
SWARM: A Parallel Programming Framework for Multicore Processors ∗

David A. Bader, Varun Kanade and Kamesh Madduri

College of Computing
Georgia Institute of Technology, Atlanta, GA 30332

{bader, varunk, kamesh}@cc.gatech.edu

Abstract

Due to fundamental physical limitations and power
constraints, we are witnessing a radical change in com-
modity microprocessor architectures to multicore designs.
Continued performance on multicore processors now re-
quires the exploitation of concurrency at the algorithmic
level. In this paper, we identify key issues in algorithm
design for multicore processors and propose a computa-
tional model for these systems. We introduce SWARM
(SoftWare and Algorithms for Running on Multi-core),
a portable open-source parallel library of basic primi-
tives that fully exploit multicore processors. Using this
framework, we have implemented efficient parallel algo-
rithms for important primitive operations such as prefix-
sums, pointer-jumping, symmetry breaking, and list rank-
ing; for combinatorial problems such as sorting and selec-
tion; for parallel graph theoretic algorithms such as span-
ning tree, minimum spanning tree, graph decomposition,
and tree contraction; and for computational genomics ap-
plications such as maximum parsimony. The main con-
tributions of this paper are the design of the SWARM
multicore framework, the presentation of a multicore al-
gorithmic model, and validation results for this model.
SWARM is freely available as open-source from http:
//multicore-swarm.sourceforge.net/.

1 Introduction

For the last few decades, software performance has im-
proved at an exponential rate, primarily driven by the rapid
growth in processing power. However, we can no longer
rely solely on Moore’s law for performance improvements.
Fundamental physical limitations such as the size of the

∗This work was supported in part by NSF Grants CNS-0614915, CA-
REER CCF-0611589, DBI-0420513 and ITR EF/BIO 03-31654.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

transistor and power constraints have now necessitated a
radical change in commodity microprocessor architecture
to multicore designs. Dual and quad-core processors from
Intel [14] and AMD [2] are now ubiquitous in home com-
puting. Also, several novel architectural ideas are be-
ing explored for high-end workstations and servers. The
Sun UltraSparc T1 [17] with eight processing cores and
four threads per core, is a design targeting targeting multi-
threaded workloads and enterprise applications. The Sony-
Toshiba-IBM Cell Broadband Engine [16] is a heteroge-
neous chip optimized for media and gaming applications.
A research proposal from the Intel Tera-scale computing
[12] project has eighty cores. Continued software perfor-
mance improvements on such novel multicore systems now
requires the exploitation of concurrency at the algorithmic
level. Automatic methods for detecting concurrency from
sequential codes, for example with parallelizing compil-
ers, have had only limited success. In this paper, we make
two significant contributions to simplify algorithm design
on multicore systems:

• We present a new computational model for analyzing
algorithms on multicore systems. This model shares
some similarities to existing parallel shared memory
multiprocessor models, but also identifies key architec-
tural aspects that distinguish current multicore systems
(in particular, the memory sub-system).

• We introduce an open-source portable parallel
programming framework SWARM (SoftWare and
Algorithms for Running on Multi-core). This library
provides basic functionality for multithreaded pro-
gramming, such as synchronization, control and mem-
ory management, as well as collective operations. We
use this framework to design efficient implementations
of fundamental primitives, and also demonstrate scal-
able performance on several combinatorial problems.

On multicore processors, caching, memory bandwidth,
and synchronization constructs have a considerable effect

on performance. In addition to time complexity, it is im-
portant to consider these factors for algorithm analysis. The
multicore model we propose takes into account these fac-
tors, and can be used to explain performance on systems
such as Sun Niagara, Intel and AMD multicore chips. Dif-
ferent models [4] are required for modeling heterogeneous
multicore systems such as the Cell architecture.

The SWARM programming framework is a descendant
of the symmetric multiprocessor (SMP) node library com-
ponent of SIMPLE [10]. SWARM is built on POSIX
threads that allows the user to use either the already devel-
oped primitives or direct thread primitives. SWARM has
constructs for parallelization, restricting control of threads,
allocation and deallocation of shared memory, and com-
munication primitives for synchronization, replication and
broadcast. Built on these techniques, it contains a higher-
level library of multicore optimized parallel algorithms for
list ranking, comparison-based sorting, radix sort and span-
ning tree. In addition, SWARM application example codes
include efficient implementations for solving combinatorial
problems such as minimum spanning tree [9], graph de-
composition [6], breadth-first-search [7], tree contraction
[8] and maximum parsimony [5].

This paper is organized as follows. Section 2 discusses
the computational model we use for analyzing algorithms
on multicore systems. We also design a simple benchmark
to validate the model. We present SWARM and give a brief
overview of its functionality in Section 3. Section 4 dis-
cusses some of the fundamental parallel primitives we have
implemented in SWARM and presents performance results
of a few combinatorial discrete algorithms designed using
SWARM.

2 Model for Multicore Architectures

Multicore systems have a number of processing cores in-
tegrated on to a single chip [14, 2, 11, 17, 16]. Typically, the
processing cores have their own private L1 cache and share
a common L2 cache [14, 17]. In such a design, the band-
width between the L2 cache and main memory is shared by
all the processing cores. Figure 1 shows the simplified ar-
chitectural model we will assume for analyzing algorithms.

Multicore Model.
The multicore model (MCM) consists of p identical pro-
cessing cores integrated onto a single chip. The processing
cores share an L2 cache of size C, and the memory band-
width is σ.

(i) Let T (i) denote the local time complexity of the core i
for i = 1, . . . , p. Let T = max

i
T (i).

(ii) Let B be the total number of blocks transferred be-
tween L2 cache and the main memory. The requests

MAIN
MEMORY

L
2

C
A
C
H
E

.

.

.

.

Core 1

Core 2

Core p

L
1

L
1

L
1

Figure 1. Architectural model for multicore
systems

may arise out of any processing core.

(iii) Let L be the time required for synchronization between
the cores. Let NS(i) be the total number of synchro-
nizations required on core i for i = 1, . . . , p. Let
NS = max

i
NS(i).

Then the model can be represented by a triple 〈T, B ·
σ−1, NS · L〉. The complexity of an algorithm will be rep-
resented by the dominant element in this triple.

The model proposed above is in many ways similar to the
Helman-JáJá model for symmetric multiprocessor (SMP)
systems [13], with a few important differences. In the case
of SMPs, each processor typically has a large L2 cache and
dedicated bandwidth to main memory, whereas in multicore
systems, the shared memory bandwidth will be an important
consideration. Thus, we explicitly model the cache hierar-
chy, and count the block transfers between the cache and
main memory in a manner similar to Aggarwal and Vitter’s
external memory model [1].

In our model, we target three primary issues that affect
performance on multicore systems:

1. Number of processing cores: Current systems have
two to eight cores integrated on a single chip. Cores
typically support features such as simultaneous mul-
tithreading (SMT) or hardware multithreading, which
allow for greater parallelism and throughput. In future
designs, we may have up to hundred cores on a single
chip.

2. Caching and memory bandwidth: Memory speeds
have been historically increasing at a much slower rate
than processor capacity [15]. Memory bandwidth and
latency are important performance concerns for sev-
eral scientific and engineering applications. Caching is

2

known to drastically affect the efficiency of algorithms
even on single processor systems [18, 19]. In multi-
core systems, this will be even more important due to
the added bandwidth constraints.

3. Synchronization: Implementing algorithms using mul-
tiple processing cores will require synchronization be-
tween the cores from time to time, which is an expen-
sive operation in shared memory architectures.

2.1 Case study: Merge sort

To illustrate the model, we discuss and analyze two sort-
ing algorithms based on p-way merging. The algorithm we
may use on an SMP may be different from the one that we
design for a multicore system.
Algorithm 1
In the first algorithm, given an input array of length N ,
we divide this equally among the p processing cores so
that each core gets N/p elements to sort. Once the sort-
ing phase is completed, we have p sorted sub-arrays, each
of length N/p. Thereafter the merge phase takes place. A
p-way merge over the runs will give the sorted array. Each
processor individually sorts its elements using some cache-
friendly algorithm. We do not try to minimize the number of
blocks transferred between the L2 cache and main memory
in this approach.
Analysis. Since the p processors are all sorting their respec-
tive elements at the same time, the L2 cache will be shared
by all the cores during the sorting phase. Thus if the size
of the L2 cache is C, then effectively each core can use just
C/p. Assuming the input size is larger than the cache size,
the cache misses will be p times that if only a single core
were sorting. Also the bandwidth between the cache and
shared main-memory is also shared by all the p cores, and
this may be a bottleneck.

We compute the time complexity of each processor. In
the sorting phase for each core we have :

Tc(sort) =
N

p
· log

(
N

p

)

Then during the merge phase we have :

Tc(merge) = N · log(p)

Tc(total) =
N

p
log

(
N

p

)
+ N log(p)

Algorithm 2
In this algorithm we divide the given array of length N into
blocks of size M where M is less that C, the size of the
L2 cache. Each of such N/M blocks is first sorted using
all p cores. This is the sorting phase. When the sorting
phase is completed, the array consists of N/M runs each of

length M . During the merge phase, we merge p blocks at a
time. We keep repeating this till we get a single sorted run.

Thus we will need to carry out the merge phase logp

(
N

M

)

times.
Analysis. This algorithm is very similar to the I/O model
merge sort [1]. Thus this algorithm is optimal in terms of
transfers between main memory and L2 cache. However it
will have slightly higher computational complexity. We first
compute the time complexity of each core. The p cores sort
a total of N/M blocks of size M . We assume the use of
a split-and-merge sort for sorting the block of M elements.
Thus, during the sorting phase, the time per core is :

Tc(sort) =
N

M
· M

p
log

(
M

p

)
+

N

M
· M log(p)

=
N

p
log

(
M

p

)
+ N log(p) (1)

During any merge phase, if blocks of size S are being

merged p at a time, the complexity per core is
N

Sp
·

Sp log(p) = N log(p). There are logp

(
N

M

)
merge

phases, thus we get

Tc(merge) = N log(p) · logp

(
N

M

)

Tc(total) =
N

p
log

(
M

p

)
+ N log(p)

(
1 + logp

(
N

M

))

Comparison. We can see from the analysis of the two al-
gorithms that algorithm 1 clearly has better time complex-
ity than algorithm 2. However, algorithm 2 is optimal in
terms of transfers between L2 cache and shared main mem-
ory. On implementing both the algorithms and comparing
performance on our multicore test platforms (see Section 4),
we found that algorithm 1 outperforms algorithm 2 across
most input instances and sizes. However on future systems,
with a greater number cores per chip, this may not hold true.
Algorithm analysis using this model captures computational
complexity as well as memory performance.

2.2 Experimental Evidence Supporting
the Multicore Model

The multicore model suggests that one should design al-
gorithms that are cache-aware, and minimize transfer of
blocks between cache and main memory. This would enable
effective use of the shared L2 cache and memory bandwidth.
A common approach to parallelization on an SMP system
is to partition a problem among the various processors in
a coarse-grained fashion, such that inter-processor commu-
nication (synchronization) is reduced as much as possible.

3

Figure 2. A comparison of the naı̈ve and
cache-aware implementations of the bench-
mark: 2, 4, 8 and 16 threads on the Sun Fire
T2000

We would like to demonstrate that this approach may not
always lead to good performance on a multicore system,
particularly for codes with poor spatial locality.

We use a simple example code to mimic the memory
access patterns of a naı̈ve and cache-aware approach to
the divide-and-conquer strategy on multicore systems. The
benchmark code reads elements of a large array and per-
forms a fixed number of arithmetic operations on the entire
array. Consider a multicore system with m cores, and sup-
port for t threads per core (with SMT or hardware multi-
threading). We can then schedule p = m∗ t threads concur-
rently. If there is sufficient bandwidth in the system and no
contention for arithmetic and memory units, we should be
able to achieve an ideal speedup of p on p threads.

In the naı̈ve approach, the array is split into p equal parts,
each thread reads a part of the array and performs some
computation on that part of the array. In the cache-aware
approach, we read the array in blocks that fit into the L2

cache, and then all p threads perform operations in parallel
on this block. We continue this until the entire array is read
in this manner. We also read array elements randomly in
both the cases, to mimic poor spatial locality. Note that in
both the naı̈ve and cache-aware approaches do equal com-
putational work, and they only differ in their memory access
patterns.

In the naı̈ve approach, each thread gets to utilize only a
fraction of the L2 cache, and some array elements may be
moved in and out of the cache often. In the cache-aware
approach, we have ensured that all the processors in paral-
lel read some part of the array that fits in the L2 cache. We

utilize the L2 cache and bandwidth better in this approach.
To confirm this, we implemented both the approaches on
the Sun Fire T2000 server with the UltraSparc T1 proces-
sor. With support for up to 32 simultaneous threads of ex-
ecution, this is the largest multicore platform we could ex-
periment on. Figure 2.2 gives the speedup achieved by the
cache-aware approach over the naı̈ve approach, as the prob-
lem size is increased from 215 array elements to 228 ele-
ments. We run the benchmark on 2, 4, and 8 cores. In all
the cases, both approaches work equally well for problem
instances smaller than 218 (corresponding to the 3 MB L2

cache size on the Sun Fire T2000). But for larger prob-
lem instances, there is a fixed gap of about 10% between
the normalized execution times in all the cases. The exe-
cution times differ by 36 seconds for the case of 228 array
elements and 2 threads. This benchmark is representative
of algorithms with a large memory footprint. The disparity
between the two approaches is higher in case of algorithms
with low spatial locality. Thus we demonstrate that effec-
tively utilizing the shared memory bandwidth and caching
helps in significant performance improvements on multi-
core systems. We design SWARM primitives and algo-
rithms, optimizing for better cache performance wherever
possible.

3 SWARM: Programming Framework for
Multicore Systems

SWARM [3] is a portable open-source portable library
that provides a programming framework for designing al-
gorithms on multicore systems. Unlike the compiler-based
OpenMP approach, we provide a library-based parallel pro-
gramming framework.

A typical SWARM program is structured as follows:

int main (int argc, char **argv)
{

SWARM_Init(&argc, &argv);
/* sequential code */
....
....
/* parallelize a routine using SWARM */
SWARM_Run(routine);
/* more sequential code */
....
....
SWARM_Finalize();

}

In order to use the SWARM library, the programmer
needs to make minimal modifications to existing sequen-
tial code. After identifying compute-intensive routines in
the program, work can be assigned to each core using an ef-
ficient multicore algorithm. Independent operations such as

4

those arising in functional parallelism or loop parallelism
can be typically threaded. For functional parallelism, this
means that each thread acts as a functional process for that
task, and for loop parallelism, each thread computes its por-
tion of the computation concurrently. Note that it might be
necessary to apply loop transformations to reduce data de-
pendencies between threads.

SWARM contains efficient implementations of
commonly-used primitives in parallel programming. We
discuss some computation and communication primitives
below, along with code snippets:

Data parallel. The SWARM library contains several basic
“pardo” directives for executing loops concurrently
on one or more processing cores. Typically, this is use-
ful when an independent operation is to be applied to
every location in an array, for example element-wise
addition of two arrays. Pardo implicitly partitions
the loop among the cores without the need for coordi-
nating overheads such as synchronization of commu-
nication between the cores. By default, pardo uses
block partitioning of the loop assignment values to the
threads, which typically results in better cache utiliza-
tion due to the array locations on left-hand side of the
assignment being owned by local caches more often
than not. However, SWARM explicitly provides both
block and cyclic partitioning interfaces for the pardo
directive.

/* example: partitioning a "for" loop
among the cores */

pardo(i, start, end, incr) {
A[i] = B[i] + C[i];

}

Control. SWARM control primitives restrict which
threads can participate in the context. For instance,
the control may be given to a single thread on each
core, all threads on one core, or a particular thread on
a particular core.

THREADS: total number of execution
threads
MYTHREAD: the rank of a thread,
from 0 to THREADS-1
/* example: execute code on

thread MYTHREAD */
on_thread(MYTHREAD) {

....

....
}
/* example: execute code on

one thread */
on_one_thread {

....

....
}

Memory management. SWARM provides two directives
SWARM malloc and SWARM free that, respectively,
dynamically allocate a shared structure and release this
memory back to the heap.

/* example: allocate a shared array
of size n */

A = (int*)SWARM_malloc(n*sizeof(int),TH);
/* example: free the array A */
SWARM_free(A);

barrier. This construct provides a way to synchronize
threads running on the different cores.

/* parallel code */
....
....

/* use the SWARM Barrier for
synchronization */

SWARM_Barrier();
/* more parallel code */

....

....

replicate. This primitive uniquely copies a data buffer for
each core.

scan (reduce). This performs a prefix (reduction) opera-
tion with a binary associative operator, such as ad-
dition, multiplication, maximum, minimum, bitwise-
AND, and bitwise-OR. allreduce replicates the re-
sult from reduce for each core.

/* function signatures */
int SWARM_Reduce_i(int myval,

reduce_t op, THREADED);
double SWARM_Reduce_d(double myval,

reduce_t op, THREADED);

/* example: compute global sum, using
partial local values from each core */
sum = SWARM_Reduce_d(mySum, SUM, TH);

broadcast. This primitive supplies each processing core
with the address of the shared buffer by replicating the
memory address.

/* function signatures */
int SWARM_Bcast_i (int myval,

5

THREADED);
int* SWARM_Bcast_ip (int* myval,

THREADED);
char SWARM_Bcast_c (char myval,

THREADED);

Apart from the primitives for computation and communi-
cation, the thread-safe parallel pseudo-random number gen-
erator SPRNG [20] is integrated in SWARM.

4 SWARM: Algorithm Design and Examples

The SWARM library contains a number of techniques
to demonstrate key methods for programming on multicore
processors.

• The prefix-sum algorithm is one of the most useful
parallel primitives and is at the heart of several other
primitives, such as array compaction, sorting, seg-
mented prefix-sums, and broadcasting; it also provides
a simple use of balanced binary trees.

• Pointer-jumping (or path-doubling) iteratively halves
distances in a list or graph, thus reducing certain prob-
lems in logarithmic time; it is used in numerous paral-
lel graph algorithms, and also as a sampling technique.

• Determining the root for each tree node in a rooted-
directed forest is a crucial step in handling equivalence
classes—such as detecting whether or not two nodes
belong to the same component; when the input is a
linked list, this algorithm also solves the parallel prefix
problem.

• An entire family of techniques of major importance
in parallel algorithms is loosely termed divide-and-
conquer—such techniques decompose the instance
into smaller pieces, solve these pieces independently
(typically through recursion), and then merge the re-
sulting solutions into a solution to the original in-
stance. These techniques are used in sorting, in almost
any tree-based problem, in a number of computational
geometry problems (finding the closest pair, comput-
ing the convex hull, etc.), and are also at the heart of
fast transform methods such as the FFT. The pardo
primitive in SWARM can be used for implementing
such a strategy.

• A variation of the above theme is the partitioning
strategy, in which one seeks to decompose the problem
into independent subproblems—and thus avoid any
significant work when recombining solutions; quick-
sort is a celebrated example, but numerous problems
in computational geometry can be solved efficiently
with this strategy (particularly problems involving the

detection of a particular configuration in 3- or higher-
dimensional space).

• Another general technique for designing parallel algo-
rithms is pipelining. In this approach, waves of con-
current (independent) work are employed to achieve
optimality.

Built on these techniques, SWARM contains a higher-
level library of multicore optimized parallel algorithms for
list ranking, comparison-based sorting, radix sort and span-
ning tree. In addition, SWARM application example codes
include efficient implementations for solving combinatorial
problems such as minimum spanning tree [9], graph de-
composition [6], breadth-first-search [7], tree contraction
[8] and maximum parsimony [5].

4.1 Performance

We will next discuss parallel performance of a few exam-
ples implemented using the SWARM framework – merge
sort, radix sort and list ranking – on current multicore sys-
tems. Our test platforms are a Sun Fire T2000 server and a
dual-core Intel system.

The Sun Fire T2000 server, with the Sun UltraSPARC
T1 (Niagara) processor, has eight cores running at 1.0 GHz,
each of which is four-way multithreaded. There are eight
integer units with a six-stage pipeline on-chip, and four
threads running on a core share the pipeline. The cores
share 3 MB of L2 cache, and the system has 6 GB main
memory. Since there is only one floating point unit (FPU)
for all cores, the Ultra Sparc T1 processor is mainly suited
for programs with few or no floating point operations. We
compile our codes with the Sun C compiler v5.8 with -xO2
flag.

The list ranking example was also run on a 2.8 GHz
dual-core Intel Xeon processor, with 2 MB L2 cache and
2 GB main memory. Both the cores support hyper-
threading, which gives an impression of four virtual pro-
cessors. The code is compiled with icc v9.0 and flags
(-Wall -O2).

In each case, we run the codes five times and report the
average running time. Figures 3(a) and 3(b) plot the execu-
tion time and speedup for radix sort and merge sort respec-
tively on the Sun Fire T2000. The input to both the sorting
algorithms is a list of 227 randomly ordered integers in [0,
227). The radix sort algorithm is one order of magnitude
faster than merge sort on one thread, but merge sort scales
better up to 16 threads. We achieve a speedup of 4.5 for
radix sort and 6 for merge sort, on 8 threads. There is little
or no speedup with more than 16 threads on the Sun Fire
T2000. Figure 3(c) gives the performance of a parallel list
ranking algorithm on the Sun Fire T2000 for a random list
of size 226. This particular list ranking instance has poor

6

(a) Radix Sort Performance (Sun Fire T2000) (b) Merge Sort Performance (Sun Fire T2000)

(c) List Ranking Performance (Sun Fire T2000) (d) List Ranking Performance (Intel Xeon dual-core)

Figure 3. Performance of algorithms implemented in SWARM on the Sun Fire T2000 (3(a), 3(b) and
3(c)) and an Intel Xeon dual-core processor(3(d))

7

spatial and temporal locality with very little computation,
but the execution time scales better with the number of pro-
cessors than the sorting algorithms. This is because nearly
all memory accesses result in cache misses, and latency to
main memory decides the running time. The latency can be
tolerated to some extent by scheduling concurrent threads.
Figure 3(d) plots the execution time and speed-up for the
same instance on the dual-core Intel system. We achieve a
modest speedup of 2 with four threads in this case. In gen-
eral, we achieve lower relative speedup on multicore sys-
tems in comparison to our previous results on symmetric
multiprocessors.

5 Conclusions and Future Work

Our primary contribution in this paper is the design of
SWARM, a portable, open-source library for developing ef-
ficient multicore algorithms. We have already implemented
several important parallel primitives and algorithms using
this framework. In future, we intend to add to the func-
tionality of basic primitives in SWARM, as well as build
more multicore applications using this library. The sec-
ond contribution of this paper is a new computational model
for the design and analysis of multicore algorithms. While
designing algorithms for multicore systems, the cache per-
formance, limited memory bandwidth, and synchronization
overhead should also be considered along with time com-
plexity.

References

[1] A. Aggarwal and J. Vitter. The input/output complexity of
sorting and related problems. Communications of the ACM,
31:1116–1127, 1988.

[2] AMD Multi-Core Products. http://multicore.amd.
com/en/Products/, 2006.

[3] D. Bader. SWARM: A parallel programming framework for
multicore processors. https://sourceforge.net/
projects/multicore-swarm, 2006.

[4] D. Bader, V. Agarwal, and K. Madduri. On the design and
analysis of irregular algorithms on the Cell processor: A
case study of list ranking. In Proc. Int’l Parallel and Dis-
tributed Processing Symp. (IPDPS 2007), Long Beach, CA,
USA, 2007.

[5] D. Bader, V. Chandu, and M. Yan. ExactMP: An efficient
parallel exact solver for phylogenetic tree reconstruction us-
ing maximum parsimony. In Proc. 35th Int’l Conf. on Par-
allel Processing (ICPP), Columbus, OH, Aug. 2006.

[6] D. Bader, A. Illendula, B. M. Moret, and N. Weisse-
Bernstein. Using PRAM algorithms on a uniform-memory-
access shared-memory architecture. In G. Brodal, D. Fri-
gioni, and A. Marchetti-Spaccamela, editors, Proc. 5th Int’l
Workshop on Algorithm Engineering (WAE 2001), volume
2141 of Lecture Notes in Computer Science, pages 129–144,
Århus, Denmark, 2001. Springer-Verlag.

[7] D. Bader and K. Madduri. Designing multithreaded algo-
rithms for breadth-first search and st-connectivity on the
Cray MTA-2. In Proc. 35th Int’l Conf. on Parallel Process-
ing (ICPP), Columbus, OH, Aug. 2006. IEEE Computer So-
ciety.

[8] D. Bader, S. Sreshta, and N. Weisse-Bernstein. Evaluat-
ing arithmetic expressions using tree contraction: A fast and
scalable parallel implementation for symmetric multiproces-
sors (SMPs). In S. Sahni, V. Prasanna, and U. Shukla, ed-
itors, Proc. 9th Int’l Conf. on High Performance Comput-
ing (HiPC 2002), volume 2552 of Lecture Notes in Com-
puter Science, pages 63–75, Bangalore, India, Dec. 2002.
Springer-Verlag.

[9] D. A. Bader and G. Cong. A fast, parallel spanning tree algo-
rithm for symmetric multiprocessors (SMPs). In Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS 2004),
Santa Fe, NM, Apr. 2004.

[10] D. A. Bader and J. JáJá. SIMPLE: A methodology for pro-
gramming high performance algorithms on clusters of sym-
metric multiprocessors (SMPs). Journal of Parallel and Dis-
tributed Computing, 58(1):92–108, 1999.

[11] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese.
Piranha: A scalable architecture based on single-chip multi-
processing. SIGARCH Comput. Archit. News, 28(2):282–
293, 2000.

[12] J. Held, J. Bautista, and S. Koehl. From a Few Cores to
Many: A Tera-scale Computing Research Overview.
ftp://download.intel.com/research/
platform/terascale/terascale_overview_
paper.pdf, 2006.

[13] D. R. Helman and J. JáJá. Designing practical efficient al-
gorithms for symmetric multiprocessors. In Algorithm En-
gineering and Experimentation (ALENEX’99), volume 1619
of Lecture Notes in Computer Science, pages 37–56, Balti-
more, MD, Jan. 1999. Springer-Verlag.

[14] Multi-Core from Intel – Products and Platforms. http:
//www.intel.com/multi-core/products.htm,
2006.

[15] International Technology Roadmap for Semiconductors,
2004 update. http://itrs.net, 2004.

[16] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy. Introduction to the Cell multiprocessor. IBM J.
Res. Dev., 49(4/5):589–604, 2005.

[17] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded Sparc processor. IEEE Micro, 25(2):21–
29, 2005.

[18] R. Ladner, J. Fix, and A. LaMarca. The cache performance
of traversals and random accesses. In Proc. 10th Ann. Symp.
Discrete Algorithms (SODA-99), pages 613–622, Baltimore,
MD, 1999. ACM-SIAM.

[19] R. E. Ladner, R. Fortna, and B.-H. Nguyen. A comparison
of cache aware and cache oblivious static search trees us-
ing program instrumentation. In R. Fleischer, E. Meineche-
Schmidt, and B. Moret, editors, Experimental Algorithmics,
volume 2547 of Lecture Notes in Computer Science, pages
78–92. Springer-Verlag, 2002.

[20] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: a
scalable library for pseudorandom number generation. ACM
Trans. Math. Softw., 26(3):436–461, 2000.

8

