
A Genetic Approach for Distributing Semantic Databases of Crowd Simulations

M. Lozano, J. M. Orduña, V. Cavero

Universidad de Valencia. Departamento de Informática
Av. Vicent Andrés Estellés, s/n. 46100 Burjassot (Valencia), SPAIN

{Miguel.Lozano, Juan.Orduna, Vicente.Cavero}@uv.es

Abstract

Last years have witnessed how crowd simulations have
become an essential tool for many virtual environment ap-
plications. These applications require both rendering vi-
sually plausible images and managing the behavior of au-
tonomous agents, and therefore they need a scalable design
that allow them to simultaneously tackle these two require-
ments. One of the main problems in the design of a scalable
crowd simulations consists of efficiently distributing among
different computers the semantic database containing the
virtual world.

In this paper, we propose a genetic approach for dis-
tributing the semantic database of crowd simulations in
such a way that the dependencies among the computers
hosting the pieces of the database are minimized. The pro-
posed approach avoids the saturation of these computers by
ensuring that the size of the pieces assigned to each com-
puter is properly balanced. The performance evaluation
results show that the proposed approach significantly re-
duces the resulting overhead in regard to other local search
methods, regardless of the movement pattern of the agents.
Therefore, it allows an effective partition of the semantic
database.

1

1. Introduction

Last years have witnessed how crowd simulations have
become an essential tool for many virtual environment ap-
plications. Extensive use of virtual crowds has been made in
many commercial movies. Also, high quality crowd simula-
tions are crucial for many virtual environment applications
in education, training, and entertainment [2, 9, 23].

1This research was funded by the Spanish MEC under grants
CONSOLIDER-INGENIO CSD2006-00046 and TIN2006-15516-C04-04

1-4244-0910-1/07/$20.00 c©2007 IEEE.

Crowd simulations can be considered as virtual environ-
ment applications with were users do not control the avatars.
Instead, avatars are autonomous agents that can have differ-
ent missions in the virtual world. As a results, crowd sim-
ulations have two different goals. On the one hand, crowd
simulations must focus on rendering visually plausible im-
ages of the environment, requiring a high computational
cost. On the other hand, complex agents must have au-
tonomous behaviors, greatly increasing the computational
cost as well. Figure 1 shows an example of a crowd sim-
ulations. Concretely, it shows a detailed view of a urban
environment. In this case, this environment is filled with
8000 autonomous agents that freely move an interact in the
environment.

One of the main problems that arises in the design
of a crowd simulation is the scalability. Some proposals
tackle crowd simulations as a particle system with differ-
ent levels of details (eg:impostors) in order to reduce the
computational cost [3, 24]. Although these proposals can
handle crowd dynamics and display populated interactive
scenes (10000 virtual humans), they are not able to pro-
duce complex autonomous behaviors for their actors. On
the contrary, several proposals have been made to provide
efficient and autonomous behaviors to crowd simulations
[21, 19, 4, 20, 15, 8]. However, they are based on a cen-
tralized system architecture, and they can only control a
few hundreds of autonomous agents with different skills
(pedestrians with navigation and/or social behaviors for ur-
ban/evacuation contexts). Taking into account that pedes-
trians represent the slowest human actors (in front of other
kind of actors like drivers in cars, for example) these results
show that scalability has still to be solved in crowd simula-
tions.

Distributed schemes like networked-server architectures
[10, 6, 18] or peer-to-peer architectures [16, 14, 17] have
been proved to improve the scalability of virtual environ-
ments through the use of different interconnected comput-
ers. In order to exploit the potential of such computer archi-
tectures, the software architecture must also be distributed.

Figure 1. Detailed view of a urban environ-
ment with 8000 agents

An example of such software architecture could be the one
shown in Figure 2. It is composed of two kind of elements:
the Action Server (AS) and the Client Processes (CP). The
AS is unique, but the system can have as many client pro-
cesses as necessary, in order to properly scale with the num-
ber of agents to be simulated. In his turn, each CP manages
a group of autonomous agents. In order to take advantage
from the underlying computer architecture, the most suit-
able distribution for this software architecture consists of
allocating the AS in a single server, and uniformly distribut-
ing the CPs among the rest of the networked servers. Since
each client process can manage a variable number of au-
tonomous agents, the replicas usually host one CP, although
it can hosts several ones. On the other hand, the action
server is composed of two different modules, the Semantic
Data Base (SDB) and the Action Execution Module (AEM).
The action server is hosted on another networked server.

Figure 2. A distributed software architecture

Although a software architecture like the one shown in
Figure 2 can improve the scalability of the crowd simula-
tion with respect to centralized architectures, it is limited by
the the centralized nature of the AS. This element becomes
the system bottleneck when the number of agents reaches
order of magnitude of tens of thousands. In this sense, a
region-based partition of the semantic database and its dis-
tribution among different computers seems to be essential
for actually exploiting the inherent scalability of distributed
computer architectures. In such a scheme, each part of the
distributed database would contain the information of a dif-
ferent region of the virtual world and it would reside in a
different computer.

However, several problems arise when physically dis-
tributing the semantic database. First, in order to maintain
the database consistency those agents near the borders of
each region need to access to several regions. This requires
the exchanging of locking requests among the computers
hosting the partition of the database. Additionally, in or-
der to avoid the saturation of those computers hosting the
database the partition must be properly balanced. Taking
into account these issues, in this paper, we propose a ge-
netic approach for solving the problem of properly distribut-
ing the semantic database of crowd simulations among the
computers in the system. Performance evaluation results
show that the proposed algorithm improves the performance
achieved by other local search methods, providing balanced
partitions that actually minimize the number of locking re-
quests.

The rest of the paper is organized as follows: Section 2
details the problems to be solved in order to properly dis-
tributing the semantic database and the evaluation function
used for modeling the problem. Section 3 describes the im-
plementation and tuning of the proposed genetic algorithm.
Next, Section 4 presents the performance evaluation of the
proposed method. Finally, Section 5 presents some con-
cluding remarks.

2. The Semantic Database Problem

The problem of properly distributing the information
stored in a centralized semantic database of a crowd sim-
ulation has not been still addressed. As discussed above,
this problem can be split into two different problems: on
the one hand, the overhead produced by those agents near
the borders of each region. Effectively, when the seman-
tic database is split into several pieces, each one containing
a given region of the virtual world, the surroundings of an
agent located near the border of a region are contained in
more than one of the pieces. All of these pieces must wait
(must be locked) until the action requested by that agent is
checked in all the pieces, in order to ensure that other lo-
cal requests do not change that area of the virtual world.

2

Regardless of the consistency protocol used, this constraint
adds a significant overhead that must be minimized, since
the requests from all the agents must be solved by the AS in
a single cycle. On the other hand, the potential saturation of
a given computer must be taken into account. In this sense,
a proper balancing of the regions assigned to different com-
puters must be made. Otherwise, one or more computers
can reach saturation, greatly degrading the performance of
the entire system [18].

An assignment of regions to computers consists of parti-
tioning the virtual world into 2D or 3D regions and assign-
ing each part of the semantic database (containing each of
these regions) to a given computer. We will denote as mod-
ules each part of the database containing a given region.
The computer k hosting a given module then will become
the server for that region, meaning that all the agents located
in that region of the virtual world (as shown in Figure 2, the
autonomous agents are threads of a process being executed
on another computer) will send requests to computer k to
check their interactions with the virtual world. The seman-
tic database problem will consists of finding a near optimal
partition of the semantic database that minimizes the num-
ber of agents near the border of the regions and also that
properly balances the number of agents in each of the re-
gions. Additionally, the partition of the semantic database is
a dynamic procedure. In each server cycle, the autonomous
agents in a crowd simulation can move and interact with
the virtual world existing in their surroundings, in such a
way that when the simulation proceeds the current parti-
tion can become obsolete because many agents have moved
from their original location. At this point, a new search for
the best partition (taking into account the current position
of the agents) must be performed.

Since this seems a complex problem, we propose the use
of a bio-inspired heuristic technique that is capable to per-
form a heuristic search within the huge solution space of
all possible partitions of the virtual world. The first step in
the process of a heuristic search is the definition of a fitness
function that properly models the problem to be solved. For
the sake of clearness, in this paper we will consider 2-D
worlds, although the technique can be easily extrapolated
to 3-D worlds. We have considered rectangular (or square)
regions delimited by four coordinates, x min, x max, y min
and y max. The surroundings of each avatar are delimited
by its Area of interest (AOI) [22]. The AOI defines the area
of the virtual world that the agent can interact with. Usually,
AOIs have spheric (3-D worlds) or circular shapes.

Since this particular problem is determined by the two
main issues explained above, we have defined the fitness
function to be minimized by the search method as the fol-
lowing one:

H(P) = ω1 · α(P) + ω2 · β(P), ω1 + ω2 = 1 (1)

The first term in this equation measures the number
of agents in the resulting partition P whose surroundings
crosses the region boundaries. Each interaction of such
agents will require the locking of more than one of the mod-
ules, and this overhead must be minimized. Concretely,
α(P) is computed as the sum of all the agents whose AOIs
intersect two or more regions of the virtual world (that is,
the number of avatars whose AOIs reside in more than one
module). β(P) is computed as the standard deviation of the
average number of agents that each region contains. There-
fore, β(P) measures how balanced partition P is. Finally,
ω1 and ω2 are weighting factors between 0 and 1 that can
be tuned to change the behavior of the search as needed.

Thus, the proposed approach will consist of a heuristic
search on order to find the partition that minimizes H(P)
as much as possible.

3. A Sexual Elitist Genetic Algorithm

Genetic Algorithms (GA) consists of a search method
based on the concept of evolution by natural selection
[13, 7]. GA starts from an initial population, made of
R chromosomes, that evolves following certain rules, until
reaching a convergence condition that maximizes a fitness
function. Each iteration of the algorithm consists of gener-
ating a new population from the existing one by recombin-
ing or even mutating chromosomes. In this case, a chromo-
some consists of an integer array that contains k Minimum
Bound Rectangles (MBR), where k is the number of pieces
which the semantic database must be split into. Each MBR
is a quadruple (integer coordinates array) [x min, x max,
y min, y max] that defines a rectangular region of the vir-
tual world. Thus, a chromosome defines a partition of the
virtual world in k regions.

Most of heuristic methods are based on the random gen-
eration of an initial population. However, if the initial popu-
lation has been correctly defined, then the heuristic method
easily obtains a good approximation to the global optimum.
In this case the algorithm should maintain a certain level
of structural diversity among all the chromosomes, in or-
der to avoid the premature convergence of the search [13].
In this sense, it must be noticed that the method must be
executed in each server cycle, and it must start from the re-
sult provided for the prior AS cycle. Thus, from this initial
partition a population of R chromosomes is randomly gen-
erated. These chromosomes are sorted by the fitness func-
tion H(P) associated with each chromosome in ascending
order (the first chromosome is the one with the best par-
tition). We have denoted this sorted list as Best Solutions
List (BSL). This list represents the initial population for the
genetic algorithm, and it will contain the best R solutions
found until that iteration by the GA. The value of R is a pa-
rameter that must be tuned. However, in order to prove that

3

the proposed method can provide good results even in the
worst case, we have not tuned this parameter, and we have
used an arbitrary value (R=10).

Each iteration consists of generating a descendant gener-
ation of R chromosomes, starting from an ancestor genera-
tion. The way that the algorithm provides the next genera-
tion determines the behavior of the GA. We have chosen a
sexual reproduction technique [13], in such a way that each
descendant is generated starting from two ancestors. In each
iteration the first ancestor for the i− th chromosome of the
population is the i − th chromosome of the population in
the previous iteration. The second ancestor is randomly se-
lected among the 50% of the previous population with the
best fitness function.

From each two ancestors, an offspring is obtained by
computing a randomly skewed average of the correspond-
ing coordinates in each of the ancestors. This skewed av-
erage is computed for all the coordinates in an MBR and
for all the MBRs in a chromosome. As an example, Fig-
ure 3 shows the MBRs corresponding to two ancestors and
an example of the resulting offspring. In this Figure, we
can see an ancestor MBR a whose coordinates are defined
by the quadruple [xa min, xa max, ya min, ya max] and a
second ancestor MBR whose coordinates are defined by the
quadruple [xb min, xb max, yb min, yb max]. From these
two MBRs, the MBR with dashed lines is computed.

It must be noticed that this reproduction method can pro-
duce non-valid offsprings, because they define MBRs with
different shapes. If this situation occurs, then the nonvalid
offspring is discarded and another offspring is computed.
For example, the resulting MBR in Figure 3 is narrower
than ancestor a. If the rest of MBRs in the resulting chro-
mosome do not include the area of a not covered by the
resulting offspring, then the agents located at that area will
not be assigned to the semantic database. Moreover, the
initial partition, provided by the previous execution of the
GA, can be corrupted due to the movement of agents dur-
ing the AS cycle. In this case, the initial population starts
from a modified partition where some regions are expanded
as necessary to cover all the agents at the current locations.

Since invalid offsprings can be generated, the number
of chromosomes in the offspring population can be lower
than R. When an invalid offspring is generated it is sim-
ply discarded, and another offspring is generated from dif-
ferent ancestors in the population. When all the ancestor
population has been used for producing offsprings and the
number of valid offsprings is lower than R, then the process
starts again until R valid offsprings are obtained. At this
point, the R offsprings and the chromosomes in the BSL
are sorted and merged to obtain the new BSL for that iter-
ation. Mutation is not used, since exchanging two or more
coordinates between different MBRs could lead to invalid
chromosomes.

(xa_min,ya_max) (xa_max,ya_max)

(xa_max,ya_min)(xa_min,ya_min)

(xb_max,yb_min)

(xb_max,yb_max)(xb_min,yb_max)

(xb_min,yb_min)

Figure 3. Offspring generation

The whole process performed in each iteration i can be
expressed as the following pseudo-code statements :

Iteration i

CONST
R /* Num. of chromosomes in the population */

TYPE
MBR : array[4] of integer;
chromosome : array [k] of MBR;

VAR
int j, l
Anc1, Anc2 : chromosome /* Ancestors */
offs : chromosome /* Offspring */

BSL : array [R] of chromosome;
offs_array : array [R] of chromosome;

begin
z :=1;
while z < R do

For j:=1 to R do
Anc1 := BSL(j);
Anc2 := First_Half_Select (BSL);
offs := skew_average (Anc1,Anc2);
if (valid (offspring))

insert(offs_array, offs);
z++;

end_if
end_for

end_while
Evaluate_And_Sort (offs_array, BSL);

end

Since one of the main constraints in the semantic
database problem is the execution time of the search (it must
be shorter than a fraction of the AS cycle, denoted as T , in
order to provide an effective partition) we have established
the execution time as one of the finishing conditions of the
algorithm. Concretely, we have set T to half of the AS cy-
cle period, that is, 125 msec.. Additionally, in order to en-

4

sure that the proposed method provides the best solution as
possible, we have added the decrease of H(P) as a con-
vergence condition. That is, if the H(P) value of the first
chromosome in the BSL is not decreased in two successive
iterations, then the algorithm finishes. Therefore, the first
chromosome in the BSL is chosen as the result of the search
either when the convergence condition is reached or when
the algorithm has been executed during T milliseconds.

4. Performance Evaluation

In this section, we present the performance evaluation
of the heuristic method described in the previous section.
In order to show the genetic approach can improve bet-
ter performance than other approaches, we have also tested
another local search method, K-means [11]. K-means is
a non-supervised clustering technique used in data mining
and other AI fields. In this problem, K (the number of
pieces which the semantic database must be split into) is
fixed a priori. K-means splits the data set into k-partitions,
considering that the distance from each agent to its centroid
(the point whose x coordinate is the average x coordinate
of all the agents and whose y coordinate is the average y

coordinate of all the agents) should be minimized. It is an
iterative method, and it continually processes the data set
until the coordinates of all the centroids do not change in
two iterations.

We have evaluated both the K-means method and the
proposed method in a crowd simulation composed by 8000
autonomous agents and with K=5. Concretely, the crowd
simulations consist of the evacuation of a structured 2-D
world where there are several emergency exits. The au-
tonomous agents must try to escape from the world as soon
as possible. We have performed different experiments with
different populations and different virtual worlds. In all of
them we have considered three well-known movement pat-
terns: Changing Circular Pattern (CCP) [1], HP-All (HPA)
[5] and HP-Near (HPN) [12]. CCP considers that all avatars
in the virtual world move randomly around the virtual scene
following circular trajectories. HPA considers that there ex-
ists certain “hot points” where all avatars approach sooner
or later. This movement pattern is typical of multiuser
games, and this application is an example of this pattern,
since all agents must find one of the existing exits. Finally,
HPN also considers these hot-points, but only avatars lo-
cated within a given radius of the hot-points approach these
locations. In order to achieve these movement patterns, we
have considered the following 2-D world configurations:
full, where there are a lot of emergency exits uniformly dis-
tributed along the whole 2-D world (CCP pattern); perime-
ter, where all the emergency exits are uniformly distributed
along the four borders of the virtual world (HP-Near); up,
where there are only a few exits and they are located at the

upper border of the world (HP-All); and down, where there
is only one exit located at the lower border of the world
(HP-All with a single hot-point). In order to illustrate these
configurations, Figure 4 shows four snapshots of the virtual
world with these configurations at half of the simulation
time. In this figure, the 2-D world is viewed from above,
and agents are represented as grey dots.

Figure 4. Movement patterns: a) full b)
perimeter c) up d) down

A common feature for all these movement patterns is that
as simulation proceeds and some agents accomplish their
mission (escaping from the virtual world), the number of
agents in the database decreases. Another common feature
is that the obstacles in the virtual world (there are a lot of
walls and only some doors allow to access the correct path
for escaping) make agents to crowd in some regions of the
virtual world.

The first step is to study the improvement achieved by
the proposed approach (in terms of both the fitness function
and execution times) with respect to the reference method
(K-means). Table 1 shows an example of the performance
evaluation results for both methods under the four configu-
rations described above. The results obtained in all the ex-
periments performed with different populations and in dif-
ferent virtual worlds were very similar. Each value in the ta-
bles of this section are computed as the average of at least 10
different simulations of the same configuration. Each row in
this table shows the execution time in milliseconds required
to compute each algorithm for a population of 8000 agents
and the resulting H(P) values achieved by each method.
We have labeled the proposed method as genMBR, for ge-
netic MBR. For both methods ω1 and ω2 values were set to
0.6 and 0.4, respectively.

Table 1 shows that for all the configurations the fit-
ness function values provided by the proposed approach are
lower than the ones provided by the K-means method. On
the contrary, the execution times required by the proposed
approach is one order of magnitude higher than the time re-
quired for executing the K-means algorithm, as it could be
expected. Nevertheless, the only time constraint imposed
by the application is that the partition must be provided be-
fore half of the AS period, that is, 125 milliseconds. Since
none of the execution times reaches that threshold, these re-
sults show that the genetic approach can efficiently solve

5

Full
Method Ex. Time H(P)

K-means 3 411
genMBR 98 296

Perimeter
Method Ex. Time H(P)

K-means 5 487
genMBR 91 342

Up
Method Ex. Time H(P)

K-means 7 923
genMBR 124 677

Down
Method Ex. Time H(P)

K-means 7 866
genMBR 115 750

Table 1. Comparison study for different con-
figurations.

the semantic database problem.
Nevertheless, the results shown in table 1 do not show

the actual improvement that the proposed approach pro-
vides to real systems. In order to achieve this goal, we have
executed crowd simulations with the four movement pat-
terns shown above and we have used both methods (with
ω1=0.6) for distributing the semantic database. Figure 5
shows the H(P) values provided by both methods during
the crowd simulation of the Full configuration. In this fig-
ure (and the following ones), the x-axis show the simulation
time in seconds, while the y-axis shows the H(P) values
provided by both methods for all the AS cycles. It can be
clearly seen that during the first 50 seconds the H(P) values
provided by the proposed approach are clearly lower than
the ones provided by the K-means method. After that pe-
riod the differences decrease due to the population decrease
(in this configuration there are a lot of emergency exits and
the population rapidly decreases).

In order to measure the effects that the proposed ap-
proach has on the simulations shown in Figure 5, Table 2
shows the average number of locking requests produced in
each AS period among the computers hosting the database
modules. Each value shown in this table is the average value
for all the AS cycles of the simulation time. Also, this ta-
ble shows the average standard deviation for the average
number of agents in each module (that is, how balanced the
provided partitions are).

Table 2 shows that the proposed method provides signif-
icantly better results than the reference method in terms of
the number of locking requests. Concretely, the proposed
method reduces the average number of locking requests to
less than half of the ones provided by the K-means method.

Figure 5. H(P) values provided during a crowd
simulation (Full configuration)

Method Locks Std. Deviation
K-means 343 513
genMBR 154 510

Table 2. Performance evaluation for the Full
configuration.

Also, table 2 shows the average standard deviation of the
number of agents hosted in each module (that is, how bal-
anced the partitions are during the simulations). This col-
umn of the table shows that the proposed method provides
a similar balancing to the one provided by the K-means
method.

Figure 6 shows the H(P) values provided by both meth-
ods during a simulation with the Perimeter configuration.
In this case the genMBR plot show much lower values than
the K-means plot for the first 110 seconds of the simulation.
After that period, the difference between the two plots is re-
duced and it remains more or less constant until the end of
the simulation. However, the genMBR plot is always below
the K-means plot, and thus this simulation longs a shorter
time than the simulation with the K-means method. Since
less locking requests are sent, the hosting computers can an-
swer the agents faster, and therefore agents can accomplish
their mission (evacuation) in a shorter time.

Table 3 shows the average number of locking requests
produced in each AS period and the average standard devi-
ation for the simulation performed using a perimeter con-
figuration of the virtual world.

Table 3 shows that the proposed method is able to pro-
vide a lower number of locks than the K-means method,
while the average standard deviation is still lower than the
one provided by the K-means method.

Figure 7 shows the H(P) values provided by both meth-
ods during a simulation with the Up configuration. In

6

Figure 6. H(P) values provided during a crowd
simulation (Perimeter configuration)

Method Locks Std. Deviation
K-means 189 936
genMBR 131 661

Table 3. Performance evaluation for the
Perimeter configuration.

this case, the values of H(P) provided by the proposed
method are around half of the ones provided by the K-
means method during the 300 first seconds of the simula-
tion. After that period both plots shows more or less the
same behavior. Again, these results show that the proposed
method provides better results in terms of the fitness func-
tion.

Figure 7. H(P) values provided during a crowd
simulation (Up configuration)

Table 4 shows the average number of locking requests
produced in each AS period and the average standard devia-
tion for the simulation performed using an Up configuration

of the virtual world.

Method Locks Std. Deviation
K-means 475 1597
genMBR 232 1346

Table 4. Performance evaluation for the Up
configuration.

Table 4 shows that again the proposed method provides
around half of the locking requests provided by the K-
means method, while the partitions are slightly better bal-
anced.

Finally, Figure 8 and table 5 show the performance re-
sults for the Down configuration. In this case the proposed
method does not provide clearly lower values of H(P) than
the ones provided by the K-means method. In terms of
actual performance improvement, the average number of
locks shown in table 5 for the proposed method is less than
half of the ones provided by the K-means method. The
partitions provided by the proposed method show a similar
standtard deviation than the ones provided by the K-means
method. In order to ensure that the provided partitions do
not lead to saturation, we have measured the maximum CPU
utilization reached by all the computers in the simulation,
and in all of them this value was lower than 85% (in order
to reach saturation, a CPU utilization around 99% or more
must be reached [18]). Therefore, the proposed method pro-
vide balanced partitions that generate less locking requests,
actually improving the system throughput (the number of
agents supported by the system).

Figure 8. H(P) values provided during a crowd
simulation (Down configuration)

When comparing table 5 with the rest of the tables we
can see that the numbers in table 5 are the highest ones.
This indicates that this is the configuration generating the
highest workload, since there is only one emergency exit in

7

Method Locks Std. Deviation
K-means 684 1142
genMBR 299 1180

Table 5. Performance evaluation for the Down
configuration.

the virtual world. Even in this case the proposed approach
is able to generate a lower overhead due to the locking re-
quests, while still balancing the workload associated to each
module of the database.

5. Conclusions

In this paper, we have proposed a genetic algorithm for
solving the semantic database problem that arises in crowd
simulations when this database must be split in order to be
distributed among several computers of a distributed sys-
tem.

Performance evaluation results show that the proposed
approach provides partitions that are properly balanced,
avoiding the saturation of the servers as much as possi-
ble. Also, the proposed approach significantly reduces the
overhead due to the partition consistency (number of locks)
in regard to other local search methods, regardless of the
movement pattern the agents can follow. Therefore, it al-
lows an effective partition of the AS, eliminating the bottle-
neck that a centralized database represents.

References

[1] N. Beatrice, S. Antonio, L. Rynson, and L. Frederick. A
multiserver architecture for distributed virtual walkthrough.
In Proceedings of ACM VRST’02, pages 163–170, 2002.

[2] D. Diller, W. Ferguson, W. Leung, A. Benyo, and D. Fo-
ley. Behavior modelling in comercial games. In BRIMS ’04:
Proceedings of the 2004 Behavior Representation in Mod-
elling and Simulation Conference, 2004.

[3] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geo-
postors: a real-time geometry/impostor crowd rendering
system. ACM Trans. Graph., 24(3):933–933, 2005.

[4] S. Donikian. Informed virtual environments. In Proceedings
of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation. ACM Press, 2004.

[5] C. Greenhalgh. Analysing movement and world transitions
in virtual reality tele-conferencing. In European Confer-
ence on Computer Supported Cooperative Work (ECSCW
97), page 313, 1997.

[6] C. Greenhalgh, A. Bullock, E. Frecon, D. Llyod, and
A. Steed. Making networked virtual environments
work. Presence: Teleoperators and Virtual Environments,
10(2):142–159, 2001.

[7] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms.
Ed. Willey, 1997.

[8] A. Iglesias and F. Luengo. New goal selection scheme for
behavioral animation of intelligent virtual agents. IEICE
Transactions on Information and Systems, Special Issue on
’CyberWorlds’, E88-D(5):865–871, 2005.

[9] P. A. Kruszewski. A game-based cots system for simulating
intelligent 3d agents. In BRIMS ’05: Proceedings of the
2005 Behavior Representation in Modelling and Simulation
Conference, 2005.

[10] J. C. Lui and M. Chan. An efficient partitioning algorithm
for distributed virtual environment systems. IEEE Trans.
Parallel and Distributed Systems, 13, 2002.

[11] J. MacQueen. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the 5th
Berkeley symposium on mathematical statistics and proba-
bility, pages 281–297, 1967.

[12] M. Matijasevic, K. P. Valavanis, D. Gracanin, and I. Lovrek.
Application of a multi-user distributed virtual environment
framework to mobile robot teleoperation over the internet.
Machine Intelligence & Robotic Control, 1(1):11–26, 1999.

[13] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer, 1994.

[14] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-peer
computing. Technical report, Technical Report HPL-2002-
57, HP Laboratories, Palo Alto, 2002.

[15] J. S. Monzani, A. Caicedo, and D. Thalmann. Integrating
behavioral animation techniques. In Proceedings of EURO-
GRAPHICS 2001, pages 309–318. Computer Graphics Fo-
rum, Vol. 20, Issue 3, 2001.

[16] S. Mooney and B. Games. Battlezone: Official Strategy
Guide. BradyGame Publisher, 1998.

[17] P. Morillo, W. Moncho, J. M. Ordua, and J. Duato. Providing
full awareness to dves based on peer-to-peer architectures.
Lecture Notes on Computer Science, 4035:336–347, 2006.

[18] P. Morillo, J. M. Ordua, M. Fernndez, and J. Duato. Improv-
ing the performance of distributed virtual environment sys-
tems. IEEE Transactions on Parallel and Distributed Sys-
tems, 16(7):637–649, 2005.

[19] H. Nakanishi and T. Ishida. Freewalk/q: social interaction
platform in virtual space. In VRST ’04: Proceedings of the
ACM symposium on Virtual reality software and technology,
pages 97–104, New York, NY, USA, 2004. ACM Press.

[20] S. Raupp and D. Thalmann. Hierarchical model for real time
simulation of virtual human crowds. IEEE Transactions oon
Visualization and Computer Graphics, 7(2):152–164, 2001.

[21] W. Shao and D. Terzopoulos. Autonomous pedestri-
ans. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
pages 19–28, New York, NY, USA, 2005. ACM Press.

[22] S. Singhal and M. Zyda. Networked Virtual Environments.
ACM Press, 1999.

[23] M. Sung, M. Gleicher, and S. Chenney. Scalable behaviors
for crowd simulations. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 519–528. ACM Press, 2004.

[24] F. Tecchia, C. Loscos, and Y. Chrysathou. Visualizing
crowds in real time. Computer Graphics Forum, 21, 2002.

8

