
Analyzing the Scalability of Graph Algorithms on Eldorado

Keith D. Underwood1, Megan Vance2, Jonathan Berry1, and Bruce Hendrickson1

1Sandia National Laboratories 2University of Notre Dame
P.O. Box 5800, MS-1110 Computer Science and Engineering Department

Albuquerque, NM 87185-1110 384 Fitzpatrick Hall
Notre Dame, IN 46545

{kdunder, jberry, bahendr }@sandia.gov mvance@nd.edu

Abstract

The Cray MTA-2 system provides exceptional perfor-
mance on a variety of sparse graph algorithms. Unfor-
tunately, it was an extremely expensive platform. Cray is
preparing an Eldorado platform that leverages the Cray
XT3 network and system infrastructure while integrating a
new revision of the MTA-2 processors that is pin compatible
with the AMD Opteron socket. Unlike the MTA-2, this plat-
form will have a more constrained network bisection band-
width and will pay a high penalty for random memory ac-
cesses. This work assesses the hardware level scalability of
the Eldorado platform on several graph algorithms.

1 Introduction

Algorithms that operate on sparse graph structures are of
particular interest to the informatics community. Core algo-
rithms include operations such as connected components, S-
T connectivity, sparse matrix vector multiplication, and sub-
graph isomorphism. These types of algorithms perform ex-
tremely poorly on the commodity processors that make up
many of today’s supercomputers. They tend to make some-
what random references to data that is distributed across
the entire system. Thus, their performance is dominated
by both the latency of remote accesses and the rate at which
those accesses can occur (message rate).

The MTA-2[1, 2] performs extremely well on these algo-
rithms. A 220 MHz MTA-2 processor achieves comparable

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

performance to a 3 GHz Pentium-4. More importantly, be-
cause the MTA-2 provides remote load/store operations at
a high rate and tolerates remote latency, it scales dramati-
cally better than commodity systems. The downside of the
MTA-2 was cost. To address this issue, Cray is introducing
the Eldorado[3] system that places MTA-2 processors into
AMD Opteron sockets and leverages the much lower cost
infrastructure of the Cray XT3 system.

Unfortunately, the changes that reduce the cost also im-
pact performance. The network cannot provide full bisec-
tion bandwidth (a feature that MTA-2 depends on). The
memory system has changed from sustaining full-rate ran-
dom accesses to the standard DRAM used by an AMD
Opteron. Eldorado will even include a cache (of sorts). This
combination of changes calls into question the potential for
Eldorado to provide the same orders of magnitude advan-
tage (at scale) that the MTA-2 could.

To evaluate the Eldorado platform, we took a series of
measurements from graph kernels on the MTA-2. The
kernels included three versions of connected components,
three sizes of S-T connectivity, subgraph isomorphism, and
sparse matrix vector multiplication. We used these mea-
surements as inputs to a simulation model to evaluate the
impacts of the changes to the memory system as well as the
network. This paper presents simulation and analytical re-
sults that indicate that the Eldorado platform will perform
surprisingly well in the face of its limitations. While we
do not address software scalability issues, the hardware ap-
pears to scale quite well on a range of applications.

2 Background and Related Work

The Tera supercomputer was introduced in the early
1990s[1, 2]. Numerous efforts have explored the perfor-
mance of the Tera system and its successor, the MTA-

2[4, 5]. This paper focuses on an aspect that earlier works
have not: scalability to hundreds of nodes.

This work uses SST[6] for its simulation environment.
SST provides a hybrid discrete-event/synchronous simula-
tor that enables modeling at both the cycle and discrete
event levels. In many ways, the simulations are similar
to the message PAssing computeR SIMulator, PARSIM[7].
PARSIM models program execution as a generalized algo-
rithm divided into computation and communication — no
attempt is made to model the internals of the processor. In
much the same way, we attempt to model what the processor
will be doing, but not actually execute an MTA-2 program.

Unlike other network simulators, such as DaSSF[8] and
GTNetS[9], our models provide cycle level arbitration de-
tails of the router. Packets in the simulation are only two
flits long; thus, detailed modeling of features such as queue
depth and queue arbitration are critical.

2.1 Eldorado Platform

The Eldorado platform[3] is being introduced as a suc-
cessor to the MTA-2. Table 1 lists the “speeds and feeds” for
the MTA-2 and Eldorado for comparison. The architectures
are different in numerous ways. The processor clock has
gone up by over a factor of two. The architecture has shifted
from uniform memory access (UMA) to non-uniform mem-
ory access (NUMA) and from full random access band-
width to limited random access bandwidth. This change
brought the introduction of a 128 KB, 4-way set associa-
tive cache with 64 byte cache lines. Finally, the network
technology changed and that changed the relative bisection
bandwidth per processor from 220 Mref/s to 75 Mref/s. In
addition, bisection bandwidth per processor is linear with
the number of processors on the MTA-2, but decreases as
the system size of the Eldorado grows beyond 512 nodes.

3 Methodology

While it is currently not possible to simulate all of the
factors affecting performance simultaneously, good approx-
imations can be achieved by simulating some of the factors
independently and unifying the simulations through analy-
sis. We chose to analyze several graph algorithms, simulate
the performance implications of the DRAM subsystem, and
simulate the performance of the network at 512 nodes.

3.1 “Application” Data

Our first objective was to obtain baseline data on the be-
havior of the selected algorithms from an optimized graph
library. We began by measuring the rate at which appli-
cations make memory references based on the percentage
of VLIW instructions that make a memory reference. This

data was obtained from the standard MTA-2 performance
tools. The percentage (typically 50% or more) is high
enough to imply that a statistical representation is sufficient.

The requested memory access rate does not fully charac-
terize the application, because Eldorado is a non-uniform
memory architecture with a much greater penalty for re-
mote accesses (in terms of both latency and access rate)
than for local accesses. A second important criteria is the
breakdown of local and remote accesses. Cray instrumented
their simulator to distinguish stack accesses (effectively, lo-
cal accesses on the Eldorado platform) from heap (remote)
accesses. It was also necessary to capture the full address
trace to perform some simulations of the cache architec-
ture. While the stack accesses are not the only accesses that
can be made local on Eldorado, making other accesses local
would require changes to both the system software and pro-
gramming model. Realistically, there is limited opportunity
for exploiting local memory allocation in graph operations
on highly unstructured graphs.

3.2 Cache Experiments

One of the many aspects of Eldorado that differs from
the MTA-2 is the memory system. Rather than memory
distributed throughout the fabric (independent of any node)
will full random access bandwidth, Eldorado has a DRAM
attached to each node. To better use this DRAM, Eldorado
incorporates a buffer in the memory controller that is man-
aged as a cache of the local DRAM only. The performance
of this “cache” is critically important to the performance of
the machine as a whole.

To measure the performance of the cache, memory ac-
cess traces were taken from a single processor on the MTA-
2 simulator. Each access in the trace was flagged as a local
(stack) or remote access. While the trace from a single pro-
cessor would certainly capture numerous threads executing,
it is possible that the relatively small graphs used in the sim-
ulation environment would not lead to full utilization of the
processor. To explore this possibility, the single processor
data was used to generate multiple threads of access. Mea-
surements were taken (in powers of 2) for each possibility
between 1 and 128 replicas. Each replica of the addresses
was offset by a constant value (4999872) from the previous
replicate to prevent the artificial introduction of cache hits.

Typical codes will also have a combination of local
(stack) and remote (heap/dataset) accesses. This skews the
timing of the threads and pollutes the cache with network
traffic. Thus, the simulator imposed a statistical remote la-
tency and blocked local access based on outstanding load
limits. Simultaneously, the cache was exposed to high-rate
random accesses to provide a network “polluting” factor.

2

Table 1. MTA-2 and Eldorado characteristics
Property MTA-2 Eldorado

Clock 220 MHz 500 MHz
Local Memory Rate (Best) N/A 500 Mref/s

Local Memory Rate (Worst) N/A 100 Mref/s
Data ”Cache” N/A 128 KB, 64B line

Topology Modified-Cayley 3D-Torus
Remote Memory Rate (Net, Best) 220 Mref/s 75 Mref/s

Bisection BW 3.5GB/s× P 15.3GB/s× P 2/3

3.3 Network Simulation

The second major factor in Eldorado performance that
differs dramatically from the MTA-2 is the network. While
the MTA-2 used a full bisection bandwidth modified Cayley
graph network, Eldorado uses the 3D torus network from
the Cray XT3. The experiments here assume an 8 × 8 × 8

topology of 512 nodes. Variations from this topology that
reduced bisection bandwidth would have negative conse-
quences for performance.

The network simulation starts at the edge of the proces-
sor with the HyperTransport (HT) link into the Seastar net-
work chip. The HT link was simulated over a range of pa-
rameters, from a minimal value to the maximum possible
peak value. The performance of the HT link was found not
to impact the overall results. The router was modeled in
great detail. All of the router queue depths are modeled as
are the latencies moving from one queue to the next. The
queue arbitration uses round-robin arbitration. In addition,
we make the assumption of a dimension order routing al-
gorithm. This does not account for any gains that could
be achieved by virtual channel spreading or the losses that
might occur if a node were down. Adaptive routing is not
implemented in the XT3 router.

The network link has a 3.84 GB/s data rate, but less than
3 GB/s is available for actual data transfer because of the
reliability protocol on the link. The link is modeled as a 4
GB/s link with overhead added to account for the link pro-
tocol. Serialization and deserialization latency is modeled
as part of the latency associated with controlling the link.

3.4 Network Traffic Generation

Network traffic was generated using statistical methods
that are designed to match the algorithms. The nominal re-
quest rate was taken to be the fraction of instructions in-
cluding a memory reference multiplied by the clock rate of
the Eldorado processor. This yielded a sweep space of 150,
230, 300, and 400 million references per second. The local
versus remote (stack versus heap) percentages were swept
from 10% local to 80% local, since coding styles can be

changed to increase the amount of local data used. The dis-
tribution of network accesses was assumed to be purely ran-
dom. That is, the hash algorithm used to distribute memory
on the MTA-2 processor is assumed to work and the code is
assumed to have no significant hotspots.

The traffic generated at each node was assumed to origi-
nate from some number of threads running on the Eldorado
processor (32, 64, or 128). Each thread was assumed to
be a stream of random addresses. A load-to-use parame-
ter, known as “lookahead” was imposed on each thread for
lookaheads of 2, 4 and 8. Threads were only scheduled if
they had sufficient lookahead remaining.

3.5 Memory Impacts on the Network

Network requests must be serviced by the memory sub-
system on the Eldorado chip. Integrating 512 full mem-
ory system simulations with the simulation of the network
would have yielded prohibitive simulation times. Thus, net-
work simulations were run with statistical memory charac-
teristics and swept over several values. Memory charac-
teristics were determined by average cache hit rate giving
each access a probability of hitting the cache. Misses con-
sumed part of a simulated memory bandwidth and incurred
a higher delay, which was also impacted by contention. Net-
work accesses were assumed to never hit the cache (and
only pollute it) while local accesses were studied over sev-
eral cache hit rates.

3.6 Simulation Durations

When simulating the cache and memory subsystem, en-
tire traces were simulated; however, when simulating a 512
node network, it is necessary to choose a shorter simulation
duration. Given the constant, uniform, statistical nature of
the network traffic generation, it is possible to reach “steady
state” relatively quickly. To reach steady state, we ran the
simulation until network characteristics did not change for
several checkpoints.

3

Table 2. Memory access characteristics of several kernels
Kernel Name % Memory % Stack Access Rate

References Mref/s
Total Global Local

Connected Components: Bully 59 46 295 159 136
Connected Components: Kahan 60 53 300 141 159

S-T Connectivity: Small 75 10 375 338 37
S-T Connectivity: Medium 60 28 300 216 84

S-T Connectivity: Large 60 32 300 204 96
Sparse Mat. Vect. 46 53 230 108 122

Subgraph Isomorphism 30 34 150 99 51

4 Results

Data was gathered from each of the graph kernels and
used to study the impact of the “cache” introduced on the
Eldorado. Information from these studies is correlated to
network simulations, which enables us to make predictions
about the scalability of the graph kernels studied.

4.1 Graph Kernel Characteristics

Table 2 presents characteristics from several graph ker-
nels. Two versions of connected components are pre-
sented: the Bully algorithm (the best performing algorithm
on the MTA-2) and the Kahan algorithm. S-T connectiv-
ity is presented for the “small” (less than 30 nodes visited),
“medium” (1000-2000 nodes visited), and “large” cases (at
least 10000 nodes visited). Sparse matrix vector multiply
and subgraph isomorphism are also presented.

Two measurements are presented along with three de-
rived metrics that are related to Eldorado. The first column
shows the percentage of VLIW instructions that include a
memory reference. The second column is the percentage
of those references that go to the stack (local on Eldorado).
The last three columns convert these characteristics to an
access rate which is broken into local and global rates.

Referring to Table 1, we can compare the application’s
demands the platform’s capabilities. When most accesses
hit the cache, an Eldorado processor can service 500 mil-
lion memory references per second. When no accesses hit
cache, the node can service 100 million memory references
per second from the DRAM directly. Network requests
never hit the cache and the network could be requesting
up to 75 million references per second. The remaining 25
million references per second plus any data serviced by the
cache must be sufficient for the local accesses. Clearly, the
network will not be sufficient to sustain most of the codes
at maximum rate. What is slightly more subtle, however, is
that it is also possible for the DRAM to become the limiting
factor if the cache hit rate is insufficient for local accesses.

Table 3. Cache hit rate of several kernels for
several replication degrees

Replications
Kernel Name 64× 16× 4× 1×

CC: Bully 20% 63% 85% 99%
CC: Kahan 13% 52% 79% 92%

S-T Connectivity 85% 95% 99% 99%
Sparse Mat. Vect. 70% 85% 93% 99.9%

Subgraph Iso. 63% 69% 85% 87%

4.2 Caching Simulation

Table 3 shows the cache hit rates of each graph kernel
under varying degrees of trace replication. Small, medium,
and large cases for the S-T connectivity kernel could not be
separated due to the nature of the address trace. Interpreta-
tion of this data requires considering two factors: how busy
was the single node simulation and how busy will the El-
dorado node be. These factors are difficult to determine, so
the caching simulation swept over a range of possibilities.
For each kernel, the columns represent the cache hit rate
when we assume that Eldorado will have to be 64× as busy
(or 16×, 4×, or 1×) as the MTA-2 simulation. For the lo-
cal DRAM to be fast enough that it is not the bottleneck, it
must be able to service the local node’s local request rate. If
we assume that the network is consuming 75% of the local
DRAM bandwidth, then the local request rate that misses
the cache must be below 25 Mref/s. Table 4 shows the
number of local DRAM accesses each kernel would need
assuming the cache hit rates in Table 3.

If Eldorado has fewer than 4× as many threads per node
as the MTA-2 simulation, the cache should perform ad-
equately. Higher rates may lead to limitations from the
DRAM; however, even at 16× replication, the network is
likely to be more limiting that the DRAM system.

4

Table 4. DRAM access rate (Mref/s) needed
Replications

Kernel Name 64× 16× 4× 1×
CC: Bully 108 50 20 1.3
CC: Kahan 138 76 33 12.7

S-T Connectivity 14 5 1 1
Sparse Mat. Vect. 37 18 9 0.1

Subgraph Iso. 19 16 8 7

4.3 Network Simulation

Over 1300 application configurations were simulated for
a 512 node (8 × 8 × 8) system. This section presents
those data points in the space immediately around the cur-
rent characteristics measured for the algorithms analyzed.
For each application, we assume the “typical” lookahead
is 4. The typical number of threads per processor is as-
sumed to be 64. The access rate, local reference percent-
age, and cache hit rate are taken from the application mea-
surements. The programming model of Eldorado and op-
timizations made for Eldorado may shift any number of
these properties. Thus, for each kernel, the impact of mov-
ing along each of two planes of interdependent variables is
graphed. The first plane presented is the access rate/local
reference percentage plane to explore the impacts of adding
or removing traffic from the network. The second plane
presented is the lookahead/threads per processor plane to
explore the impacts of available concurrency.

4.3.1 General Trends

Cache hit rate can be critically important. Where the stack
percentage is high, the DRAM reference rate can easily be-
come the bottleneck. As an example, a 50% hit rate is
insufficient when the stack percentage is 50% and the ac-
cess rate is 230 Mref/s. Stack percentage determines when
the network bisection bandwidth saturates; thus, it tends to
be the primary bottleneck. The 230 Mref/s to 300 Mref/s
memory instruction rate means that the typical 50% stack
percentage seen in the graph kernels will lead, in and of
itself, to a 2× performance penalty at a system scale of
512 nodes. On a positive note, this is comparable to the
performance that might be expected from a current MTA-
2 system. With the right development environment, many
of the algorithms should achieve a higher “local” memory
percentage. Lookahead and the number of threads per pro-
cessor are tightly coupled parameters. Fewer threads leads
to the need for more lookahead. Similarly, lower lookahead
requires more threads. Generally speaking, a lookahead of
4 looks achievable. With a lookahead of 4, 64 threads gen-
erally look sufficient.

0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

270 Mref/s
300 Mref/s
330 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8
Pe

rc
en

t S
er

vic
ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 1. Impact of (a) global request rate and
(b) concurrency on Connected Components

4.3.2 Connected Components

The properties of the two connected components algorithms
are very similar. About 60% of the instructions reference
memory and about 50% of those are local. That leads to a
request rate for the network of 150 Mref/s and a local refer-
ence rate of about 150 Mref/s. Given the data from Table 3,
we will assume a cache hit rate of 70%. Simulations have
indicated that the network bisection bandwidth is on the or-
der of 67 Mref/s, and so we would expect 44% of the request
rate of these applications to be serviced. That translates into
a 2.3× performance penalty from what the peak would be.

Given that the shift to Eldorado may change some of the
salient features of the graph kernels, we have explored in-
creasing and decreasing the access rate by 10%. We have
also explored the entire spectrum of local percentages for
each of these access rates. The results in Figure 1(a) in-
dicate that performance approximately tracks changes in
memory demands. To the right of the curve, however, we
can observe that there may be value in increasing the num-
ber of total references if that makes more references local.

The impact of concurrency points out the need to find
high levels of concurrency in the application. That said, 64
threads per processor with a lookahead of 4 seems to be

5

0

20

40

60

80

100

2 3 4 5 6 7 8

Pe
rc

en
t S

er
vic

ed

LookAhead

128 Threads
64 Threads
32 Threads

Figure 2. Impact of concurrency on S-T Con-
nectivity (medium)

sufficient to saturate the network. Indeed, providing sig-
nificantly more concurrency (128 threads, lookahead of 8)
seems to reduce performance. While this seems counter-
intuitive, it appears multiple times in the simulations. Our
best current understanding indicates that this is a real re-
sult that is caused by the extremely non-linear relationship
between network delay and offered load.

4.3.3 S-T Connectivity

The medium and large S-T connectivity scenarios are sim-
ilar to connected components. The memory reference rate
is the same and the percentage of local accesses is similar;
however, since the concurrency impacts can be differ when
the local percentage changes, those are graphed in Figure 2.
As with Figure 1(b), if too much concurrency is exposed,
network performance suffers. The break points differ be-
cause the percentage of the memory request traffic that goes
to remote nodes is higher. At this level of load, we expect a
3× performance hit against the theoretical maximum.

When the number of nodes visited by the S-T connec-
tivity algorithm is small, we see an extremely poor match
to Eldorado. 75% of the instructions reference memory and
10% of those are local. Reducing the extreme to an 80% ref-
erence rate with 20% of those being local leads to a request
rate for the network of 320 Mref/s and a local reference rate
of 80 Mref/s. Based on Table 3, we will assume a cache
hit rate of 90%. Given the network bisection bandwidth,
we would expect 21% of the request rate of these applica-
tions to be serviced. That translates into a 5× performance
penalty from the peak.

Changes in access rate yield similar trends to what was
seen with connected components; however, the right side
of the curve is steeper. The impact of concurrency on this
example (Figure 3) are virtually non-existent. The network
is so overwhelmed that reducing concurrency only has an
impact at the lowest level (32 threads, lookahead of 2).

0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

360 Mref/s
400 Mref/s
440 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8
Pe

rc
en

t S
er

vic
ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 3. Impact of (a) global request rate and
(b) concurrency on S-T Connectivity (small)

4.3.4 Sparse Matrix Vector Multiply

Sparse matrix vector multiply is a good match to the Eldo-
rado architecture. Only 46% of the instructions reference
memory and over 50% of those are local. That leads to a
request rate for the network of 108 Mref/s and a local ref-
erence rate of 122 Mref/s. We will use a cache hit rate of
90% from Table 3. Based on network bisection bandwidth,
we would expect over 62% of the request rate to be serviced
and yield a mere 1.6× performance penalty.

Figure 4(a) paints a promising picture. When the ap-
plication and architecture match, small improvements in
the application behavior lead to dramatically better perfor-
mance. This is promising given that sparse matrix vector
multiply performs well on distributed memory platforms.
With a slightly improved programming model that includes
distributed memory, it should be possible to achieve all of
the potential performance on this application.

The concurrency data in Figure 4(b) is strikingly differ-
ent from that of the network bound algorithms. When the
network is not constricting remote memory requests, the
amount of concurrency exposed becomes critically impor-
tant. It is possible to see a factor of 1.5 to 2 difference in
application performance based on the exposed concurrency.

6

0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

207 Mref/s
230 Mref/s
253 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8

Pe
rc

en
t S

er
vic

ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 4. (a) Request rate and (b) concurrency
impact on Sparse Matrix Vector Multiply

4.3.5 Subgraph Isomorphism

Subgraph Isomorphism is a great match to the Eldorado ar-
chitecture, thanks to a filtering step that dominates its per-
formance. Only 30% of the instructions reference memory,
but only 34% of those are local. This yields the lowest net-
work request rate (99 Mref/s) and one of the lowest local
request rates (51 Mref/s). All of this is accompanied by a
cache hit rate of over 70%. This translates into an algorithm
that should run within 1.5× of peak. The most promis-
ing part of subgraph isomorphism is that the percentage of
memory references that are local could be increased to 60 or
70%, at which point the network could satisfy most of the
requests. This could be achieved by moving a single copy
of the subgraph to a “local” memory location.

4.4 Load Imbalance Issues

A major concern with the Eldorado network is the po-
tential for a network interface become overloaded. This
network hot spot could lead to traffic congestion in the net-
work that affects system level performance. Figure 6 graphs
the impact on the overall average, the source nodes, the tar-
get nodes, and the “other” nodes. The Y-axis is the percent

0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

135 Mref/s
150 Mref/s
165 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8
Pe

rc
en

t S
er

vic
ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 5. Impact of (a) global request rate and
(b) concurrency on Subgraph Isomorphism

serviced and the X-axis is an overload metric. Percent over-
load is the percent of the traffic that is sent to the target set
of nodes beyond their fair share. As an example, in a 512
node system, each node should send 0.2% of its traffic to
every other node. If a node has a percent overload of 2 with
a target node set of 2 nodes, it will send 1.2% of its traffic
to each of those two nodes and will reduce the traffic to the
other 510 nodes equally.

Figure 6(a) shows the scenario where a group of 8
source nodes overload 2 target nodes1. This is a “small,
bad application” scenario. Neither the average nor the
non-participating nodes are particularly affected. Even the
source nodes are not dramatically affected until the over-
load is extreme. Clearly, a single, small job is unlikely to
have a particularly detrimental effect on the system.

In contrast, Figure 6(b) shows 510 nodes overloading 2
targets. Even the 0.25% overload scenario shows a signif-
icant degradation. At 0.5% overload, the average service
rate has dropped to only 57% of the peak service rate. That
is a 1.5× performance hit for an increase of 1 memory ref-
erence in 200 going to a pair of nodes.

1Request rate is fixed at 300Mref/s, local percentage at 50%, cache hit
percentage at 90%, and lookahead at 4.

7

0

20

40

60

80

100

0 5 10 15 20 25 30 35

Pe
rc

en
t S

er
vic

ed

Percent Overload

Average
Source
Target
Other

(a)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
rc

en
t S

er
vic

ed

Percent Overload

Average
Source
Target

(b)

Figure 6. Impacts of (a) constrained (8-
to-2) overload and (b) widespread (510-to-
2)overload

5 Conclusions

While the Eldorado platform shares many of the char-
acteristics of the MTA-2 platform, it also has dramatic dif-
ferences that could inhibit performance. The performance
critical network and memory systems have changed for the
worse, while the processor rate has increased. This paper
presents simulations of the various components of the sys-
tem and ties those results together through analysis. The
results are promising in that the limitations of the network
and DRAM do not seem to impose dramatic constraints
on application performance. Subgraph isomorphism and
sparse matrix vector multiply should achieve performance
that is only 35% below the peak performance. The con-
nected components algorithms and the S-T connectivity al-
gorithm do not perform as well, but they are still expected
to be within 60-75% of the peak processor performance.
Thus, we do not see a severe architectural limitation to the
scaling of the Eldorado platform to 512 nodes. Scalability,
however, extends beyond the machine architecture. Issues
of thread creation and thread management along with a va-
riety of run-time system issues and compiler issues can put

scalability at risk. These issues cannot yet be directly eval-
uated for the Eldorado platform.

References

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith, “The tera computer sys-
tem,” in Proceedings of 1990 International Conference
on Supercomputing (ICS90), Amsterdam, The Nether-
lands, June 1990, pp. 1–6.

[2] G. Alverson, R. Alverson, D. Callahan, B. Koblenz,
A. Porterfield, and B. Smith, “Exploiting heteroge-
neous parallelism on a multithreaded multiprocessor,”
in Proceedings of 1992 International Conference on
Supercomputing (ICS92), Washington, DC, USA, July
1992, pp. 188–197.

[3] J. Feo, D. Harper, S. Kahan, and P. Konecny, “Eldo-
rado,” in 2nd Conference on Computing Frontiers, Is-
chia, Italy, May 2005, pp. 28–34.

[4] S. Brunett, J. Thornley, and M. Ellenbecker, “An ini-
tial evaluation of the tera multithreaded architecture and
programming system using the c3i parallel benchmark
suite,” in Proceedings of the 1998 ACM/IEEE confer-
ence on Supercomputing, Nov. 1998.

[5] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S.
Gatlin, N. Mitchell, J. Feo, and B. Koblenz, “Multi-
processor performance on the tera mta,” in Proceedings
of the 1998 ACM/IEEE conference on Supercomputing,
Nov. 1998.

[6] A. Rodrigues, Programming Future Architectures:
Dusty Decks, Memory Walls, and the Speed of Light.
University of Notre Dame, 2006, ch. 3, pp. 56–81.

[7] A. Symons and V. L. Narasimhan, “The design
and application of PARSIM - a message pass-
ing computer simulator,” 1997. [Online]. Available:
citeseer.nj.nec.com/288506.html

[8] J. Liu and D. M. Nicol, DaSSF 3.1 User’s Manual,
Dartmouth, April 2001.

[9] G. F. Riley, “The georgia tech network simulator,” in
Proceedings of the ACM SIGCOMM workshop on Mod-
els, methods and tools for reproducible network re-
search. ACM Press, 2003, pp. 5–12.

8

