
A Heterogeneous Lightweight Multithreaded Architecture

Sheng Li1, Amit Kashyap1, Shannon Kuntz1, Jay Brockman1, Peter Kogge1,
Paul Springer2, and Gary Block2

1University of Notre Dame 2NASA Jet Propulsion Laboratory
Department of Computer Science and Engineering 4800 Oak Grove Drive

Notre Dame, IN 46556 Pasadena, CA 91109
{sli2, akashyap, skuntz, jbb, kogge}@nd.edu {Gary.L.Block, pls}@jpl.nasa.gov

Abstract

Programs with irregular patterns of dynamic data struc-
tures and/or those with complicated control structures such
as recursion are notoriously difficult to parallelize effi-
ciently. For some highly-irregular applications, such as
a SAT solver, it has been nearly impossible to obtain sig-
nificant parallel speedups on conventional SMP systems
over serial implementations. Lightweight multithreading,
as found in the Cray MTA and the upcoming XMT (Eldo-
rado), has been demonstrated as an effective approach to
attacking these problems. In this paper, we describe a het-
erogeneous lightweight multithreading that extends ideas
found in the Cray machines to support larger numbers of
threads while reducing the cost of thread management and
synchronization.

1 Introduction

In the quest for higher performance, architectures are fo-
cusing on multithreading as a way to increase parallelism.
In general, programs with highly irregular data and control
structures typically found in graph problems are difficult
to parallelize efficiently, even though they may contain a
great deal of logical parallelism. For Boolean satisfiabil-
ity solvers (SAT solvers), for example, it has been nearly
impossible to obtain significant parallel speedups on con-
ventional SMP systems over serial implementations [6].

SMP systems typically rely on a heavyweight thread
model. Heavyweight threads can accumulate a large data
trail including a deep call stack, large caches, and significant

This material is based upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under its Contract No. NBCH3039003.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

branch history data. Further, the operations of starting, stop-
ping, suspending or synchronizing heavyweight OS threads
incur significant overhead. Because of these factors, heavy-
weight threads can only be used sparingly within appli-
cations to achieve coarse-grain parallelism. By contrast,
a lightweight thread has considerably less state associated
with it. Unlike heavyweight threads such as Unix pthreads
that require OS support, our lightweight threads consist of
nothing more than a frame of private variables in memory,
including a program counter. Lightweight multithreading
has its roots in the early work in dataflow and message-
passing architectures including P-RISC [10] and Monsoon
[12], the J-Machine [11] [4] the Threaded Abstract Machine
(TAM) [3], and microservers [1]. The Cray MTA [2] and the
upcoming Cray XMT (Eldorado) [7] architectures both rely
on lightweight multithreading to attack irregular problems.

As shown in Figure 1, our system architecture consists
of a set of compute nodes connected by a communica-
tion network. Logically, each node contains a portion of
global, shared memory and a set of lightweight processors
or LWPs. A process in the system consists of a collection of
lightweight threads that communicate through shared mem-
ory locations, and each node in the system holds a portion
of the threads. The LWPs themselves are completely anony-
mous, and serve only to process instructions for threads on
their node. In place of named registers in an LWP, thread
state is packaged in data frames of memory. The main dif-
ference between a frame and a register set is that frames
are logically and physically part of the memory system,
rather than part of the processor, and that a multithreaded
program can have access to many different dynamically-
created frames over the course of execution.

Logically, the pool of active threads on a given node is
a list of frames in the memory of that node, and operations
to spawn or terminate threads simply add or remove frames
to or from the list. Whenever a thread performs a memory
operation—including spawning a new thread, as well as a

1

Memory

LWPs

Memory

LWPs

thread

frames

Figure 1. LWP system organization.

load or store—it does so by sending a message to the node
that contains a target memory address. All memory transac-
tions are split-phase, and for every parcel request, there is a
response that writes a value to the requesting thread’s frame.
When a thread has all the data it needs to issue the next in-
struction in its frame, such as the values of operands, that
thread is said to be ready. Otherwise, the thread is blocked.
As long as there are enough ready threads so that every LWP
can issue an instruction from some thread at every clock cy-
cle, then the system will run at peak performance.

Because threads are part of the memory system rather
than the processor state, a process can have orders of magni-
tude more threads than there are processors, which provides
many opportunities for each processor to have an instruction
ready to issue. On the other hand, there is a cost to manag-
ing lists of threads in memory, and if done in software by the
LWPs, the additional instructions required could add sub-
stantially to the execution time. To alleviate this burden, we
include another processor, called an ultra-lightweight pro-
cessor (ULWP) at the memory bank itself. The ULWP con-
tains minimal circuitry, but yields significant performance
improvement for thread management, as well as supporting
other atomic operations at the memory.

The goal of this paper is to introduce our hybrid multi-
threading model, and to provide an initial demonstration of
its performance on irregular kernels that are difficult to par-
allelize efficiently with heavier threads. To accomplish this,
we ran an execution-based simulation in a custom environ-
ment called SALT with a suite of programs hand-coded in a
custom version of C with parallel extensions called DimC.
The remainder of this paper is organized as follows. Fol-
lowing this introduction, we first give an overview of the
system architecture as it was modeled in the simulation en-
vironment. Next, we describe our program kernels and pro-
vide the results of the experiments. Finally, we end with
conclusions and a discussion of future work.

2 System Architecture

2.1 Structural Organization

Figure 2 illustrates the organization and notional floor-
plan of a single-chip compute node, called a lightweight

processing chip (LPC). Each LPC consists of a set of
lightweight processors (LWPs), independently-addressable
embedded memory blocks (eDRAM), and an intra-node
network. Any LWP on an LPC can read or write data to any
bank. Each eDRAM bank has an independent controller—
the ultra-lighweight processor (ULWP)—which provides
hardware support for complex memory accesses including
Atomic Memory Operations (AMO), Extended Memory
Semantics (EMS), split-phase memory operations, thread
frame management and synchronization. In our simulated
organization, there are four eDRAM banks for each LWP.
Node memory is organized such that each eDRAM bank
holds a portion of the pool of ready thread frames for its
adjacent LWP.

LWP

ULWP

memory

bank

Figure 2. Node functional organization and
notional LPC floorplan

2.2 Lightweight Processing and Extended
Memory Semantics

Figure 3 illustrates the functional organization of an
LWP. In place of a conventional register file, each LWP
contains a frame buffer that caches frames for threads that
are ready to execute. We determined experimentally that a
buffer that holds 128 frames is sufficient. In the actual LWP
ISA, a thread’s registers are the first 32 Xdwords in its
frame; in other words, the LWP has no general purpose reg-
isters in hardware that exist in a namespace separate from
memory. In theory the LWP can support unlimited number
of threads, where the only limitation on total thread count is
the size of memory for storing the threads’ frames.

Aside from the frame buffer and a small instruction
cache in each LWP, there is no cache in the system
and hence no need to maintain cache coherence between
nodes. It is important to note that in a massively paral-
lel, lightweight multithreaded architecture, the main role
of the cache is to conserve memory bandwidth, rather than
to reduce the average memory access time. Moreover, for
graph problems that exhibit little locality, as more and more
hardware is added to the memory system and as the mem-

2

ory hierarchy becomes deeper, the memory actually be-
comes further from the CPU, increasing the latency. In
the lightweight multithreading model, the greatest gains are
achieved by aggressively pursuing parallelism and keeping
the overhead of thread management and context switching
low. As long as there are enough threads running in the
system (100 threads/LWP), the processor will be at or near
peak performance. Therefore, the complex cache-related
hardware and protocols can be removed without perfor-
mance degeneration.

Frame

Buffer

Instruction

Cache

Execution

Pipeline

Thread Issue

Logic

Frame

Evict ion

Logic

Ultra-Lightweight Processor

On-Chip Network

Figure 3. LWP functional organization.

The LWP architecture supports extended memory se-
mantics (EMS) that provide a mechanism for extremely fine
grain, lightweight synchronization between threads. The
fundamental unit of storage in the architecture is the ex-
tended double word or Xdword. It consists of a 64-bit
double word (dword) together with a 65th bit called the ex-
tension bit. By using the extension bit in tandem with mode
fields within the dword itself, we define a set of extended
memory states for a dword. If the extension bit indicates
the memory is full, the 64- bit field contains the valid data.
Otherwise, the 64- bit field contains the metadata needed
for hardware to process the memory references. There are
a total of 13 defined extended memory states, but for the
purposes of this discussion, we can simplify this to 6:

full The dword contains a valid value.

empty The dword is empty of a value. This typically in-
dicates that a value is pending for the dword, and is
typically used for producer/consumer synchronization.

FVE forward value leave empty Indicates a store to this
dword should be forwarded to the dword addressed
the metadata and this dword should transition to the E
after forwarding data.

FVF forward value leave full Same as the FVE, except
the state after forwarding data is F

trap-on-access Invoke a software handler. This situation
typically arises when there are multiple readers or writ-
ers waiting for access to a location.

error code The cell contains an error code, which may be
written as the result of an unsuccessful memory oper-
ation, floating point error, or other exceptional event.
Typically, an exception is raised when a dword con-
taining an error code is accessed.

Because frames are in memory and registers have the
same semantics as any memory location, the extended
memory state can be used to maintain instruction execution
ordering consistency within a thread. Instructions in any
given thread issue in order, but may complete out-of-order.
An instruction can issue if its input and output registers are
available for reading and writing, respectively. In brief, a
register is available for reading if it is not empty and it has
no pending operations on it. A register is available for writ-
ing if it has no pending operations on it. If any of the input
or output registers for a given instruction are unavailable,
the thread will block when it tries to issue the instruction,
to be retried when the input and output dependencies are
satisfied.

Under the EMS, load and store instructions are charac-
terized by their synchronization behavior. The synchroniza-
tion behavior describes both the precondition and postcon-
dition of the extended state of the memory location, where
the precondition is the state that the memory location must
be in before the operation can take place and the postcon-
dition is the state in which the memory location is left after
the operation takes place. When a memory operation fails to
satisfy the precondition (assuming no other error condition
exists), it causes the thread to block until the precondition is
met. For example, a load.fe instruction will block until
a memory location is full and then leave it empty, while at
store.ef instruction will block until a memory location
is empty and then leave it full.

Threads block by “queueing up” on the memory loca-
tion at which they seek to read or write data. The architec-
ture supports this by keeping a pointer to a thread or list of
threads blocked on that location. Note that this memory lo-
cation can be a thread register if it is part of a frame. Figure
4 illustrates the simple case of a synchronization between a
single producer and single consumer. Suppose that T2 is a
consumer thread that wants to read from memory location

3

A. When T2 sends a parcel requesting the load and finds ad-
dress A empty, location A changes state to “forward value,
leave empty” (FVE) and its contents is set to the target ad-
dress of the forward operation, which in this case is register
R3 of thread T2. T2 is not placed back on the active list, and
is hence blocked on location A. Next, the producer thread
T1 sends a parcel to store the contents of its register R2 in
A. The system detects that A is in the FVE state, writes the
value in R2 to T2 register R3, and leaves A in the empty
(E) state. Both threads T1 and T2 are now reinserted on the
active lists, unblocking the consumer T2.

T1

T1

R2

T2

R3

E

FVE

T2: load.fe R3, A

T1: store.ef A, R2

A

T2

R3

A

FVE

T2

R3

A

v

R2

E
A

v

T2

R3v

Step 1: consumer T2 requests load

Step 2: consumer blocks

Step 3: producer T1 requests store

Step 4: value written, consumer unblocks

Figure 4. Single producer, single consumer
synchronization

While it takes several steps, the common case of a sin-
gle producer and single consumer can be readily handled by
a hardware controller (finite state machine) at the memory
bank. For more complex situations such as multiple produc-
ers and consumers, software support is needed to manage a
queue of blocked threads. To initiate this, memory con-
troller hardware sets a trap on the memory location and cre-

ates a special system software thread, named the EMS han-
dler, to process the synchronization. If there is heavy con-
tention between threads over a memory location, the over-
head of frequently invoking and running handler threads can
become very costly. To address this problem, we propose
a separate ultra-lightweight processor that can run the han-
dler software at the memory bank itself, freeing up the LWP
to do “useful” work on application threads.

2.3 Ultra-Lightweight Processing

The ultra-lightweight processor (ULWP) is itself a multi-
threaded processing engine attached to each memory bank.
Because it is designed to interface directly with a memory
bank, it can take advantage of wide memory access and have
the lowest possible latency. The ULWP supports construc-
tion of short programs placed in what normally would be a
simple read/write packet being sent by a CPU to a memory.
These programs represent relatively short program threads
that perform some very specific and localized memory ac-
tivity. In the ULWP architecture, the short sequence of op-
erations and a very small set of working storage that are
performed at a memory is called threadlets [9]. The intent
of a threadlet is to represent some short sequence of actions
that are to be performed against some very specific memory
locations, and which if executed in a conventional design
would represent a long latency event. The architecture is de-
signed to minimize the amount of program state in the pro-
cessor. Figure 5 shows the architecture of ULWP. The main
part of ULWP is a 4-stage pipeline. The memory manage-
ment logic takes care of the execution stage of the memory
related instructions such as Load, Store, and Invoke. The
memory management logic can also be pipelined to make
full use of the burst operation of commodity DRAMs. Un-
like the LWP which has 32 general purpose registers, the
ULWP only has a few programmer visible register and a
program counter of threadlet states. Because the ULWP is
a simple design optimized for lightweight transactions at
the memory, it is a more efficient way to increase paral-
lelism that by adding more LWPs. Furthermore, since all
of the steps in synchronizing a memory operation are han-
dled atomically by the ULWP at the memory without the
network-on-chip (NoC) traffic, it minimizes the latency of a
complex synchronization operation.

2.4 On-Chip Network and Router Archi-
tecture

The network-on-chip (NoC) is processor-memory net-
work for processing parcel requests and replies between
LWPs and memory blocks. There is no processor-to-
processor communication. The topology used in the simula-
tions for this paper is a mesh, with wormhole routing. Each

4

text

4-Stage
Execution
Pipeline

Thread Cache

NoC Interface

NoCMemory Bank

Memory Interface

Load-Store
Reservation

Invoke
Receive-Send

Replacement
logic

Replacement
Request

ISA Translation
For Host Processor

Thread State2
(A,R,D,C,PC, F, S)

Thread State1
(A,R,D,C,PC, F, S)

Thread State4
(A,R,D,C,PC, F, S)

Thread State3
(A,R,D,C,PC, F, S)

Figure 5. ULWP Microarchitecture

LWP has a dedicated port to one of the routers and each
router has connections to each of the neighboring (xplus,
xmins, yplus, yminus) routers. Each of the connections be-
tween nodes and routers and between the routers consists of
two unidirectional links, each with a width equal to flit size.
Flits are the units in which the packets are broken down for
transmission.

A NoC router consists of four major components: the
route computation unit (RC), the virtual channel allocation
unit (VA), the switch allocation unit (SA) and the crossbar.
In the mesh topology each router has five physical chan-
nels: xplus, xminus, yplus, yminus and one for the con-
nection with the local processing element. Each physical
channel has multiple virtual channels (VC) associated with
it. They are first-in-first-out (FIFO) buffers, which holds
the flits from different packets. In our implementation we
have used 2 VCs per physical channel. The width of the
router link was chosen to be 128 bits. The router archi-
tecture differentiates between short parcels (read requests,
write acknowledgements) and long parcels (read responses,
write request, amo request, spawn request). Short parcels
are mapped onto single flits while long parcels are mapped
onto multiple flits. In our implementation we use a single
stage router to minimize the latency.

3 Experimental Methodology

3.1 Simulation Environment

To evaluate the heterogeneous LWP-ULWP architecture,
we developed a custom suite of simulation and program-
ming tools. SALT is a structural-level execution-based
simulator that contains a complete implementation of an
LPC, with LWP, ULWP, NoC and memory subsystems.
The SALT simulation engine is based on the event-driven
Enkidu framework, details of which can be found in [14].
To support the thread semantics of the LWP, we developed
an extended version of C called, DimC. One of the notable
features of DimC is that a function call is just a special case
of a thread invocation, where the calling thread blocks until
the called thread “returns” by synchronizing with it through
the standard extended memory semantics. Detailed exam-
ples with SALT and DimC can be found in [15].

3.2 Benchmark Suite and Results

Because example must be hand-coded for DimC, at this
point in the project we are primarily limited to kernel pro-
grams and compact applications for evaluation—plans for
migrating to a more comprehensive toolchain are under-
way. To illustrate the capabilities of the architecture, we
have chosen four dynamic and irregular problems: compet-
ing agents, a SAT solver kernel based on zChaff, N-Queens,
and Fibonacci. These benchmarks represent two different
categories of irregular problems. The competing agents and
the SAT solver have complicated control structures as well
as dynamic data structures. They are beyond the common
irregular programs. In particular, the SAT solvers program
have proven almost impossible to parallelize effectively on
the SMPs. N-Queens and Fibonacci are the representatives
of the irregular programs with complicated control struc-
tures such as recursion. Such programs can achieve decent
performance on conventional architectures but need great
effort. Each of these kernels and their simulation results are
discussed below.

3.2.1 Competing Agents

In this benchmark, multiple competing agents, where each
agent is implemented by a single thread, attempt to update
a shared memory location simultaneously. While this could
be done with atomic memory operations, we have imple-
mented the example using separate synchronizing loads and
stores as a vehicle for characterizing the effectiveness of the
ULWP in mitigating the cost of synchronization. In each of
the experiments, the ULWP runs the system code, which is
transparent to the user. Each thread in the experiment at-
tempts to perform 5 updates, for a total of 10 synchronized

5

loads and stores. The number of competing agents varies
from one to 128, and all the agents are uniformly distributed
across four LWPs on a single LPC.

(a) Comparison on Execution Time

(b) Comparison on Number of Total Threads

Figure 6. Speedup Comparison for Compet-
ing Agents

Figure 6(a) shows a significant difference in the perfor-
mance of EMS Handler versus that of ULWP. The execution
time of synchronization using EMS Handler is 3.7 times
longer than that of synchronization using ULWP. When
there are few agents, natural latencies in the system prevent
updates from different agents all occurring at once, and the
memory system can handle the single producer/consumer
case without the need to invoke a software handler. As the
number of agents increases, requests queue up, requiring
management in software. Without the ULWP, the system
reaches the point where most of the instructions being is-
sued are from handler threads. Since there are 10 loads and
stores per agent, it is easy to predict that the overhead can

easily exceed 90 percent, with a small number of LWP cy-
cles spent doing “useful” work.

Figure 6(b) shows a comparison of the total number of
threads for this benchmark. Since the agents need to invoke
the EMS handler, the more agents we have, the more times
the EMS handler needs to be invoked, and the more threads
are created. From figure 6(b) when we have 128 agents,
there are 1405 threads in total. Only 128 threads are due to
agents, and 1277 threads are due to EMS handler. The EMS
handler creates 9.9 times as many threads as the agents do.
When the ULWP runs the handler, however however, all the
synchronization work is done at the memory bank atomi-
cally, freeing the LWP to work on the regular application
threads.

3.2.2 SAT Solver/zChaff

The Boolean Satisfiability Problem (SAT) is a basic prob-
lem from mathematical logic that is fundamental to many
problems in automated reasoning, computer-aided design,
computer-aided manufacturing, machine vision, database,
robotics, integrated circuit design, computer architecture
design, and computer network design. In spite of its compu-
tational complexity, there is strong demand for high perfor-
mance SAT-solving algorithms in industry. Over the years,
many different approaches and optimizations have been de-
veloped to tackle the problem more efficiently. zChaff, the
modern variants of the DPLL algorithm [5], has demon-
strated state-of-art performance at solving SAT. Recent re-
search, however, has shown that the DPLL based algorithms
such as zChaff are extremely hard to parallelize on SMPs,
and the performance degeneration for multithreaded imple-
mentation on SMPs is significant.

Using lightweight multithreading, there are several op-
portunities for exposing parallelism in a zChaff-like SAT
solver. The main part of zChaff is Boolean constraint prop-
agation (BCP). We use coarse grain, medium grain and fine
grain level parallelism to parallelize the program. At the
coarse grain level, when a new decision must be made, it
is possible to establish two parallel solution trails, one as-
suming the selected variable is assigned a true value, and
one assuming the selected variable is assigned a false value.
In the ultimate case, this could expand in a tree-like fash-
ion to have 2N separate and concurrent assignment decision
points. Clearly some or even most of them will end up with
a contradiction; this needs to be marked in the parent deci-
sion point so that the last child coming back with a failure
can cause a failure backtrack to the parent.

Medium grain parallelism comes into play as we find
unit clauses and generate a new implication to be propa-
gated back through the clauses, all within the same decision
step. Each unit clause and the assignment of values to the
variables, can be done concurrently. Finally, fine grain par-

6

allelism occurs when an assignment is to be made to a vari-
able, and we want to (ideally) alert all clauses on the watch
list that they need to force an evaluation check from one
side, and actually perform this reevaluation. While most
of these clause evaluations will end up relinking the clause
onto some other variable’s watch list, a subset of them will
trigger the new implication cases discussed above. Further
details on the implementation can be found in [13].

When we apply all three levels of parallelism, the SAT
Solver/zChaff benchmark produces a combination of high
irregularity and contention. Threads are generated and die
dynamically and each of thread communicates with oth-
ers randomly. Very high contention occurs due to the
shared data and communications. Low overhead synchro-
nization is thus necessary to guarantee good performance.
From the results of the competing agent benchmark we
have learned that the ULWP is more efficient that the EMS
handler when doing the synchronization under high con-
tention. Therefore, in this benchmark, all the synchroniza-
tions are handled by the ULWP. Because of memory limits
of the simulator, only the small data sets were used, which
are uniform random-3-SAT data sets from [8], including
uf20-91(20 variables, 91 clauses), uf50-218(50 variables,
218 clauses,satisfiable) and uuf50-218(50 variables, 218
clauses,unsatisfiable).

Figure 7. Performance of SAT Solver/zChaff.

Figure 7 shows the performance of SAT Solver/zChaff
on hybrid LWP/ULWP architecture. The linear speedup is
achieved over a wide range. The saturation is only because
of the size of data set. If we can increase the data set, the
saturation region will be push to the far right end.

3.2.3 N-Queens and Fibonacci

The N-Queens problem is representative of an irregular
problem in which it is hard to distribute the workload to
different threads, a characteristic found in data flow prob-
lem. It seeks to find all solutions to the problem of placing
N queens on an NxN chessboard such that no queen can
attack another. This is done by recursive calls to the N-
queens procedure which evaluates a row of the chessboard
based on previous placements.

Figure 8(a) shows the performance for 8, 10, and 12
queens. It is notable this kind of dynamic problem gets very
good performance on LWP architecture. In LWP, all the
function calls are implemented as threads. As the N-queens
program recursively calls itself, new threads are generated.
In every clock cycle, new threads are spawned, and some
of the old threads die. This dynamic thread behavior is the
perfect match for the LWP which has extremely low over-
head on thread creation and context switching. The satura-
tions are only due to insufficient workload. It is clear from
Figure 8(a) that when increasing the size of data set, linear
speedup can be achieved on more LWPs. Although the lin-
ear speed can be achieved on conventional architecture, it
is much easier on LWP due to architectural features, such
as the anonymous threads, threaded function calls and low
overhead of thread management and synchronization.

Fibonacci, another important irregular problems with dy-
namic recursion, computes the nth Fibonacci number based
on the well-known equation: Fib(n) = Fib(n-1) + Fib(n-2).
For the benchmark, n=26,28 and 30 were used. Figure 8(b)
shows that LWP also achieved very good performance. It
is can be seen that as long as the size of the data set is big
enough, it can always achieve linear speedup on LWP ar-
chitecture.

4 Conclusions

The heterogeneous architecture of LWP and ULWP
has demonstrated the ability to achieve very good perfor-
mance for the irregular benchmarks which are unsuitable
for conventional architectures. One of the main features of
our architecture is low overhead thread management, us-
ing frames in memory for fast context switches, as well
as the ULWP supported extended memory semantics for
lightweight synchronization. As noted earlier, the roots of
these ideas came from early work in dataflow and hybrid
dataflow-RISC architecture. These features become espe-
cially important in more dynamic applications where it is
impossible to specify the number of threads in advance and
new threads are created “on the fly.” As long as an appli-
cation has sufficient control and/or data parallelism, then
a large number of lightweight threads can effectively hide
memory latency and achieve near ideal parallel speedups.

7

(a) Speedup of N-queens

(b) Speedup of Fibonacci

Figure 8. Performance of irregular program
on LWP

We note that the compiler we used for our experiments was
not very “smart,” and we expect that if it had features such
as loop unrolling, the number of threads required to avoid
processor starvation would have been even smaller, and the
performance will be even better. Future work will involve
improving the experimental environment so that the large-
scale problem can be done on this context.

References

[1] Jay B. Brockman, Peter M. Kogge, Vincent W. Freeh, Shan-
non K. Kuntz, and Thomas L. Sterling. Microservers: A
new memory semantics for massively parallel computing. In

Conference Proceedings of the 1999 International Confer-
ence on Supercomputing, pages 454–463, Rhodes, Greece,
June 20–25, 1999. ACM SIGARCH.

[2] Cray Corporation. Cray mta-2 system [online].

[3] David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser,
and Thorsten Von Eicken. TAM – A compiler controlled
Threaded Abstract Machine. Journal of Parallel and Dis-
tributed Computing, 18(3):347–370, July 1993.

[4] W. J. Dally, J. A. S. Fiske, J. S. Keen, R. A. Lethin, M. D.
Noakes, P. R. Nuth, R. E. Davison, and G. A. Fyler. The
message-driven processor. IEEE Micro, pages 23–39, April
1992.

[5] Martin Davis, George Logemann, and Donald Loveland. A
machine program for theorem proving. Communications of
the ACM, 5(7):394–397, July 1962.

[6] Yulik Feldman, Nachum Dershowitz, and Ziyad Hanna. Par-
allel multithreaded satisfiability solver: Design and imple-
mentation. Electr. Notes Theor. Comput. Sci., 128(3):75–90,
2005.

[7] John Feo, David Harper, Simon Kahan, and Petr Konecny.
ELDORADO. In Proceedings of the 2nd conference on
Computing Frontiers, pages 28–34, Ischia, Italy, May 4-
6,2005. ACM Press.

[8] Holger H. Hoos and Thomas Stützle. SATLIB: An Online
Resource for Research on SAT. pages 283–292.

[9] P. M. Kogge. Architectures for self-contained, mobile, mem-
ory programming. U.S. Patent Application 60/411,888, sep
2002.

[10] Rishiyur S. Nikhil and Arvind. Can dataflow subsume von
Neumann computing? In Proceedings of the 16th Annual
International Symposium on Computer Architecture, pages
262–272, June 1989.

[11] M. D. Noakes, D. A. Wallach, and W. J. Dally. The J-
machine multicomputer: An architectural evaluation. In
Lubomir Bic, editor, Proceedings of the 20th Annual Inter-
national Symposium on Computer Architecture, pages 224–
236, San Diego, CA, May 1993. IEEE Computer Society
Press.

[12] Gregory M. Papadopoulos and David E. Culler. Mon-
soon: An explicit token-store architecture. In 17th Interna-
tional Symposium on Computer Architecture, number 18(2)
in ACM SIGARCH Computer Architecture News, pages 82–
91, Seattle, Washington, May 28–31, June 1990.

[13] Lilia Yerosheva Peter M. Kogge. Towards non-copying,
highly multi-threaded bcps. Technical report cascade inter-
nal technical report, University of Notre Dame, 2006.

[14] Arun Rodrigues. Programming Future Architectures: Dusty
Decks, Memory Walls, and the Speed of Light. Phd, Univer-
sity of Notre Dame, Notre Dame, IN, 2006.

[15] Srinivas Sridharan. Implementing scalable locks and barri-
ers on large-scale light-weight multithreaded systems. M.s.
thesis, University of Notre Dame, July 2006.

8

