OS Mechanism for Continuation-based Fine-grained Threads
on Dedicated and Commodity Processors

Shigeru Kusakabe!, Satoshi Yamada®, Mitsuhiro Aono!, Masaaki Izumi®,
Satoshi Amamiya', Yoshinari Nomura?, Hideo Taniguchi?, and Makoto Amamiya®

'Kyushu University,

2Okayama University

Grad. Sch. of Information Sci. & Electrical Eng. The Grad. School of Natural Sci. & Tech.

744 Motooka, Nishi-ku Fukuoka, Japan
kusakabe @csce.kyushu-u.ac.jp

Abstract

Fine-grained multithreading based on a natural model,
such as dataflow model, is promising in achieving high effi-
ciency and high programming productivity. In this paper,
we discuss operating system issues for fine-grained mul-
tithread programs. We are developing an operating sys-
tem called CEFOS based on a dataflow based computa-
tion model. A program on CEFOS consists of zero-wait
threads which run to completion without suspension once
started. Firing control among such threads is performed in
a dataflow manner along with continuation relations in the
program. Target platforms include Fuce processor, which
is dedicated to fine-grained multithreading, and commodity
processors such as Intel x86. In this paper, after introduc-
ing our basic model and our operating system model, we
discuss implementation issues on Fuce and commodity plat-
forms. The evaluation results indicate that our approach
on commodity platforms is effective in reducing overheads
while our approach on a special architecture naturally ex-
ploit parallelism even in I/0 handling.

1. Introduction

A number of applications are parallelized or multi-
threaded, and commodity processors that perform thread-
level parallel processing, such as SMT (Simultaneous Multi
Threading) processors and CMP (Chip Multiprocessor), are
widely available[1, 2, 3, 4, 5, 6]. However, their underly-
ing execution model is a sequential one, and process model

1-4244-0910-1/07/$20.00 (©2007 IEEE.

3-1-1 Tsushima-naka, Okayama, Japan

of commodity operating systems assumes a sequential exe-
cution model. Writing or generating highly parallel multi-
thread programs in imperative approaches seems a difficult
problem even when the granularity of threads is large.

We believe fine-grained multithreading based on a natu-
ral model, such as dataflow model, is a promising approach.
Fine-grained multithreading code can be hand-coded based
on an appropriate model or generated from very high level
languages such as functional or logic programming lan-
guages. Many architectures dedicated to such multithreaded
programs have been proposed [7, 8,9, 10, 11, 12, 13]. How-
ever, in this paper, we discuss issues on operating systems
for fine-grained multithread programs.

We are developing an operating system called CEFOS
based on a dataflow based computation model. A program
for CEFOS consists of threads which run to completion
without suspension once started. We call a thread in our
model a zero-wait thread in order to distinguish from other
types of threads like Pthreads' Firing control among such
threads is performed in a dataflow manner along with con-
tinuations. A program can be seen as a dataflow graph in
which a node corresponds to a zero-wait thread and an edge
corresponds to a continuation.

In this paper, we discuss implementation issues of op-
erating systems for fine-grained multithreaded code on
two different types of platforms. (See Figure 1) One
is Fuce (FUsion Communication and Execution) pro-
cessor architecture, which is dedicated to fine-grained
multithreading[15], and the other is commodity processors
such as Intel x86.

On Fuce, in addition to application programs, the op-
erating system kernel is also multithreaded and we can

'We will use the term “thread” and “zero-wait thread” interchangeably
unless explicit explanation is necessary.

o o)

Program in High-level Language
such as Functional Language

{:anslate hand
coding
Multithread program
in Fuce-C (Dialect of C)

Operating System
(multithreaded)

Fuce (HW for fine-
grained multithread)

Operating System

Commodity
Processor

Figure 1. Our platforms.

naturally exploit parallelism in the operating system ker-
nel. For example, interrupt handler routines consist of
zero-wait threads and handling external devices is inte-
grated in continuation-based multithreaded execution. Exe-
cution control between zero-wait threads are performed au-
tonomously according to continuation relations regardless
whether threads are for internal computation or for external
event handling. Continuation-based activation mechanism
of zero-wait threads enables us to easily exploit parallelism
in programs even for I/O-centric computation without com-
plex interrupt management mechanisms on Fuce.

On commodity platforms, we focus on mechanisms for
user-level zero-wait threads. We implement a prototype ver-
sion of CEFOS by modifying Linux on commodity plat-
forms. While coarse grain threads like Pthreads are man-
aged in a conventional way, we use scheduling techniques
for fine-grained threads in order to reduce overheads of con-
text switches on commodity processors[14].

The organization of this paper is as follows. First, we
explain our basic thread model in section 2. Next, we in-
troduce our operating system model on Fuce and discuss
implementation issues focusing on handling I/O requests in
section 3. Then we discuss the implementation issues of
commodity version in section 4.

2. Our Thread Model

In this section, we explain our thread model. Programs
using our thread model can be hand-coded based on our
thread model or generated from very high level languages
such as functional or logic programming languages.

2.1. Zero-Wait thread

Zero-wait threads have the following characteristics.

e A zero-wait thread consists of a synchronization
counter and an instruction sequence. Instructions in
the sequence of a thread are executed sequentially and
may contain zero or more continuation instructions.

e A program consisting of multiple zero-wait threads
seems like a dataflow graph whose nodes are zero-wait
threads and edges are continuation relations.

e A continuation instruction specifies the starting points
of succeeding threads and their context. It decrements
the synchronization counter of the target thread by one.
‘When the counter becomes to zero, the thread becomes
ready to run.

e Once started, a zero-wait thread runs to completion
without suspension. Execution starts at the beginning
of the instruction sequence of the thread. It never starts
from the middle of the thread.

As a zero-wait thread runs to completion once started,
it has no wait points in the middle of the body like con-
ventional posix threads. When the result of a request is
returned after long latency, we use split-phase style trans-
actions that separate the thread that receives the result of
the request from the thread that issues the request. By us-
ing split-phase style transaction, latency hiding is realized
naturally if enough number of ready threads exist.

2.2. Execution control of zero-wait thread

We discuss the basic mechanisms to execute zero-wait
threads.

2.2.1 Context for threads

Contexts of threads are managed by using instance frames.
Parallel and concurrent activities using the same thread code
are activated with different instance frame like dynamic col-
ored dataflow architectures. For example, an instance frame
is created in a function invocation, and threads to compute
the result of function invocation are executed using the same
function instance frame.

2.2.2 Synchronization

A zero-wait thread may be specified as a continuation from
more than one preceding threads. A continuation signal
delivered from one single preceding thread may not make
the target thread ready. Each thread has a synchronization
counter. The initial value of the counter is set to the num-
ber of the preceding threads in typical cases. When a con-
tinuation instruction executes, it decrements the synchro-
nization counter of the target continuation thread by one.
If the counter becomes zero, the target continuation thread
becomes ready.

Main memory ‘

V|
7

[
T | D-Cache

N ° = Load/Store
\ 7 Unit
I-Cache - Thread
Execution |
Unit Register

file N I 5
7 o T
Pre-load Thread S g
Unit Q! »| Activation % 5
Controller S =
g 3
[17

Figure 2. Overview of Fuce processor.

3. Operating System on Fuce

In this section, we introduce Fuce processor and our op-
erating system model on Fuce. Fuce processor executes
fine-grain non-preemptive threads and most features nec-
essary to implement our operating system with zero-wait
threads are provided at its hardware level. Since typical
technical issues which are common in user applications are
already discussed in another work[15], we discuss imple-
mentation issues of operating systems on Fuce focusing on
handling I/O requests in this paper.

3.1. Fuce processor

Fuce processor is based on continuation-based multi-
threading, and threads of Fuce are almost the same as the
zero-wait threads discussed previously. The thread model
of Fuce is evolved from a dataflow computing model[10]
although there are many types of thread in the literature[12,
16, 17, 18].

Figure 2 outlines an overview of Fuce processor. Multi-
ple thread execution cores are implemented in a chip. The
main components for thread execution on Fuce are Thread
Activation Controller, Thread Execution Unit and multiple
register files.

3.1.1 Thread Execution Unit

The Thread Execution Unit (TEU) executes instructions in
a thread, and the number of TEUs in a chip is supposed as
eight. The TEU consists of a Main unit and a Pre-loading
unit. The Main unit is a very simple 32-bit RISC proces-
sor and its internal architecture is quite similar to the early
MIPS processor. The instruction set of the Main unit is also
derived from MIPS instruction set[19]. The Pre-loading

Base-address: pointer to data area
lock bit : semaphore

sync-count: # waiting continuations
fan-in: value of fan-in to the thread
code-entry: pointer to thread code

Activation Control Memory
Instances

Thread ID \
[
Instance ID ‘ Thread entry ‘

Select ACM entry l .

R
R
o

AN / lock-bit| sync-count | fan-in|code-entry,
< ready thread >
Thread

7 entries
Ready Thread Queue -

Base Address

Figure 3. Components of TAC.

unit is also a small RISC core, which executes instructions
for data loading.

3.1.2 Thread Activation Controller

TAC controls all thread firings and mutual exclusions. Fig-
ure 3 illustrates the overview of the components of Thread
Activation Controller (TAC). The TAC handles instructions
for thread control issued in the TEUs, and updates the states
of ACM explained below. A queue called ready-queue,
is implemented inside the TAC. The TAC enqueues ready
threads to the ready-queue. When a TEU finishes executing
a thread and the corresponding register file becomes avail-
able, the TAC allocates a thread in the ready-queue to a free
TEU.

Contexts for threads are managed in terms of instances.
For example, an instance is created in a function invoca-
tion as a runtime environment for the function invoked, and
threads to compute the result of the invocation are executed
using the instance. Parallel and concurrent activities us-
ing the same thread code are activated with different in-
stance contexts. Instance data is stored in a specially de-
vised high speed-memory called Activation Control Mem-
ory (ACM). Each page in ACM is associated with an in-
stance, and information of all the threads belonging to an
instance is recorded in an ACM page. An ACM page con-
sists of ACM-entries, each of which has sync-count, fan-
in, code-entry and lock-bit to control the thread associated
with the entry. Sync-count is the number of continuations
for which a thread is currently waiting. Initial sync-count
is set to the fan-in value. Code-entry is a pointer to the
entry address of the thread code. Each thread is identified
by Instance ID and Thread entry, its page number and page
displacement in ACM. The lock-bit is used as a semaphore
with the initial value of zero. The base-address is a pointer
to the base address of data area used by an instance.

h
current thread current thread

o
device
H (no intt rence) trlgggr .
handlei Suspend & resume continuation
(save & restore) handler
N o
T~

executable in parallel

Continuation-based
zero-wait thread approach

Interrupt-based
sequential approach

Figure 4. Two different approaches in han-
dling an event from an external device.

3.2. Mechanism for operating system

3.2.1 Continuation from device

Figure 4 illustrates two different approaches in handling an
event from an external device. Conventional approaches
treat asynchronous events such as interrupts as a kind of ir-
regular events. Interrupt handling needs special cares such
as, resuming interrupted thread as early as possible, keeping
device busy as short as possible, handling nested interrupts
correctly, and so on.

In our operating system on Fuce, handler routines for
external devices are also realized with zero-wait threads
and event handling is integrated into the continuation-based
multithreaded execution mechanism. We do not interrupt
the current thread as in conventional approaches. Simul-
taneous continuation events from different devices may
activate different handler threads without nesting handler
threads. Devices send continuation signals and can escape
from their busy state quickly. Independent threads are exe-
cuted in parallel and we can expect good scalability in terms
of the number of execution units and devices. We can nat-
urally handle concurrency and exploit parallelism in pro-
grams even for I/O-centric computation.

An I/O controller of Fuce processor converts the signal
from an external device into a continuation event and de-
livers the continuation event to the target handler threads.
Signals from the same device are masked until the handler
thread actually process the data from the device. The han-
dler thread is activated through ACM in TAC and put into
RTQ like other threads.

3.2.2 Execution mode change

Conventional processors have several execution modes as
processor states. Execution mode in Fuce processor is set
per thread. Each thread runs either in user mode, ker-
nel mode or kernel interface mode, and is called as user
thread, kernel thread, or kernel interface thread, respec-
tively. Kernel threads run at supervisor level and kernel
interface threads support continuations from user space to
kernel space.

User mode User thread

Kernel interface thread Not allowed
Supervisor l]
mode

Kernel thread

Figure 5. Mode changes between threads.

Figure 5 shows possible continuations between different
thread modes. In order to protect kernel space, user threads
cannot directly continue to kernel threads. To activate ker-
nel threads from user threads as in system calls, user threads
should continue to kernel interface threads.

3.2.3 Mutual exclusion

Simultaneous invocations of the same code segment are al-
lowed in our execution model in a way similar to those of
dynamic colored dataflow architectures. However, mutual
exclusion is necessary for critical regions, which must not
be executed simultaneously. For example, consider the case
where there is a thread which is executed several times but
which can not be executed simultaneously as shown in Fig-
ure 6. In this example, three threads (Thread A, Thread B,
and Thread C) try to continue to Thread D. But, only one
thread can continue to Thread D at one time and other two
threads must wait until Thread D becomes available again.

If we have a mechanism to lock a thread, we can achieve
this mutual exclusion. Three threads try to lock Thread D.
But, only one thread (for example, Thread B) can lock and
continue to Thread D. Other threads which failed to lock
Thread D continue to themselves in order to try to lock
thread D again. The critical thread, thread D in this case,
also performs self-continuation and resets the synchroniza-
tion counter to a predefined value in order to wait for other
continuation signals.

In Fuce processor, the following instructions are pro-
vided for mutual exclusion.

Thread B
try to lock thread D
RS succeed| -’ ‘v
’
! Thread A . Thread C
V' |tryto lock thread D '\ |trytolock thread D

~ N
\._./\reny /retry

-

s’ «

Thread D
\ unlock myself
N

’

S P

—— :continuation

----- + : self-continuation

Figure 6. Mutual exclusion.

e trylk RA, thID returns one and sets the lock-bit
to one if the value of lock-bit of the target thread is
zero. Otherwise, returns zero.

e unlk thID sets the lock-bit of the target thread to
zero.

These instructions modify the lock-bit fields in ACM
without accessing to the main memory. This is the different
point from conventional test-and-set operations such as LL
(load linked) and SC (store conditional) in MIPS architec-
ture, which cause accesses to main memory. ACM can be
accessed much faster than main memory.

3.3. Handling I/O requests with zero-wait
threads

As a part of the operating system kernel on Fuce, we
explain the mechanism for handling I/O requests with zero-
wait threads. The interaction between threads in the mech-
anism is illustrated in Figure 7. The role of each thread is
explained below.

sender_thread System call requests from user space must
go through gate_thread, an interface thread to ker-
nel space. Threads issuing system calls try to lock
gate_thread at first (1-1). If it succeeds in locking
gate_thread, it continues to gate_thread with necessary
information such as system call number, parameters and the
receiver thread in user space (1-2). Otherwise, it continues
to itself and tries to lock gate_thread again (1-3).

gate_thread Threads in user space cannot directly con-
tinue to threads in kernel space. This gate_thread works
as an interface to kernel space. This thread identifies the
system call from the system call number and specifies the

thread (syscall_thread) for the system call(2-1). Then,
it continues to the thread after delivering parameters to the
system call and data to identify receiver_thread (2-2).

syscall_thread This thread is the system call body. In this
case, as the system call is for an I/O operation, this thread
continues to semaphore_thread guarding the I/O device
required by the I/O operation (3-1, 3-2).

semaphore_thread First, this thread tries to lock
device_thread which is a continuation of this thread (4-
1). Then it continues to device_thread if it can lock the
thread (4-2). Otherwise, the I/O device is currently used and
this thread enqueues data of the I/O operation(4-3).

device_thread This thread receives data from
semaphore_thread(5-1), and issues I/O request to
the device (5-2). Then, it continues to handler_thread
after delivering data to specify receiver_thread (5-3).

handler_thread handler_thread is activated by the
continuation signal from the device and receives result
data from the device (6-1). It executes a continuation in-
struction whose target is receiver_thread and pass /O
data to the thread (6-2). Then it issues a continuation to
device_thread after delivering the data if there exist other
I/O request data in the queue. (6-3)

3.4. Evaluation

We evaluate our handling mechanism for I/O requests on
Fuce focusing on the scalability in terms of the number of
execution units and I/O devices.

3.4.1 Evaluation settings

We simulate Fuce processor described in VHDL on Mod-
elSim simulator. The number of TEUs = 8, the size of
Instruction Cache = 4KB/TEU, the size of ACM = 40KB
(5B/entry x8 entries/pagex 1K pages), the size of Thread
Queue = 10KB (10B/entry x 1k entries), and size of Mem-
ory = 256MB. Throughput of TAC is 1 clock cycle and
thread assignment from RTQ is 1 clock cycle.

Kernel program and user program issuing system calls
are written in Fuce assembly language. We assume the
speed of Fuce processor is 1GHz. As we cannot connect
real devices to our evaluation environment, we simulate a
device as a virtual hw_thread which occupies one exe-
cution unit during evaluation. This virtual hw_thread
has a loop. RTT (Round Trip Time) of the simu-
lated device is parameterized as the loop length. This
means that device_thread in Figure 7 continues to
virtual_ hw_thread and virtual_hw_thread continues

User

sender_threads

+1..| 1-1:try to lock

1 gate_thread

if (lock)

1-2:continue to the
gate_thread

else

1-3:self-continuation

receiver_threads

|
|

7-1:receive data V\

Kernel

gate_thread

|
1

semaphore_thread

2-1:identify the requested
system call ID

2-2:continue to the thread
of the system call ID

syscall_thread

3-1: execute the body of |/,
system call !
3-2: continue to the \
semaphore_thread |

handler_thread

4-1:try to lock the
device_thread
If(lock)
4-2: continue to the
device_thread
else

_|_4-3: buffer data/io/llo

device_thread

A

5-1:receive data
5-2:issue /O request

to handler_thread

5-3:pass the receiver ID

Device

6-1:receive data <

6-2:continue to the receiver
thread with the result

if(queue is not empty)

continue to device_thread
else
6-4 unlock device_thread

6-3:extract data from queue and /

—— :continuation

|:| : thread

Figure 7. Handling multiple I/O requests with zero-wait threads

to handler_thread in Figure 7 after RTT. The maximum
number of execution units which actually execute threads
in benchmark programs is (the number of execution units in
the processor) - (the number of devices) - 1, as we use one
execution unit for managing the measurement.

We set RTT of virtual_hw_thread as 2 micro seconds.
We considered a system with multiple NIC (Network In-
terface Card) of 10Gb Ethernet with TOE (TCP/IP Offload
Engine). The shortest interval of data packets may be about
1 to 2 micro seconds in case of the maximum packet size of
1.5KB on 10Gb Ethernet. This interval amounts to 1.0x 103
to 2.0 x 103 cycles when the processor speed is 1GHz.

We measured the maximum number of system calls
completed in the fixed period as throughput. We put N
system call requests (sender_thread) into the execution
units in the fixed period. The fixed period was 1.0 x 10°
clock cycles. We gradually increased N, and measured the
maximum number of system calls completed within the
fixed period as throughput. When N exceeded the maxi-
mum number, requests for I/O exceeded the capacity of I/O
handling mechanism, and outstanding system call requests
were buffered in RTQ. We changed the number of TEU as
1, 2, 3, and 4, and the number of devices as 1, 2, and 3.

3.4.2 Evaluation results

Figure 8 shows the graph of throughput, where X-axis is the
number of TEUs, Y-axis that of devices and Z-axis through-
put. As we can see from the graph, increasing the number of
TEUs improved throughput. In our system, events from de-
vices are converted into continuations and threads triggered
by the continuations are scheduled by RTQ at hardware
level. We conclude handler threads and receiver threads
were distributed over TEUs and executed efficiently.

If we consider a parallel I/O system which has a set of
fixed pairs of a device and a CPU, where interrupts from
a device are handled by the corresponding CPU. In such
a system, we can improve throughput by N times with N
device-CPU pairs in an ideal situation although it is difficult
to expect such an ideal situation. We examine whether our
results are comparable to such an ideal situation. Chang-
ing the pair of (the number of devices, the number of TEUs)
from (1, 1) to (3, 3) improved throughput about 2.5 times.
Thus, we can expect good scalability in I/O handling in
terms of the number of devices and the number of execu-
tion units.

RTT : 2 micro seconds

Throughput

Figure 8. Throughput in handling I/O requests
on Fuce

4. OS Mechanism on Commodity Platform

We try to show using fine-grained multithreading is also
effective in achieving high throughput on commodity pro-
cessors. CEFOS provides a split-phase style system call
mechanism in which a request of a system call and the
receipt of the system call result are separated in different
threads. We can flexibly schedule threads in split-phase sys-
tem calls in order to reduce overheads of system calls and
enhance locality of reference.

While running user programs under the control of an op-
erating system, frequent context switches and communica-
tions between user processes and the kernel are performed
behind the scene. A system call requests a service of the
kernel, and voluntarily causes mode-changes. Such activ-
ities involving operating system level operations are rather
expensive.

Table 1 shows the result of a micro-benchmark LMbench
[20] for platforms of commodity processors and Linux. The
row “null call” shows the overhead of a system call and the
row “2p/0K” shows that of a process switch when we have
two processes of zero KB context. Thus, the row “x p/y K”
shows the overhead of a process switch for the pair of x and
y which represent the number and the size of processes, re-
spectively. The rows “L1$”, “L2$”, and “Main” show the
access latency for L1 cache, L2 cache and main memory, re-
spectively. As seen from Table 1, activities involving oper-
ating system level operations such as system calls and con-
text switches are rather expensive on commodity platforms.

Therefore, one of the key issues to improve system
throughput is to reduce the frequency of context switches
and communications between user processes and the ker-
nel. In order to address this issue, we employ scheduling

Table 1. Results of LMbench (Clock Cycles).
processor(GHz) [nullcall | 2p/0K | 2p/16K [L1$ | L2$ | Main
Celeron (0.5) 315] 675] 3235| 3| 11| 93
Pentium4 (2.53)[1090 | 3298 | 5798 2| 18] 26l
Core Duo (1.6) 464 1327] 2820| 3| 14] 152
PPC G4 (1.0) 200 788[2167 4[10| 127

[]_ Process []_ Process
Ttread > Ttread >
CEFOS on
r—1 | "} commodity
1

User mode

1

1

i 1
Supervisor mode |
1

1

1

| internal kernel |

Figure 9. Overview of CEFOS on commodity
platforms.

mechanisms based on a dataflow-like multithreading model
in CEFOS.

Figure 9 shows the outline of the architecture of CEFOS
on commodity processors: the external kernel in user mode
and the internal kernel in supervisor mode. Internal ker-
nel corresponds to the kernel of conventional operating sys-
tems. In the prototype CEFOS on commodity platforms,
we use the kernel of conventional operating systems as the
internal kernel.

A process in CEFOS has a scheduler for zero-wait
threads and user processes schedule their ready zero-wait
threads without involving the kernel to avoid causing over-
heads. Threads can be flexibly scheduled as long as de-
pendencies among threads are not violated. The external-
kernel mechanism in CEFOS intermediates interaction be-
tween the kernel and thread schedulers in user processes.
In order to simplify control structures, process control or
coarse grain thread control is only allowed at the switching
points of zero-wait threads. Zero-wait threads in a process
are not totally-ordered but partially-ordered, and we can in-
troduce various scheduling mechanisms as long as the par-
tial order relations among threads are not violated.

4.1. Display Requests and Data mechanism

Operating systems use system calls or upcalls [21] for
interactions between user programs and operating system
kernel. System calls issue the demands of user process
through SVC and Trap instructions, and upcalls invoke spe-

cific functions of processes. The problem in these methods
is overhead of context switches [22]. We employ Display
Requests and Data (DRD) mechanisms [23] for coopera-
tion between a user process and the kernel in CEFOS as we
show below:

1. Each process and the kernel share a common memory
area (CA).

2. Each process and the kernel display requests and nec-
essary information on CA.

3. At some appropriate occasions, each process and the
kernel check the requests and information displayed
on CA, and change the control of its execution if nec-
essary.

This DRD mechanism assists cooperation between pro-
cesses and the kernel with small overhead. A sender or re-
ceiver of the request does not directly trigger the execution
for the request at the instance the request is generated. If
the sender triggers directly the execution at the receiver’s
side, the system may suffer from switching overhead. DRD
mechanism assist to handles the request at our convenience
with small overhead.

The external kernel mechanism in CEFOS intermediates
interaction between the internal kernel and thread sched-
ulers in user processes by using this DRD mechanism.

4.2. WSC mechanism

WSC mechanism buffers system call requests from user
programs until the number of the requests satisfies some
threshold and then transfers the control to the internal kernel
with a bucket of the buffered system call requests. Each sys-
tem call request consists of four items: type of the system
call; arguments of the system call; the address where the
system call stores its result; and ID of the zero-wait thread
which should be activated after the system call.

The buffered system calls are executed like a single large
system call and each result of the original system calls is re-
turned to the appropriate thread in the user process. Figure
10 illustrates the control flow in WSC mechanism, and each
number in Figure 10 corresponds to the explanation below.

1. A thread requests a system call to external kernel.

2. External kernel buffers the request of system call to in
CA of DRD.

3. External kernel checks whether the number of requests
has reached the threshold. If the number of requests
is less than the threshold, the scheduler of zero-wait
thread is invoked to select the next thread from the
ready threads in the process. If the number of requests
has reached the threshold, WSC mechanism sends the

|_ process

\ split-phase
system call ,'

requset of
system call

| buffer system call

(2) requests thread
scheduler
3 no 7 A
requests >= (5)
reashold 2 return resuls &
yes activate waiting

User external kernel | threads |
mode
Supervisor y internal kernel
mode (4) | execute system calls |

Figure 10. Control flow in WSC mechanism.

requests of system calls to the internal kernel to actu-
ally perform the system calls.

4. Internal kernel accepts the requests of system calls
buffered in CA of DRD and executes them one by one.

5. Internal kernel stores the result of the system call to the
specified address. Also, internal kernel tells the thread,
whose ID is accepted as the fourth argument, that it
stores the result. When internal kernel terminates ex-
ecuting all requests of system call, external kernel ex-
ecutes other threads. In other cases, WSC mechanism
goes back to step 3 and repeats this transaction.

WSC mechanism reduces the number of mode changes
between a user process and the kernel, which cause rather
large overhead. Parameters and returned results of the
buffered system calls under WSC mechanism are passed
through CA of DRD to avoid frequent switches between the
execution of user programs and that of the kernel.

4.3. Evaluation: reducing mode changes

In this subsection, we examine the effect in reducing
overheads of system calls. We have modified Linux as the
internal kernel and developed the external kernel on top of
the internal kernel. CEFOS on commodity platforms can
also accept system calls in the normal convention for the
case buffering system call requests is not appropriate. We
use only getpid (), which has a very thin body, as the tar-
get system call in order to clarify the system call overheads

Comparison of clock cycles (getpid)

1.8 g T T

Celeron'500MHz ——

Intel Core Duo 1.66GHz - - -
14+ normal ——— A

081 T~
0.6

04r

0.2
of threshold

Figure 11. Relative clock cycles (getpid)

although WSC can handle heterogeneous system calls of
various lengths.

We measured the number of clocks for a number of
getpid () system calls using the hardware counter. We
executed 128 getpid () system calls in our experiments.
We changed the threshold of WSC as 1, 2, 4, 8, 16, and
32 for the WSC version. We also measured the total time of
successive getpid () system calls under the normal system
call convention in unchanged Linux.

Figure 11 shows the comparison results of clock cycles
for getpid () system calls. The x-axis indicates the thresh-
old of WSC and y-axis the ratio of clock cycles of WSC
versions compared with clock cycles under the normal sys-
tem call convention in unchanged Linux. The lower y-value
indicates the better result of WSC.

As seen from Figure 11, we had additional overhead
when WSC threshold is 1. However, we observe the ef-
fect of WSC when the threshold becomes 2 or larger for
Pentium4 2.53GHz and Intel Core Duo 1.66GHz, and 4 for
Celeron 500 MHz. The clock cycles in WSC versions are
decreased as the threshold gets larger regardless of the pro-
cessor type.

4.4. Evaluation : locality of reference

We examine the impact of WSC on exploiting locality of
reference. We can expect high throughput when we can ag-
gregate system calls among which we can enhance locality
of reference by using WSC mechanism. We use chatroom
benchmark[24] as a program for this evaluation.

The chatroom benchmark simulates chat rooms each of
which includes both a server and user clients. The bench-
mark creates a number of processes each of which has
Sender to send messages and Receiver to receive mes-
sages. The benchmark creates a number of TCP connec-
tions to send and receive a number of messages by using

the same system calls. Each chat room has 20 clients by
default, each client sends 20 messages whose size is 100B,
and the server sends 19 messages in response to a single
client message in our experiments. We apply WSC mecha-
nism to socketcall system calls in the message sending
part in the server of this program. The message sending part
sends 19 messages per invocation, and is invoked 400 times
during an execution.

The result in clock cycles for the WSC version is about
115.0 million cycles while about 133.0 million cycles for
the normal version. The total number of clocks of the WSC
version reduced to about 87% compared to that of the nor-
mal system call version. The reduction of about 18.0 mil-
lion cycles by WSC mechanism is larger than the estimated
reduction due to system call overheads, which is about 12.2
million cycles for 7,600 socketcall system calls. We
consider this improvement is caused by enhanced locality
of reference. Thus, we measured the number of events con-
cerning memory hierarchies such as cache misses and TLB
misses with a performance monitoring tool hardmeter[25].

The results shown in Table 2 were only measured for the
message sending part which sends 19 messages due to the
limitation of the event logging capacity. The threshold of
the WSC version is 19, and the number of clocks of the
WSC version reduced to about 80% compared to that of
the normal system call version. We observed the events re-
garding memory penalties such as L2 cache misses and data
TLB misses. As shown in Table 2, L2 cache misses of the
WSC version reduced to 47% and data TLB misses to 92%.
compared to that of the normal version. WSC mechanism
for split-phase style system calls is also effective in exploit-
ing locality of reference and reducing penalties concerning
memory hierarchies such as cache misses and TLB misses.

Table 2. Results of chatroom benchmark

miss rate(%)
mechanism # clocks | L2 cache [data TLB
normal 60216.7 1.01 2.78
WSC 48436.4 0.47 2.55
WSC/normal 0.80 0.47 0.92

5. Concluding Remarks

We discussed an operating system called CEFOS based
on a dataflow based multithread model. A program for CE-
FOS consists of zero-wait threads which run to comple-
tion without suspension once started. Firing control among
threads is performed in a dataflow-like manner along with
continuations. On Fuce, the operating system kernel is also
multithreaded as well as user applications. For example,

handler routines for I/O devices are also realized by us-
ing zero-wait threads and I/O handling is integrated in our
continuation-based multithreaded execution. We can elimi-
nate “interrupt” handling in conventional platforms. In this
approach, we can naturally exploit concurrency in programs
even for I/O-centric computation. We evaluated the scal-
ability in throughput in terms of the number of execution
units and I/O devices. We also discussed an approach in
reducing overheads in commodity processors by using fine-
grained multithreading. Our WSC mechanism in CEFOS
buffers multiple system calls until some threshold is satis-
fied and then transfers the control to the operating system
kernel with a bucket of the buffered system call requests.
For chatroom benchmarks in which a number of threads is-
sue system calls concurrently, the combination of our split-
phase style system calls and WSC mechanism is effective
in improving throughput by reducing mode changes and
penalties concerning memory hierarchies such as L2 cache
misses and TLB misses.

References

[1] J.L. Lo, S.J. Eggers, J.S. Emer, HM. Levy, R.L. Stamm,
and D.M. Tullsen, “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous Multithread-
ing,” ACM Transactions on Computer Systems, vol.15, no.3,
pp-322-354, 1997.

[2] Masato Edahiro, Satoshi Matsushita, Masakazu Yamashina,
and Naoki Nishi. A Single-Chip Multiprocessor for Smart
Terminals. IEEE Micro, vol.20, No.4, pp.12-20, 2000.

[3] Deborah T.Marr, Frank Binns, David L.Hill, Glenn Hin-
ton, David A.Koufaty, J.Alan Miller, and Micheal Upton.
Hyper-threading technology architecture and microarchitec-
ture: A hypertext history. Intel Technology Journal, Vol.6,
No.1, 2002.

[4] J. Clabes, J. Friedrich, M. Sweet, J. DiLLullo, S. Chu, D. Plass,
J. Dawson, P. Muench, L. Powell, M. Floyd, B. Sinharoy, M.
Lee, M. Goulet, J. Wagoner, N. Schwartz, S. Runyon, G. Gor-
man, P. Restle, R. Kalla, J. McGill, and S. Dodson, “Design
and implementation of the POWERS microprocessor,” DAC
’04: Proceedings of the 41st annual conference on Design
automation, New York, NY, USA, pp.670-672, ACM Press,
2004.

[5] P. Kongetira, K. Aingaran, and K. Olukotun, ‘“Niagara: a
32-way multithreaded Sparc processor,” Micro, IEEE, vol.25,
no.1, pp.21-29, 2005.

[6] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem, “In-
troduction to Intel Core Duo Processor Architecture,” Intel
Technology Journal, vol.10, no.2, pp.89-97, 2006.

[7]1 R.S. Nikhil, G.M. Papadopoulos, and Arvind, “*T: a multi-
threaded massively parallel architecture,” SIGARCH Com-
put. Archit. News, vol.20, no.2, pp.156-167, 1992.

[8] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba,
“An architecture of a dataflow single chip processor,” ISCA
’89: Proceedings of the 16th annual international symposium
on Computer architecture, New York, NY, USA, pp.46-53,
ACM Press, 1989.

[9] H.H.J. Hum, O. Maquelin, K.B. Theobald, X. Tian, X. Tang,
G.R. Gao, P. Cupryk, N. Elmasri, L.J. Hendren, A. Jimenez,
S. Krishnan, A. Marquez, S. Merali, S.S. Nemawarkar, P.
Panangaden, X. Xue, and Y. Zhu, “A design study of the earth
multiprocessor,” PACT °95: Proceedings of the IFIP WG10.3
working conference on Parallel architectures and compilation
techniques, Manchester, UK, pp.59-68, 1995.

[10] Makoto Amamiya, “A New Parallel Graph Reduction Model
and its Machine Architecture,” Data Flow Computing, Theory
and Practice Ablex Publishing Corp., pp.445-464, 1991.

[11] T. Kawano, S. Kusakabe, R. Taniguchi, and M. Amamiya,
“Fine-grain Multi-thread Processor Architecture for Mas-
sively Parallel Processing,” pp.308-317, IEEE Press, 1995.

[12] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S.W. Keckler, and C.R. Moore, “Exploiting ILP,
TLP, and DLP with the Polymorphous TRIPS Architecture,”
Proceedings of the 30th Annual International Symposium on
Computer Architecture, pp.422-433, 2003.

[13] Steven Swanson, Ken Michelson, Andrew Schwerin,
MarkOskin. WaveScalar. Proceeding of the 36th annual
IEEE/ACM International Symposium on MicroArchitecture,
pp291-302, 2003

[14] Satoshi Yamada, et. al. Impact of Wrapped System Call
Mechanism on Commodity Processors Proc. of ICSOFT 2006
(the 1st International Conference on Software and Data Tech-
nologies), Vol.1, pp.308-315, (2006,09)

[15] Takanori Matsuzaki, Satoshi Amamiya, Masaaki Izumi, and
Makoto Amamiya. “A Multi-thread Processor Architecture
Based on the Continuation Model. Proc of 8th Innovative Ar-
chitecture for Future Generation High-Performance Proces-
sors and Systems (IWIAQS), pp.83-90 (2005)

[16] L. Roh and W.A. Najjar, “Analysis of Communications and
Overhead Reduction in Multithreading Execution,” Proceed-
ings of the 1995 International Conference on Parallel Archi-
tectures and Compilation Techniques, 1995.

[17] K.M. Kavi, H.Y. Youn, and A.R. Hurson, “PL/PS: A
Non-Blocking Multithreaded Architecture With Decoupled
Memory And Pipelines,” Proceedings of the Fifth Interna-
tional Conference on Advanced Computing (ADCOMP ’97),
Madras, India., 1997.

[18] T. Ungerer, B. Robi.c, and J. .Silc, “A survey of proces-
sors with explicit multithreading,” ACM Computing Surveys,
vol.35, no.1, pp.29-63, 2003.

[19] MIPS Technolocies, MIPS32 Architecture For Programmers
Volume II: The MIPS32 Instruction Set.

[20] LMBench, http://www.bitmover.com/lm/Im-bench

[21] E. A. Thomas, et al ”Scheduler Activation: Effective ker-
nel Support for the User-Level Management of Parallelism, ”
Proc. of the 13th ACM Symp. on OS Principles, pp95-109,
1991.

[22] Purohit, A. and et al. “Cosy: Develop in user-land, run in
kernel-mode.” In Proc. of HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, pages 109-114, 2003.

[23] H. Taniguchi, “DRD: New Connection Mechanism between
Internal Kernel and External Kernel,” Tran. of IEICE ,
Vol.J85-D-1, No2, 2002, in Japanese.

[24] Linux Benchmark Suite http://lbs.sourceforge.net/

[25] http://sourceforge.jp/projects/hardmeter

