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Abstract

The use of Java for parallel programming on clusters re-
lies on the need of efficient communication middleware and
high-speed cluster interconnect support. Nevertheless, cur-
rently there are no solutions that fully fulfill these issues. In
this paper, a Java sockets library has been tailored to in-
crease the efficiency of Java parallel applications on clus-
ters. This library supports high-speed cluster interconnects
and its API has been extended to meet the requirements of a
high performance Java RMI implementation and Java par-
allel applications on clusters. Thus, it provides Java with a
more efficient communication middleware on clusters. The
performance evaluation of this middleware on a Gigabit
Ethernet (GbE) and a Scalable Coherent Interface (SCI)
cluster has shown experimental evidence of throughput in-
crease. Moreover, qualitative aspects of the solution such
as transparency to the user, interoperability with other sys-
tems and no need of source code modifications are decisive
to boost the performance of existing Java parallel appli-
cations and their developments in high performance Java
cluster computing.

1. Introduction

Cluster computing architectures are a well established
option for organizations as they deliver outstanding parallel
performance at a reasonable price/performance ratio. Java
has gained popularity in all phases of systems development
because of appealing characteristics such as platform inde-
pendence, portability and increasing integrability into ex-
isting applications. Nevertheless, the use of Java for paral-
lel application development for clusters is still an emerging
option, since performance concerns, especially in the I/O
arena, have delayed its use. On clusters, efficient commu-
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nication performance is key to delivering scalability to par-
allel applications, but Java lacks efficient communication
middleware. Even if the cluster nodes were interconnected
by a high-speed network, such as SCI, Myrinet, Infiniband
or Giganet, Java would not take advantage of this mainly be-
cause these interconnection technologies are not efficiently
supported.

Currently, the only way Java is fully supported on high-
speed interconnects is resorting to TCP/IP protocol stack
emulations. Nevertheless, in this case, one of the main ad-
vantages of high-speed interconnects, offloading the host
CPU from communication processing, is wasted by the pro-
cessing of the IP emulation libraries, that add a signifi-
cant overhead [16]. Examples of IP emulations are IP over
GM [12] on Myrinet, LANE driver [8] over Giganet, IP over
Infiniband (IPoIB) [7] and ScaIP [2] and SCIP [5] on SCI.

Besides the lack of efficiency supporting high-speed in-
terconnects, the Java Virtual Machine (JVM) does not pro-
vide efficient protocols for cluster communications. Some
efforts have been done to optimize communications in Java
Distributed Shared Memory (DSM) implementations (e.g.,
CoJVM [10], JESSICA2 [21] and JavaSplit [6]), in high
performance Java message-passing libraries (e.g., MPJ Ex-
press [1] and MPJ/Ibis [3]), and implementing new Java
RMI libraries. Nevertheless, these projects usually lack de-
sirable features such as the use of widely spread standard
APIs, no need of source code modification, transparency to
the user and full interoperability with other systems.

Our goal is to provide a more efficient Java communica-
tion middleware that consists of a high performance sock-
ets library extended to cope with the requirements of Java
parallel applications (Section 3). Every Java parallel appli-
cation can run on top of this library, and even it can serve
as transport layer for another Java communication middle-
ware, such as Java RMI. A Java RMI implementation has
been adapted (Section 4) to take full advantage of this high
performance Java sockets implementation on high-speed in-
terconnection clusters. The use of these two widely spread



APIs assures a broad range of communication performance
optimization. Moreover, the objective is to optimize com-
munications transparently to the user, not modifying source
code, and maintaining interoperability.

2. Related Work

Previous efforts at obtaining efficient Java Sockets have
been focused on providing non-blocking communications
in order to increase scalability in server applications. In this
context two pioneer projects: NBIO [19] and Jaguar [20]
have led to the introduction of some facilities in Java NIO
Sockets. Nevertheless, both solutions do not provide neither
high-speed interconnection support nor high performance
computing tailoring. Currently, most of these problems
have been solved by the Ibis framework [13], a “pure” Java
solution for grid and cluster computing, that supports high-
speed networks (Myrinet) and provides several efficient
sockets implementations (TCP and Java NIO Sockets) and
serialization methods. The process of transforming objects
in stream bytes to send across the network can be efficiently
done using its own ibis serialization. Ibis supports a wide
range of object-based communication: method invocation
on remote objects (RMI/Ibis) and object groups (GMI), as
well as divide-and-conquer parallelism via spawned method
invocations (Satin/Ibis) and message-passing applications
(MPJ/Ibis). Nevertheless, its numerous communication lay-
ers add a significant overhead (see Section 5).

Regarding Java RMI optimizations, different frame-
works have been implemented with the efficiency of RMI
communication on clusters as their goal. The most relevant
ones are KaRMI [14], RMIX [9], Manta [11] and RMI/Ibis.
KaRMI is a drop-in replacement for the Java RMI frame-
work that uses a completely different protocol and intro-
duces new abstractions (such as “export points”) to improve
communications specifically in cluster environments. Nev-
ertheless, KaRMI suffers from performance losses when
dealing with large data sets and its interoperability is limited
to the cluster nodes. RMIX extends Java RMI functional-
ity to cover a wide range of communication protocols, but
the performance on high performance clusters is not satis-
factory. The Manta project is a different approach for im-
plementing RMI, based on Java to native code compilation.
This approach allows for better optimization, avoids data
serialization and class information processing at runtime,
and uses a lightweight communication protocol. Finally,
RMI/Ibis benefits from being integrated in the Ibis frame-
work. Looking for performance RMI/Ibis uses efficient se-
rialization and avoids runtime type inspections.

3. Java Sockets for Parallel Computing

In order to support efficiently Java parallel applications
a High Performance Java Socket implementation, named
Java Fast Sockets (JFS), has been extended. This library
was sketched in [17] and its prototype was implemented
later. The work presented in this paper is the tailoring of
JFS to high performance Java parallel applications on clus-
ters. The main achievements are: (1) higher performance
on high-speed networks, (2) the increase of communica-
tion performance due to reduction of unnecessary copies by
implementing more efficient communication protocols, and
(3) the reduction of the cost of serialization.

Higher Performance on High-speed Networks. JFS
supports high-speed interconnects through Java Native In-
terface (JNI) access to high performance native commu-
nication libraries. On SCI, JFS makes JNI calls to SCI
Sockets, SCILib and SISCI, three native communication
libraries [15] on SCI. On Ethernet-based networks, JFS
makes JNI calls to native TCP/IP sockets. Furthermore, the
lightness of the JFS implementation, without lose of func-
tionality, is key to delivering the low latency and high band-
width of the high-speed interconnect to the applications.

JFS Communication Performance Increase. Current
Java sockets implementations (e.g., from Sun and IBM
JVMs) are implemented in a general way, buffering data
and making unnecessary copies, apart from not supporting
high performance communication libraries. Figure 1 shows
a sketch of the default scenario in Java sockets communi-
cations: up to six copies and two serialization/deserializa-
tion processes are performed. This inefficiency has been
solved in JFS implementing a one-copy protocol (see Fig-
ure 2) using a direct ByteBuffer, a Java NIO Buffer acces-
sible through Java and JNI code, and a zero-copy protocol
(see Figure 3) moving data directly to the communication
driver. The choice of protocol is based by default on mes-
sage size, but can be defined by the user based on the ap-
plication needs. The zero-copy protocol maximizes band-
width, whereas the one-copy protocol minimizes latency,
but increasing the CPU load. The default choice is to use
the one-copy protocol for small messages and the zero-copy
protocol for long messages. These protocols reduce signifi-
cantly the number of copies needed.

Serialization Cost Reduction. Java Sockets can only
send byte arrays, so Java objects have to be transformed in
stream bytes to be sent across the network. In order to avoid,
or at least minimize this costly process, JFS implements a
new native, generic method that can process arrays of any
primitive data type and transform them into byte arrays.
Thus, one of the most common communication patterns in
Java parallel applications, primitive data type arrays, can be
seen as byte series by native methods, with even no need of
{de}serialization for handling data in native memory.



Figure 1. Default Java sockets communication

Figure 2. One-copy JFS communication

Besides the increase of communication throughput, JFS
is transparent to the user, does not require source code mod-
ifications and it is a lightweight and portable solution. In
fact, the use of native libraries by JFS does not jeopardize
its portability. In order to take advantage of native code ef-
ficiency maintaining the portability of the solution the strat-
egy to follow is the Ibis-based approach. Thus, an efficient
pure Java solution is implemented together with native so-
lutions to access low-level cluster native protocols through
JNI. At establishing connections, JFS looks for a native-
based protocol. If any, it will take over the communications.
Otherwise, JFS resorts to the pure Java efficient socket im-
plementation.

An application can use JFS replacing the default Sock-
etFactory, in charge of creating sockets using the default

Figure 3. Zero-copy JFS communication

socket implementation (PlainSocketImpl), by JFSFactory,
which creates sockets using the JFS implementation (JF-
SImpl). The transparency to the user is achieved by means
of a small Java application that invokes through Java’s re-
flection the main() method of the main class of the applica-
tion after replacing the default sockets implementation by
JFS. Listing 1 illustrates this procedure:

Listing 1. Replacing default Sockets by JFS

S o c k e t I m p l F a c t o r y f a c t o r y = new J F S F a c t o r y ( ) ;
So c k e t . s e t S o c k e t I m p l F a c t o r y ( f a c t o r y ) ;
S e r v e r S o c k e t . s e t S o c k e t F a c t o r y ( f a c t o r y ) ;

C l a s s c l = C l a s s . forName ( className ) ;
Method method = c l . ge tMethod ( ” main ” , a r g s T y p e s ) ;
method . i n vo k e ( nul l , p a r a m e t e r s ) ;

4. Java RMI Optimization

In addition to the JFS extension, a high performance
Java RMI library has been designed and implemented. Cur-
rent Java RMI implementations, in order to increase perfor-
mance through the use of JFS, can only benefit from replac-
ing the transport protocol. Nevertheless, the Java RMI pro-
tocol can be implemented in order to obtain more benefits
from the new features of JFS: (1) the native serialization,
although it can be avoided sending directly any primitive
data type array, (2) reduction of unnecessary copies, and (3)
reduction of the protocol overhead. These reduction of pro-
tocol overhead can be made on clusters under some basic
assumptions: (1) the use of a shared file system from which
the classes can be loaded, (2) homogeneous architecture of
the cluster nodes, and (3) the use of a single JVM version.

Client Server

Stub Skeleton

Transport Layer Transport LayerNet

Remote Reference Layer

Figure 4. Java RMI layered architecture

Java RMI has been designed following a layered archi-
tecture approach, shown in Figure 4. From bottom to top
it can be seen: the transport layer, responsible for handling
all communications; the remote reference layer, responsi-
ble for managing and keeping all references to objects; the
stub/skeleton layer, aware of the invocation and execution,
respectively, of the methods exported by the objects; and
the client and server layer, also known as service layer. At
this service layer it can also be found the activation, registry
and distributed garbage collection (DGC) services.



In order to optimize Java RMI efficiently, an analysis of
the overhead of the methods involved in handling an RMI
call has been accomplished. These methods can be grouped
in four categories: (1) Network, (2) RMI Protocol process-
ing, mainly stub and skeleton operation, (3) Serialization,
and (4) DGC. From the analysis of a typical Java RMI call
profile (3KB object send), it has been obtained that almost
84% of the overhead belongs to Network, 12.7% to the
costly serialization process, 3.3% to Protocol, and a min-
imal 0.2% to DGC. Having these overheads into account,
performance has been improved, focusing on: (1) trans-
port improvements: managing data to reduce buffering and
socket delays, (2) serialization overhead reduction, and (3)
protocol overhead reduction.

RMI Data Transport Management. By default, all se-
rialized data are inserted in a data block, in order to distin-
guish data from different objects. These data blocks are cre-
ated in small buffers, increasing the number of data copies.
In order to increase communication efficiency, this strat-
egy has been disabled and the management of the buffer
has been simplified, with only a minimal control to avoid
serialization and deserialization incoherences, and writing
directly to destination buffers instead of buffering the data
blocks.

Serialization Overhead Reduction. Java primitive data
type arrays have to be serialized in an element-by-element
approach. Nevertheless, JFS native serialization allows for
sending primitive data type arrays, without need of serial-
ization, reducing significantly the serialization overhead.

Protocol Overhead Reduction. Under the basic as-
sumptions previously made for high performance clusters:
single JVM version, shared file system and homogeneous
architecture, it is possible to (1) avoid the versioning in-
formation (the description of a serialized class), (2) avoid
the class annotations (the location of the classes), and (3)
improve the array processing. Under the considered as-
sumptions, the versioning and annotation information is not
needed. Moreover, Java RMI protocol processes arrays as
objects, with the consequent useless type checks and reflec-
tion operations. The implemented solution creates a specific
serialization method to deal with arrays, hence avoiding that
useless processing. Thus, an early array detection check
is performed, and subsequently the array type is obtained
through checking against a list of primitive data types. This
list has been empirically obtained from the frequency of
primitive data type appearance in high performance Java
applications. This list (double, integer, float, long, byte,
Object, char, boolean) optimizes the type casting compared
to the default list (Object, integer, byte, long, float, dou-
ble, char, boolean). Furthermore, this specific serialization
method can use JFS native serialization and thus reduce its
overhead significantly.

5. Performance Evaluation

5.1. Experimental Configuration

The testbed consists of a cluster of dual-processor nodes
(PIV Xeon at 3.2 GHz with hyper-threading enabled and
2GB of memory) interconnected via SCI and Gigabit Eth-
ernet (GbE). The SCI interface is a D334 card plugged
into a 64bits/66MHz PCI slot, whereas the GbE is an In-
tel PRO/1000 MT 82546 GB with an MTU of 1500 bytes.
The OS is Linux CentOS 4.2 with compilers gcc 3.4.4 and
Sun JDK 1.5.0 05. The SCI libraries are SCI Sockets 3.0.3,
DIS 3.0.3 (SCILib and SISCI) and the IP Emulation library
SCIP 1.2.0. The Ibis version is 1.4.

In order to benchmark communications, a Java version of
NetPIPE [18] has been developed (there is no Java NetPIPE
publicly available). The results considered in this section
are the half of the round trip time of a ping-pong test. It has
been taken into account that Java micro-benchmarking has
some particularities: in order to obtain JVM Just in Time
(JIT) results, from running fully optimized native compiled
bytecode, 10000 warm-up iterations have to be executed be-
fore the actual measurements. It has been measured in Java
sockets and Java RMI benchmarks the communication of
integer arrays as it is a frequent communication pattern in
Java parallel applications.

SCI NICGbE NIC

SCI Driver: SISCIGbE Driver
SCI Sockets / SCILib

JFS

 TCP/IP Sockets

  Java
Sockets   JFS

RMI / Opt RMI / KaRMI

 IP Emulat.

HPJava Apps

RMI / Opt RMI / KaRMI

HPJava Apps

  Ibis
Sockets

  Ibis
Sockets

  Java Sock.

Figure 5. High performance Java parallel ap-
plications: software architecture overview

Figure 5 shows an overview of the six-layered proposed
architecture for high performance Java parallel applications
on GbE and SCI. Given components are colored in dark
gray, whereas the contributions presented in this paper: (1)
the extension to JFS and (2) the optimized Java RMI, are
depicted in light gray. Ibis Sockets have been adapted to
run on top of SCI Sockets. Thus, Ibis Sockets implemen-
tation and JFS’s implementation can be compared fairly, as
both use the same base communication libraries. From bot-
tom to top it can be seen the Network Interface Card (NIC)
layer, NIC drivers, native sockets, Java Sockets and required
IP emulation libraries, Java RMI implementations and high
performance Java parallel applications.



5.2. JFS Performance Evaluation

Figures 6 and 7 show experimentally measured latencies
and bandwidths of Java Sockets and JFS as a function of
the message length, for byte and integer arrays on GbE and
SCI. Bandwidth graphs (right side of the figures) are use-
ful to compare long-message performance, whereas latency
graphs (left side of the figures) serve to compare short-
message performance. Regarding the upper two graphs in
Figure 6, JFS and Ibis Sockets present results quite similar
to Java Sockets as the three libraries use the same underly-
ing library, native TCP/IP sockets. Nevertheless, the situa-
tion is quite different on SCI (see the two lower graphs in
Figure 6) where JFS clearly outperforms Java Sockets over
SCIP, due to the use of an emulation library that adds con-
siderable overhead. Moreover, JFS also outperforms Ibis
Sockets.

Figure 7 presents the results of sending integer arrays.
The performance achieved by JFS, Ibis Sockets and Java
Sockets is lower (up to 10-20%) than sending byte arrays,
due to the serialization overhead. The ibis serialization has
been used in Ibis Sockets, but the performance of this li-
brary is lower (up to three times lower throughput and up to
eleven times higher startup) than using JFS.

5.3. Optimized Java RMI

Figure 8 presents the results for communicating integer
arrays through RMI calls using KaRMI [14], Java RMI and
the optimized RMI (labeled as “Opt RMI” in the legends)
described in Section 4. Regarding the two upper graphs
(GbE), KaRMI shows the lowest latency for short mes-
sages (< 1KB), but for larger messages its performance
is the worst of the three implementations. The optimized
RMI obtains slightly better results than Java RMI. Regard-
ing SCI graphs, KaRMI and Java RMI on SCIP show the
poorest results. Nevertheless, substituting Java Sockets as
transport protocol by JFS improves the results significantly.
In this case, KaRMI presents slightly better performance
than Java RMI, for all message sizes. KaRMI shows bet-
ter performance on SCI than on GbE, mainly for being de-
signed to cope with high performance libraries and systems.
Thus, KaRMI results on GbE are poorer due to the use
of TCP/IP. Regarding the RMI bandwidth on SCI, it can
be seen that Java RMI and KaRMI performance drops for
messages longer than 256KB caused by a native commu-
nication protocol change at this boundary. The optimized
RMI presents slightly lower latencies than Java RMI and
KaRMI for short messages. For longer messages, specially
> 256KB, its performance benefits increase significantly.

5.4. Applications Performance

Figure 9 shows the speedups achieved with two repre-
sentative Java parallel applications from the Java Grande
MPJ benchmark [4]. The Molecular Dynamics application,
MolDyn SizeB version, is an N-body code. For each iter-
ation, six reduce-to-all addition operations update atoms’
properties. The Ray Tracer application, RayTracer SizeC
version, renders a scene of 64 spheres, considering images
of 2000x2000 pixels. Each node calculates a checksum over
its part of the scene, and a reduce operation is used to com-
bine these checksums into a single value.

These applications use MPJ/Ibis on SCI, running on top
of SCIP and on top of JFS on SCI. JFS specially im-
proves MolDyn performance on 16 processors, whereas
RayTracer SizeC obtains results very close to the ideal.
Regarding these two representative applications, it can be
concluded that JFS improves significantly performance on
communication intensive Java parallel applications on high-
speed interconnects.

6. Conclusions

A more efficient Java communication middleware has
been presented. This middleware consists of a high per-
formance sockets library, JFS, extended to cope with the
requirements of Java parallel applications on high-speed in-
terconnection clusters. Moreover, a more efficient Java RMI
library has been implemented based on the JFS extensions:
more efficient communication and serialization. Thus, JFS
is not only the transport layer, but also the underlying li-
brary for the optimized Java RMI implementation. The pro-
posed middleware is transparent to the user, interoperable
with other systems, does not need source code modification
and offers widely spread APIs (Java Sockets and Java RMI).

Experimental results have shown that JFS greatly im-
proves Java Sockets performance, especially on high-speed
interconnects and for communication patterns frequently
used in high performance parallel applications, such as ar-
rays of primitive data types. Moreover, the optimized Java
RMI reduces significantly the RMI call overhead, especially
on supported high-speed interconnects. Furthermore, JFS
improves Java parallel applications efficiency. These con-
clusions are backed by the experimental evaluation carried
out on a Gigabit Ethernet (GbE) and SCI cluster.
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Figure 6. Java Sockets communication performance
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Figure 7. Integer array communication performance
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