
Probability Convergence in a Multithreaded Counting Application

Chad Scherrer1, Nathaniel Beagley1, Jarek Nieplocha1, Andrés Márquez1,
John Feo2, and Daniel Chavarría-Miranda1

1Pacific Northwest National Laboratory 2Cray, Incorporated
Richland, WA 99352 Seattle, WA 98104-2860

{chad.scherrer, nathaniel.beagley, jarek.nieplocha, feo@cray.com
andres.marquez, daniel.chavarria}@pnl.gov

Abstract

The problem of counting specified combinations of a
given set of variables arises in many statistical and data
mining applications. To solve this problem, we introduce
the PDtree data structure, which avoids exponential time
and space complexity associated with prior work by allow-
ing user specification of the tree structure. A straightfor-
ward parallelization approach using a Cray MTA-2 pro-
vides a speedup that is linear in the number of processors,
but introduces nondeterminism into probability estimates.
We prove a general convergence result that bounds the non-
deterministic deviation of probability estimates relative to
a sequential implementation. Beyond PDtrees, this conver-
gence result applies to any counting application that takes
a multithreaded streaming approach.

1. Introduction

A common problem in the analysis of multivariate dis-
crete data is to count the number of times a given set of
variables takes on a particular configuration. From a sta-
tistical perspective, this requires a set of contingency tables
[1]; from a database perspective it is related to the idea of
an OLAP cube [4]. Applications include mining data for
association rules [2], and learning Bayesian networks [5]
or other graphical models [3] or conditional independence
structures [7].

For example, suppose that for variables A, B, and C,
we have five data points, as shown in Figure 1. Many

This work was funded by the U.S. Department of Energy’s Pacific North-
west National Laboratory (PNNL) under the Data Intensive Computing
Initiative. PNNL is operated by Battelle Memorial Institute under Contract
DE-ACO6-76RL01830.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

A B C

1 0 1
0 1 1
0 0 2
0 2 1
1 0 3

Figure 1. A simple counting example.

applications require calculations such as the estimation of
P(A = 0 ∧ C = 1). Note that only rows 2 and 4 contain
data that simultaneously satisfy the constraints A = 0 and
C = 1. Thus we estimate P(A = 0 ∧ C = 1) = 2

5 .
Though this brute-force approach is straightforward and

works well for a simple example like this, each additional
query requires the reprocessing of the entire data set. Bet-
ter is to store a set of contingency tables. We might, for
example, store P(A = a ∧ C = c) for all values of a and
c in a matrix, P(A = a) for all values of a in a vector,
etc. In total, then, we would have 23 − 1 = 7 tables for
this 3-variable example. But this data structure still con-
tains a lot of redundancy, since for example P(A = 0) =∑

c P(A = 0 ∧ C = c).
Our alternative approach is based on a variant of Moore

and Lee’s ADtree data structure [5], which allows for very
efficient count queries. In an ADtree, the root of the tree
contains the total count. At each step down into the tree,
another variable is instantiated with a particular value, with
counts tracked at each level. ADtrees take advantage of the
sparsity that typically results when many variables are si-
multaneously instantiated, and they allow fast queries: any
count query can be answered in a number of steps propor-
tional to the number of variables instantiated in the query.
However, they can be quite expensive to populate (though
no more so than a set of contingency tables); memory us-
age and computation time are both at best exponential in the

Figure 2. A guide tree and corresponding
PDtree.

number of variables, since each is at best linear in the total
number of combinations of variables.

Fortunately, in many cases, we need not store counts for
every such combination. This may be due to the availability
of a statistical model for the data, or to requirements involv-
ing computation time or memory. In such cases, limiting the
data structure to reflect this can result in a corresponding in-
crease in performance. Because the resulting data structure
differs from an ADtree primarily in that we no longer store
“all dimensions”, but only “partial dimensions”, we refer to
it as a “PDtree”. By specifying a priori which combinations
of variables are to be stored, we reduce the number of steps
required to traverse the PDtree each time a new record is
inserted. The nested structure of the variables is specified
in an auxiliary data structure called a ”guide tree”. Figure
2, to be described further in Section 2, shows an example of
a guide tree and a PDtree built by using it.

Computation and memory requirements for such appli-
cations increase as we increase the number of variables, the
number of levels of a given variable, and the total number
of observations. For many real-world problems, at least one
(and often all three) of these are large; thus parallelization
quickly becomes attractive. We have chosen to parallelize
over the insertion of records. Due to the irregular access
patterns associated with PDtree updates, a shared-memory
multithreaded approach is natural. Section 3 discusses fur-
ther details about the multithreaded implementation.

2. PDtree Data Structure

Suppose we are given data consisting of observations on
the variables {A,B,C,D}, and consider the problem of fit-
ting the data to the Bayesian network model. For this exam-
ple we make use of notation from conditional probability
where, for example, P(A|B) = P(AB)

P(B) . For the directed
graph A → B → C → D, the probability factors as

P(ABCD) = P(A) P(B|A) P(C|B) P(D|C)

=
P(AB) P(BC)P(CD)

P(B) P(C)
.

In particular, note that the only combinations of vari-
ables for which we are required to store counts are
{AB,BC,CD,B,C}. The guide tree shown in Figure
2 (left) is based on the observation that this is equivalent
to storing counts for {B,C, (A|B) , (C|B) , (D|C)}. Vari-
ables appearing by themselves correspond to the first level
of the tree, while those conditional on one other variable
appear one level down in the tree. This nested structure al-
lows the relevant information to be stored with very little
redundancy.

Even without a particular model to be fit, this flexibility
of specifying the nesting structure of the combinations to
be stored can be of great benefit. For example, the depth
of a guide tree might be specified as a constant number of
variables, or perhaps in terms of an entropy threshold. If
the goal of an analysis is to learn the graphical structure of
a Bayesian network, we may want to impose a constraint
limiting the number of parents a given node can have. In
terms of the guide tree, this just means that we only build
the tree to a given pre-specified depth.

Note that once a PDtree is built, the guide tree is not
needed for queries; all required information about the vari-
ables is contained within the PDtree itself. Thus the guide
tree can be represented in any form that allows efficient
traversal, such as a list-of-lists or similar structure, but we
needn’t be concerned with random lookup efficiency of the
guide tree.

Another advantage that comes along with this approach
is the potential to dynamically modify the set of combina-
tions of variables being stored. Pruning the guide tree at any
point in time prevents the corresponding variable combina-
tions from being stored in the PDtree. This pruning can be
based either on external stimuli or on characteristics calcu-
lated from the data being ingested into the tree. Consider,
for example, an anomaly detection context. If it is deter-
mined that a particular variable combination is nearly uni-
formly distributed and thus unlikely to provide any anomaly
information, the corresponding branch of the guide tree can
be pruned, ensuring that resources are conserved for more
influential calculations.

A number of reductions are made in an ADtree which
we do not duplicate for PDtrees. Firstly, at a given depth
the “most common value” (MCV) is specified in an ADtree
to avoid redundant counting. We chose not to implement
this reduction at this stage because this additional complica-
tion could adversely affect scalability, and the correspond-
ing storage freed would not be worth the cost. In addition,
the MCV reduction prevents the structure from being easily
updateable, which is important in a streaming data applica-
tion. Still, we plan to investigate MCV in a static context in
future work.

Secondly, after recursing sufficiently deeply into an
ADtree, the nested structure is replaced with a pointer to

while true {
ptr = readfe(node.next)
if ptr is null

ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)

end if

} end while

while true {
ptr = node.next
if ptr is null

ptr = readfe(node.next)
if ptr is not null then continue
ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break

else if next node is the one I want
increment counter
writeef(node.next, ptr)
break

else
writeef(node.next, ptr)
node = ptr

end if

} end while

Figure 3. Initial (left) and final (right) imple-
mentations of static PDtree population on
MTA-2. Changes are marked in bold.

raw data. We did not implement this because the guide
tree already bounds the recursion depth, and this change
would require testing at each stage in the recursion whether
to switch to raw data. This also would be awkward to im-
plement for streaming data.

3. Multithreaded Framework

For a multithreaded implementation of a PDtree popu-
lation algorithm, we chose to use the Cray MTA-2, which
offers a simplified programming model and a way of hid-
ing memory latencies, making it convenient for large linked
data structures. The keys to a highly scalable, efficient
PDtree algorithm on the MTA are: 1) a scalable data struc-
ture that supports increasing numbers of insertions, and 2)
an insertion operation that is safe, concurrent, and mini-
mizes synchronization costs. The MTA’s shared memory
and insensitivity to memory access patterns gives the pro-
grammer great latitude in choice of data structure. One can
choose the data structure that best fits the problem rather
than try to force the problem into a data structure that best
fits the architecture.

On the MTA, the PDtree is a multiple type, recursive tree
structure. A root node (one root node per column) is an
array of ValueNodes. Interior and leaf nodes are linked lists
of ValueNodes. Since a root is just a histogram of column
values, its size and contents are easy to set. Our original
implementation used a linked list at the top level; but, as we
explain below, it suffered from high synchronization costs
and did not scale past eight processors. Inserting a record at
the top level requires only that we increment the counter of
the right ValueNode.

Inserting the record at other levels of the tree requires
us to traverse a linked list to find the right ValueNode. If

we find the node, we increment its counter. If we do not
find the node, we add the node to the end of the list and
set its counter to 1. We use the MTA’s int fetch add
operation to increment counters. This operation is safe, per-
formed in memory, and costs only one instruction cycle. In-
serting the record at other levels of the tree when no node
is found is trickier. To insure safety, a thread must lock the
list’s end pointer before inserting a new node. Implement-
ing a critical section is easy on the MTA using the synchro-
nized read and write operations, readfe and writeef,
respectively. Our first implementation of this operation is
shown in Figure 3 (left). This code is safe, but overly se-
rial. It has a critical section per link rather than a critical
section only at the end. For example, a better implementa-
tion is to first test the pointer before locking it. Note that in
the time between the test and when the readfe instruction
returns, another thread may grab the lock and insert a new
node; thus, we must retest the pointer after the readfe in-
struction. If it is still null, then we can insert a new node;
otherwise, we must continue to traverse the list. Our final
version is both safe and efficient, see Figure 3 (right).

In this implementation, a critical section exists only at
the end of a list. An insertion operation waits only if it tries
to insert a node at the same time at the end of the same
list as another insertion operation. Since the PDtree grows
quickly into a massive, sparse structure, the probability of
two threads colliding quickly approaches zero. Moreover,
even if an insertion waits, the MTA processor on which it
executes does not wait; the processor merely switches to
another thread and continues executing instruction. Note
that reason that we do not want to use a linked list at the
top level is that all records are inserted in the same top level
structure; thus, the probability of two insertions colliding is
significant.

On a test data set consisting of one million records over
nine variables, we have found this approach to scale lin-
early on up to 32 processors (all that were available at the
time of testing). The modest size of this test data set is due
to preprocessing that is currently done on a conventional
1-processor machine. For this test, we used a guide tree
that tracks all possible combinations of variables, and per-
formance scales linearly. Pruning the guide tree would re-
sult in smaller absolute runtimes, but could adversely affect
scalability. At the other extreme is the degenerate case, cor-
responding to an empty guide tree. In this the only thing
counted is the number of data points, and we would expect
very fast absolute runtimes, but poor scalability. It is, in
effect, the sparseness of the structure that makes the proba-
bility of blocking so low, leading to linear scaling. Further
testing will be required to assess scalability for a variety of
guide trees. We have found the slope of the best-fit line to
be 0.08, indicating that each processor added increases the
processing rate by 80000 nodes per second.

n Sequential Parallel, 3 threads
0 − −−−
1 +− −− +−
2 + + − + − + −−
3 + + +− + − + + −−
4 + + + + − + − + + − + −
5 + + + + +− + − + + + + −−

Figure 4. Comparing sequential and parallel
completion strings

4. Dealing with Nondeterminism

The algorithm and performance results presented to this
point are static in the sense that the data are all assumed to
be available at once for random access. This is contrasted
with a dynamic streaming approach where data are pro-
cessed sequentially and are never held in memory in their
entirety. In a static analysis setting, the size of the data is
fixed and known in advance, and the data can be used to
fully populate a PDtree before any analysis is performed.
In a dynamic analysis setting, the PDtree is never assumed
to be “fully populated”; queries can be posed concurrently
with population of the data structure, and are answered rel-
ative to the state of the PDtree at the time of query.

For static analysis, the parallelization approach used is
deterministic, because counts for the data as a whole do
not depend on the order of the counting. However, using
this same approach for dynamic analysis leads to a race
condition; uncertainty of the order in which threads com-
plete leads to nondeterminism of the accumulated counts
at a given point in time. Thus, the counts measured are
not exact, but only serve as an approximation. Fortunately,
this nondeterminism is acceptable, because the approxima-
tion satisfies a convergence criterion which we will now de-
scribe.

For the schematics that follow, we use a “+” to indicate a
data point that has been inserted into the PDtree, and a “−”
to indicate that the insertion of a given data point is still
processing. Thus +−+ +− means that the first, third, and
fourth values have been inserted, but the second and fifth are
still processing (implying that there are two active threads).
The variable n will denote the number of values that have
been completely inserted. We will refer to the sequence of
+’s and −’s as a completion string. Figure 4 compares the
sequences of the evolving completion string as the PDtree
is populated in the sequential and parallel implementations.
Note that at each step, we compare the sequential and paral-
lel completion strings based on the total count n of records
inserted into the tree, though the times for each to get to a
given n could be very different.

Now, consider a particular count at some point in the

tree, corresponding to the number of times some combi-
nation of variables has taken on a particular value. This
depends on n and, for a parallel implementation, it also de-
pends on the order in which the insertion threads are com-
pleted. Let cseq (n) denote this count for the sequential im-
plementation, and let cpar (n) denote the count for a parallel
implementation, for some arbitrary ordering of thread com-
pletions.

How close is cpar (n) to cseq (n)? The only way a given
data point can make a contribution to the absolute difference
|cpar (n) − cseq (n)| is if that point has been inserted by the
sequential implementation, but not by the parallel one, or
vice-versa. Thus we can find a bound on the absolute dif-
ference by maximizing the number of points completed by
one implementation but not the other.

Suppose the parallel implementation uses k threads. At a
given time, there is always one thread working on the most
recent data point, but the remaining k−1 could, in principle,
all be processing data points that the sequential implemen-
tation has already completed. Each of these k−1 data points
could contribute to cseq (n), with each such data point po-
tentially altering cseq (n) by a count of one. At the opposite
extreme, each of the k − 1 data points processed in parallel
but not sequentially could contribute to cpar (n). In either
case, we arrive at the following result.

Lemma. Let cseq (n) and cpar (n) be the number of times
a particular collection of variables takes on a spec-
ified configuration, given the number n of observa-
tions so far, for a sequential and parallel implementa-
tion, respectively. If the parallel implementation uses
k threads, then

|cpar (n) − cseq (n)| < k.

The most common use of counts as computed using PDtrees
is to estimate the probability of a given event. Using maxi-
mum likelihood, the estimated probability of a given event
as a function of n is given by

p̂par (n) =
cpar (n)

n
p̂seq (n) =

cseq (n)
n

Theorem. For a counting application, suppose a sequential
implementation is compared to a parallel implementa-
tion using k threads, and let n be the number of obser-
vations. The estimated probabilities are then related
by

p̂par (n) = p̂seq (n) + O

(
k

n

)
.

Proof. Using the result from the lemma,

|p̂par (n) − p̂seq (n)| =
∣∣∣∣cpar (n)

n
− cseq (n)

n

∣∣∣∣
<

k

n
.

Note that this can be used to determine a number of threads
to use to guarantee a desired degree of consistency with a
sequential implementation. If k ≤ nε, then

|p̂par (n) − p̂seq (n)| <
k

n
≤ ε.

5. Conclusion

The static implementation of PDtree population scales
linearly on a Cray MTA-2, using a full guide tree. The non-
determinism that results when using the same paralleliza-
tion approach for dynamic analysis might be considered a
race condition. However, we have shown that the sequence
of probability estimates converge to those given by a se-
quential implementation, bounding the effects of nondeter-
minism. This bound applies not just to PDtrees, but to any
multithreaded counting application that assigns a thread to
each consecutive record.

The linear scalability attained for the static case was de-
pendent upon the ability to have all of the data in memory at
once. It remains to be seen whether scalability of dynamic
analysis can be pushed to this extreme. Also, as mentioned
above, we have not implemented the most-common-value
reduction used in ADtrees. Perhaps this could be used at
least for static analysis. It remains to be seen whether the
MCV reduction leads to any performance hot-spots.

Besides discrete data, the PDtree can be altered to allow
for a variety of types at the leaves. In particular, we have be-
gun to investigate storing sufficient statistics for continuous
distributions like normal and von Mises. Since these dis-
tributions are conditional on a number of discrete values in
the PDtree, the marginal distributions in these cases have a
very flexible form and allow for a wide variety of modeling
approaches.

Finally, our work with PDtrees has opened up a wide va-
riety of research questions. For a given collection of sets
of variables to store, can the guide tree be constructed in
a way that minimizes expected storage costs, or that max-
imizes the scalability of population? Are these two ends
at odds with each other? Under certain conditions, storage
costs can be minimized by using conditional entropy to or-
der each subtree of the guide tree, but it is not clear to what
extent this might generalize, or how it might affect scalabil-
ity.

References

[1] A. Agresti. Categorical Data Analysis. John Wiley & Sons,
Inc., Hoboken, NJ, second edition, 2002.

[2] B.S. Anderson and A.W. Moore, “AD Trees for Fast Count-
ing and for Fast Learning of Association Rules,” Proc. Fourth
Int’l Conf. Knowledge Discovery and Data Mining, 1998.

[3] S. Andersson, D. Madigan, and M. Perlman, “An Alterna-
tive Markov Property for Chain Graphs,” Proceedings of the
Twelfth conference on Uncertainty in Artificial Intelligence,
pages 40–48. Morgan Kaufmann, 1996.

[4] E.F. Codd, S.B. Codd, and C.T. Salley, “Pro-
viding OLAP (On-line Analytical Process-
ing) to User-Analysts: An IT Mandate,”
http://dev.hyperion.com/resource library/white papers/
providing olap to user analysts.pdf, 1994.

[5] A.W. Moore and M.S. Lee, “Cached Sufficient Statistics for
Efficient Machine Learning with Large Datasets,” J. Artificial
Intelligence Research, vol. 8, pp. 67-91, 1998.

[6] D. Pavlov, H. Mannilla, and P. Smyth, “Beyond Indepen-
dence: Probabilistic Models for Query Approximation on Bi-
nary Transaction Data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 15, no. 6, pp. 1409-1421, 2003.

[7] C. Scherrer and N. Beagley, “Conditional Independence Mod-
eling for Categorical Anomaly Detection,” Proc. Join Ann.
Meeting of the Interface and Classification Soc. N. America.
2005

