processing elements. 

One metric used to measure the performance of 
FPGA-based approaches is the number of CUPS (Cell 
Updates Per Second) where each cell update is a matrix 
cell calculation. This measure indicates the 
computation power of an architecture but it is highly 
dependent of the complexity of the calculation. For 
instance, an architecture that generates alignments 
cannot be compared fairly with an architecture that 
only generates scores in terms of CUPS because the 
former is doing more work per cell.  To be fair, each 
cell must to be doing similar work.  

In the following paragraphs, we discuss some FPGA-
based architectures.  In [17] is described an 
implementation of the SW algorithm using a systolic 
array that calculates each anti-diagonal in the matrix in 
parallel. It was noted that the Smith-Waterman matrix 
has many zeros and many optimizations were made to 
shorten memory usage. In addition, with a JDS (Jagged 
Diagonal Storage) matrix representation cut by 75 to 
80 percent the amount of memory needed. 

In [21], it was shown an implementation of SW in a 
SAMBA board   (Systolic Accelerator for Molecular 
Biological Applications). This proprietary board had a 
systolic array with 128 processors of 12 bits with a 
configurable interface that can be programmed through 
C library functions. It was built a systolic linear array 
where each element of the anti-diagonal was calculated 
in each cycle. The sequence can be split to fit in the 
FPGA and each part can be compared against a 
database to generate the entire matrix. Comparing 
SAMBA with a DEC Alpha 150 MHz for searching a 
3000 amino acids  sequence in a database sequence  of 
21210389 it took less than 4 minutes for SAMBA 
while  the DEC Alpha took 280 minutes, yielding a 83 
fold improvement. In [23], a tool called PHG (Parallel 
Hardware Generator) was used to generate a VHDL 
code and synthesize hardware from the recurrence 
relations (equation 1). The basic comparison function 
was hand-made. The problem was to search a small 
sequence of amino acid (a peptide) in a huge amino 
acid database. The implementation was done in a 
FPGA Xilinx XV1000-4 and it did a result 5.6 times 



better than a Pentium III 1 GHz to search a 24 BP 
sequence in a 2MBP database. 

An implementation of the SW algorithm with an 
affine gap function was proposed in [2]. The scores are 
calculated in anti-diagonal on a systolic array. Due the 
FPGA memory restrictions, the sequences are 
partitioned. The database sequence is divided in parts 
that fit on the systolic array. If the query sequence is 
bigger than the systolic array, each element in the array 
may hold up to 4 bases in its internal registers. If the 
query sequence is not a multiple of the array size the 
remaining, registers are filled with zeros. The longest 
query sequence compared had 1512 BP. In a Virtex II 
XC2V6000 FPGA  they achieved 1,390 GCUPS (Giga 
Cell Updates per Second). 

In this proposal, the FPGA calculates the score 
matrix and sends it to the host computer CPU that finds 
the best alignment. Comparing the results obtained by 
an optimized C program in a 1.6 GHz Pentium 4, the 
FPGA had a speedup of 170. In [37], an array of 
computing elements was also used. If the sequence are 
greater than the number of elements available the 
sequence is broken in many parts, in a multithreaded 

way. In the first stage, the upper half of the anti-
diagonal is calculated and stored in registers (in case 
query sequence is divided in 2). In a second stage the 
lower half of the anti-diagonal e calculated using the 
same elements. It is useful in this particular 
implementation where there is an idle cycle between 
comparisons. 

The procedure is divided in 2 phases. In the first 
phase, the database sequence in broken in a way it can 
fit in the FPGA internal memory. In the second phase, 
the best alignment is computed by the FPGA. In order 
to align a 2048 BP sequence against a 64MBP database 
in a Xilinx XCV2000E FPGA, a result of 5,76 GCUPS 
was obtained. In time, it took 34 seconds on the FPGA 
and a speedup of 330 over a 1GHz  Pentium III was 
achieved. In the second phase, a 1 KBP query sequence 
was compared with a 4KBP database sequence. It took 
0.007 seconds on the FPGA whereas the Pentium III 
did the same work in 0.35 seconds. 

Table 2 presents a comparative analysis among some 
of these FPGA-based architectures to locally align 
biological sequences.  

 
Table 1. Comparative Analysis 

 
 

In Table1, we can see that sequence splitting was 
used in most of the proposals [21][32][37].  In [23],  
tests were done with small queries that fit in the 
systolic array. It was done probably for performance 
results because doing in this way the systolic array is 
faster and requires less communication with host 
computer. 

Although many Smith-Waterman implementations 
had excellent results when compared against software 
solutions, it is not easy to implement this in FPGA for 
real world problems due   its constraints. There is a 
perspective that, in the future, FPGA boards will have 
larger storage spaces and may be connected to higher 
speed slots. When that happens most of problems 
related to sequence splitting could be improved. 

 
 5 Proposal of an FPGA-based SW 
Architecture 

 
The goal of our FPGA-based architecture is to 

execute the first phase of the SW algorithm in linear 
space (section 2.3). As input, we receive the sequences 
to be compared (s and t) and the output produced is the 

value of the highest score as well as its coordinates in 
the similarity matrix. This solution can be easily 
integrated to parallel algorithms such as [3] and [7] that 
will produce the alignments in software. As in 
[21][23][32] and [37], we will also use a systolic array 
to calculate the scores of each antidiagonal of the 
similarity matrix in parallel. Figure 5 presents our 
systolic array design, which is based on the solution 
illustrated in figure 4. In figure 5, the query sequence 
ACGC is stored at each systolic element and the 
database sequence (ACTA) flows through the 
elements. Each anti-diagonal of the similarity matrix is 
calculated by our systolic array in a way that is similar 
to the one illustrated in figure 4. Besides that, in our 
design, each element has two additional fields that 
must be calculated by the element’s circuit. The lower 
number in figure 5 is the best score calculated in that 
column so far. The upper number is the cycle when 
that score was calculated. After the entire matrix is 
calculated, these fields are used to find out the location 
of the best score. With the cycle field, the row 
containing the best score is found.  

 

Article FPGA size. Query 
Seq  / 

size.Base Seq

Sequence 
Splicing 

SpeedUp Type Alingnment 

[21] SAMBA 3Kbp / 2.1Mbp Yes 83 DEC 150 MHz No 
[23] Xilinx XV1000 24 / 2Mbp No 5.6 Pentium III 1 

GHz 
No 

[32] XC2V6000 1.5kbp/  N.A. Yes 170 Pentium 4 1.6 
GHz 

No 

[37] XCV2000E 2K / 64Mbp Yes 330 PentiumIII  1GHz Yes 



 
Figure 5. Proposed systolic array design 

 
 

 
Figure 6. Sequence similarity calculation 
 
Figure 6 illustrates the computation of the similarity 
matrix, best score and its position. To calculate each 
cell D in the matrix, three cells are needed. Upper cell 
B, left cell C and diagonal cell A. In each cycle, values 
A, B stored in registers and value C transmitted from 
left element are used in D calculation.  Two bases are 
compared: SP that is fixed in the element and SB that 
comes from the left element. If they are equal, it means 
that a match occurred and the coincidence value Co is 
used.  

 
 
Figure 7. Sequence partitioning in our design 

 
Otherwise, it is a mismatch and the substitution value 

Su is used. In parallel, values B and C are compared 
and the greater is added to Insertion and Removal 
In/Re score (gap calculation). These two generated 

values are compared and the greater one is compared to 
zero. If it is greater than zero it doesn’t change 
otherwise it is replaced by zero.  

To calculate the best score, a comparator is 
connected to D. If the new D score is greater than the 
value stored in register Bs (best score in that column so 
far) it replaces the old value. To recover the 
antidiagonal and therefore the row where the best score 
was calculated, register Cl is utilized. It is incremented 
by one each time a new score is calculated. If the 
current score is greater than the one stored in Bs, the 
writing on register Bc is enabled and its value is 
replaced by the current value of Cl. Therefore, Cl 
stores the antidiagonal where Bs is calculated. 

In our design, a large database sequence can be put in 
the FPGA board SRAM memory that can handle 
several megabytes in most modern models. On the 
other hand, the query sequence must be put in the 
systolic array that has limited space. Large query 
sequences can be partitioned in subsequences of size N 
where N is the number of elements in systolic array. 
Sequence partitioning is shown in figure 7. 

 
In figure 7, the N systolic elements can calculate a 

part of the similarity matrix in antidiagonals as 
explained before. When the computation of  an  MxN 
part  is finished (shown in gray),  the next N bases can 
be put in the systolic and calculation proceeds.  

 
6 Experimental Results 

 
The designed systolic array was simulated in 

SystemC   [31], which is a very powerful tool for 
circuit design and simulation. SystemC allows a very 
high level and flexible simulation.  

After the design was tested, it was translated to a 
language that could be synthesized in FPGA with a 
tool called Forte [10].  Forte takes a customized 
SystemC program as input and generates an optimized 
Verilog design as output. Verilog can be used for 
synthesis in many commercially available FPGAs.  

To test the Verilog design on a real platform, we 
synthesized the circuit to a Xilinx xc2vp70 using 
Xilinx’s ISE 8.1 on a Pentium 4  3 GHz.  

The prototype circuit had 100 elements. The  ISE 
generated three separated diagrams (left, middle and 
right). The left and right parts of our circuit are shown 
in figures 8 and  9. 

 
 
 



 
 

Figure 8. Left part of the generated circuit 
 

 
Figure 9. Right part of the circuit 

 
Figure 8 shows the circuit elements that are used to 

calculate the similarity matrix and the highest score 
and its row, for each column. As can be seen, there is 
space to add much more elements. The right part of the 
circuit (figure 9) contains the logic used to control the 
matrix calculation as well as the computation of the 
highest global score and its coordinates.  The circuit’s 
operation frequency reported by the ISE tool is 
174.749 MHz for 100 elements. The results discussed 
here can be considered as a first approximation to the 
real performance. In a near future, real tests will be 
performed on a prototyping board. Table 2 shows the 
amount of resources used in the Xilinx xc2vp70 FPGA. 

 
Table 2. Characteristics of the Generated Circuit 
 

Elements Slices Flip-
flops 

Luts IOBs GCLKs Freq. 

100 69% 25%  65% 7% 1 174.7 
 

As can be seen in table 2, for 100 elements, only less 
than 70% of the FPGA was used.   In our tests, we used 
a query sequence of size 100 BP, which was compared 
with a database of size  10MBP. In this case, it took 
0.744 seconds to calculate the similarity array of size 
10MBPx100BP as well as the highest score and its 
coordinates in our test FPGA (Xilinx xc2vp70).   

An optimized C program that implemented the same 
algorithm (i.e. computation of the same matrix and 
highest score) on a Pentium 4  3 GHz 512 MB,  took 
183.72 seconds. This means that a FPGA has a 
speedup of 246.9.To compare a FPGA fairly with a 
software implementation some caution in needed. Only 
the CPU time must be taken in account disregarding 
I/O operations like file readings.  The software must do 
the same work as the FPGA. As the systolic array 
computes the best score and location the software must 
do just it.  In this case, the most computer intensive 
part of sequence alignment algorithm was done in 
FPGA with a speedup more than two hundred of the 
equivalent part of software. After the calculation is 



done on FPGA, only a few bytes need to be transferred 
to the host, and that can be done in few milliseconds 
through the PCI bus.  

 
7    Conclusions and Future Work 

 
In this paper, we proposed and evaluated an FPGA-

based solution to accelerate the most compute intensive 
part of a linear space variant of the SW algorithm to 
locally align biological sequences. As input, our circuit 
receives the sequences to be compared. The smallest 
one is placed at the FPGA and the longest one is 
passed through the circuit. As output, we produce the 
similarity score as well as its coordinates at the 
similarity matrix. These information are very useful to 
retrieve the actual local alignments. The results 
obtained in a prototype synthesized for  a Xilinx 
xc2vp70 board that contained 100 processing elements 
were very good. When compared to a software 
implementation of the same part of the algorithm, our 
prototype achieved a speedup of 246.9, reducing 
execution time from more than 3 minutes to less than 1 
second. 
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