
A Survey of Worst-Case Execution Time Analysis for Real-Time Java

Trevor Harmon and Raymond Klefstad

University of California, Irvine
Dept. of Electrical Engineering and Computer Science

Irvine, California 92697-2625 USA
{tharmon, klefstad}@uci.edu

Abstract

As real-time systems become more prevalent, there
is a need to guarantee that these increasingly complex
systems perform as designed. One technique involves a
static analysis to place an upper bound on worst-case
execution time (WCET). Other techniques aim for new
architectures and algorithms that reduce the WCET.
At the same time, there is a growing interest in using
Java for real-time systems. Several WCET analysis
prototypes for Java have been created, and more are
under development.

This paper provides a comprehensive survey of re-
search that combines WCET analysis with the Java do-
main. We begin by explaining the importance of WCET
analysis and why it is so difficult to perform adequately.
We then examine the features that make Java an at-
tractive platform for WCET analysis, as well as the
new challenges it brings. Finally, we provide a sur-
vey of prior work on this subject, organized as a simple
one-level taxonomy.

1. Introduction

Real-time systems are becoming part of our every-
day life. No longer restricted to aerospace and mil-
itary applications, real-time technology is responsible
for keeping our automobiles safe, our surgeons precise,
and our food sanitary. Even potato chip factories now
rely on real-time systems. As uncooked chips zoom by
on a conveyor belt, a digital camera constantly scans
them. If it detects any dark spots, it triggers an air
hose to blow the chip off the belt and into a compost
heap.1

1-4244-0910-1/07/$20.00 c©2007 IEEE.
1As described in “How It’s Made,” episode 14: http://

howitismade.net/

Now that real-time computing is so prevalent, it is
perhaps no surprise that the topic is considered mature.
University courses and entire books are devoted to the
topic. In practice, however, building a real-time sys-
tem is very much an art, not a science. For instance, a
common practice in industry2 is to design real-time sys-
tems with extremely low processor utilization (around
1%), just in case unexpected behavior exceeds CPU re-
sources, resulting in missed deadlines and critical fail-
ure.

This over-provisioning of the processor is wasteful.
It demands CPU resources two orders of magnitude
greater than what is actually required. Worse, it un-
masks a more fundamental problem: Despite decades
of research, practitioners still cannot trust modern
tools and techniques to produce a real-time system that
performs as expected. There is often too much uncer-
tainty in the system to provide sufficient confidence in
the predictability of real-time tasks.

This is not an immutable situation. Knowing the
worst-case execution time, or WCET, of tasks can pro-
vide great confidence and predictability in real-time
systems. Unfortunately, WCET analysis is often ne-
glected or merely “guesstimated” in practice. Research
has therefore focused on statically analyzing source
code and dynamically measuring system performance
to obtain a tight WCET bound. By improving the
quality and usability of these techniques, industry use
of WCET analysis will likely increase, making real-time
systems both safer and more resource-efficient.

2. The Challenge of WCET Analysis

The essential question, then, is why more influential
research has not been produced despite two decades of

2Based on anecdotal evidence witnessed by the authors.

work in WCET.3 One explanation comes from Kirner
and Puschner [18], who argue that industrial-strength
WCET tools are simply too difficult to implement.

2.1. Implementation Difficulties

One of the factors behind this implementation diffi-
culty is the modern CPU. Architectural advancements
in RISC processor design, such as very long pipelines
and complex multi-level caches, have focused on mak-
ing the average case as fast as possible. Unfortunately,
the shrinking of this average has not come without cost:
While the average may be small, its standard devi-
ation has grown large, resulting in large (and overly
pessimistic) worst-case execution times.

For example, branch prediction normally results in
a fast and efficient pipeline, but when a prediction
misses, the pipeline stalls. Handling this kind of un-
foreseen delay demands one of two things: a very com-
plicated WCET analysis tool (with a complete model
of the processor pipeline) or a very conservative WCET
bound. Both are unattractive to industry, leading to a
neglect of the proper WCET analysis that is necessary
for safe and reliable real-time systems.

Hardware is not the only difficulty, of course. The
software platform is another reason for the lack of
good tools for WCET analysis. Today, most real-time
systems are developed in C and, to a lesser extent,
Ada. Because the compilers for these languages vary,
there is no common intermediate representation (IR)
for WCET analysis tools to target. GCC’s Register
Transfer Language, for example, is incompatible with
the Intel compiler’s IR. Furthermore, these IRs may
change across compiler versions, they may suffer from
limited documentation (if any), and they are subject
to change with each new compiler version.

The changing nature of IR magnifies the difficulty
of building WCET analysis tools. Because there is no
clean, consistent separation between high-level source
code and low-level machine code, tools must be able to
perform a complete top-to-bottom analysis. This in-
cludes parsing source code, constructing a control flow
graph, mapping the basic blocks to machine code, an-
alyzing each basic block according to a model of the
target processor, and so on.

To make this process tractable, most tools offer lit-
tle flexibility, usually locking themselves to a particu-
lar hardware architecture. It is also common to ignore
high-level source code altogether, operating at the ma-
chine code level. Mapping this machine code analysis
back to the high-level source code, which is necessary

3Kligerman’s and Stoyenko’s 1986 paper [19] is generally con-
sidered the first publication to address the problem of WCET.

to act on the information provided by the tool, is typ-
ically cumbersome and unintuitive. The aiT tool,4 for
instance, displays its analysis in assembly language,
leaving the programmer to mentally map the jumble
of mnemonics and hexademical numbers back to the
source code language of choice.

All of these complications, at both the hardware and
software levels, combine to make WCET analysis tools
complex, non-portable, and difficult to implement and
to use. It is no wonder, then, that the industry has
been slow to adopt the idea of static WCET analysis.
This situation has led developers, as well as researchers
in the WCET field, to seek a better platform on which
to build real-time systems and tools.

2.2. Java as a Catalyst

In recent years, the platform that an increasing num-
ber of real-time developers and researchers turn to is
Java. At first glance, Java appears to be a terrible
match for real-time systems. Its combination of au-
tomatic garbage collection, underspecified threading
semantics, and pervasive object-orientation (i.e. dy-
namic dispatch) are all impediments in building time-
predictable software.

In the year 2000, however, three near-simultaneous
events seemed to open the floodgates for real-time Java:
In May, the Real-time Specification for Java (RTSJ)
was released [5]. In June, the first paper on apply-
ing Java to the problem of WCET analysis was pub-
lished [4]. And in November, the first processor de-
signed specifically for real-time Java, the aJ-100,5 be-
came commercially available.

In the years since these innovations, Java has be-
come a viable platform for real-time systems. For ex-
ample, commercial implementations of the RTSJ are
available from aicas6 [sic] and Sun,7 and real-time
garbage collectors, such as Metronome [1], are gain-
ing steam. Boeing is using real-time Java to power
drone aircraft, and the United States Navy will use it
in next-generation battleships [20].

For a language that offers no temporal guarantees
and is designed to be dynamic, these events are sur-
prising. The phrase “real-time Java” may even sound
like an oxymoron. Yet, there are a number of reasons
why Java is gaining traction in real-time environments:
Bytecode Java’s bytecode provides an inherent mod-

ularization of static analysis tasks, as illustrated in
Figure 1. For example, high-level WCET tools for

4http://www.absint.com/ait/
5http://www.jempower.com/ajile/content/view/20/27/
6http://www.aicas.com/jamaica.html
7http://java.sun.com/javase/technologies/realtime.jsp

Java can ignore any timing aspects below the byte-
code level. Separate low-level tools, perhaps writ-
ten by other vendors, can then complete the analy-
sis once the target architecture is known. This sort
of modularization helps solve the software com-
plexity problem raised in Section 2.1. Bytecode
also acts as a common, well-specified intermediate
representation that does not vary with different
compiler versions and vendors (unlike the situa-
tion with C and Ada).

Java processors Java processors, whose native in-
struction set is Java bytecode, help solve the hard-
ware complexity problem raised in Section 2.1.
These chips eliminate the operating system and
virtual machine, making WCET analysis far sim-
pler. In addition, research has produced a Java
processor, called JOP, with a short four-stage
pipeline and a predictable instruction cache de-
signed for real-time systems [24]. Such chips are
easy targets for tight WCET analysis.

Productivity Real-time systems are becoming in-
creasingly complex and widespread. To keep up
with the growing demand for these sophisticated
systems, developers need to become more produc-
tive, and Java is recognized as a more productive
language than C. A recent experiment by Nor-
tel Networks found that programmer productivity
doubled after switching to real-time Java [20].

Training Technical aspects are not the only consid-
eration when choosing Java for real-time systems.
The state of the workforce must be taken into ac-
count, as well. Most graduating students of to-
day have been taught Java, not C, and have never
touched Ada. Unless Java can be incorporated
into the development process for real-time sys-
tems, industry will not be able to leverage the
existing skills of the new generation of software
engineers and will have to retrain them in other
languages.

The common theme here is that Java offers a higher
level of abstraction. Not only does this make real-time
system development more manageable, it also stream-
lines static timing analysis. Of course, with these ad-
vantages come a new set of challenges. Dynamic dis-
patch, for instance, is still very much an open problem
in terms of WCET analysis [17]. Also, existing tools
for WCET are grounded in C and Ada, so new tools
for Java will have to be written. Despite these obsta-
cles, we believe that Java is an important catalyst in
providing safe, accurate, and tight bounds on WCET
for real-time programs.

High-level analysis

Processor
timing
model

Java source
code with

annotations

Final WCET value

Compilation

Control flow graph
construction

Derivation of loop
bounds

Low-level analysis

Cache analysis

Collapse of basic blocks

Collapse of the CFG

Bytecode level and above
Below bytecode level

Begin WCET analysis

Figure 1. This sketch of the WCET analysis
process shows the clean separation between
high- and low-level analysis that Java byte-
code provides.

2.3. A Survey of WCET Analysis for Java

We are of course not the first to propose bringing
WCET analysis techniques to the Java domain. How-
ever, while the theory of worst-case execution time has
been addressed by hundreds of research papers over the
last two decades,8 fewer than twenty publications span-
ning only six years have tackled the problem of Java in
WCET analysis.

We wish to highlight these efforts and provide a his-
torical record of what has been accomplished in WCET
analysis for Java. The following sections therefore pro-
vide a survey of the most prominent research in this
area. We have categorized the approaches into four
basic categories: 1) bytecode as an intermediate rep-
resentation, 2) high-level WCET analysis, 3) low-level
WCET analysis, and 4) miscellaneous work, a catch-
all category for research that does not fit cleanly into
the first three categories. Where appropriate, we also
include a discussion of the strengths and weaknesses of
a technique or tool.

8Kligerman’s and Stoyenko’s 1986 paper [19] is generally con-
sidered the first publication to address the problem of WCET.

3. Bytecode as an Intermediate Repre-
sentation

The earliest known work to combine the Java do-
main with WCET analysis was Bernat’s proposal [4]
to use Java bytecode in WCET tools. Noting that
WCET analysis was not being adopted by industry
practitioners, Bernat suggested that a lack of porta-
bility in WCET tools was the cause. Existing software
for WCET analysis was normally restricted to a single
source language, a specific compiler, and a unique con-
figuration of processor, memory, and clock speed. As
a result, the usual industry practice was to forgo these
tools and rely on ad hoc measurement, an inefficient
and error-prone technique that often leads to overly
optimistic WCET bounds.

To address this problem, Bernat proposed that Java
bytecode could serve as an intermediate representation
for WCET tools, analogous to register transfer lan-
guages acting as intermediate representations in com-
pilers. The assumption was that if WCET tools were to
standardize on bytecode, they would be more portable,
versatile, and thus more attractive to the industry.

The emphasis, then, was not on Java as a real-time
programming language but rather as a catalyst. For
example, real-time programs written in C or Ada could
be translated to Java bytecode, then translated from
bytecode to machine code. This multi-stage process
would, in theory, allow a single WCET tool designed
only for bytecode to analyze both C and Ada programs
without knowledge of either language.

Compared to most instruction sets, Java bytecode
contains enough high-level information to perform a
full WCET analysis, but this benefit does not come
for free. The move to bytecode brings new challenges,
such as how to pass WCET annotations from an arbi-
trary source language to bytecode and how to integrate
knowledge of the target hardware into the bytecode
analysis.

Bernat offered a somewhat awkward solution to the
first problem: Programmers would be required to in-
voke methods in a predefined class whenever a WCET
annotation was required. For instance, the following
Ada statement would indicate a maximum loop bound
of 10:

WCETAn.Loopcount(10);

3.1. Discussion

Compared to established techniques, this style of an-
notation mingles non-functional metadata (that is, the
WCET information) with the normal source code state-
ments, making the program more difficult to read. In

addition, tools for compiling arbitrary C or Ada source
to Java bytecode remain primitive. Most such tools
have not progressed beyond the prototype stage or have
serious limitations that prevent their use in day-to-day
operations. Jazillian, for example, a C-to-Java trans-
lator, makes no guarantee that the resulting Java code
can even be compiled.

For these reasons, the notion of bytecode as an in-
termediate representation for WCET tools has failed
to reach the industry and has not progressed beyond
Bernat’s initial research.

4. High-level Analysis for the Java Lan-
guage

In contrast to low-level analysis, high-level9 WCET
analysis for Java is relatively simpler. The language is
similar to existing ALGOL-like imperative languages,
so it builds upon a vast body of existing work in com-
pilers and high-level WCET theory. Research in this
area is therefore more mature because it has received
attention from a greater number of researchers.

The earliest work in high-level WCET analysis for
Java comes from Puschner [22]. He noted that signifi-
cant effort had been expended on making the function-
ality of code portable, but there were no mechanisms
for porting or distributing information about the exe-
cution time of code. To solve this problem, he centered
on the idea of “abstract” timing information. The goal
was to collect and store as much information as pos-
sible about timing, such as the control flow and loop
bounds, without knowing the concrete details of the
processor, the cache, and so on. This abstract infor-
mation can then be ported to any processor, saving the
work of running a complete analysis for each target ar-
chitecture.

As a convenient side-effect, this solution also ad-
dresses the problem of WCET in third-party libraries.
Such libraries make developers more efficient by provid-
ing standard functionality—encryption, networking, or
graphics processing, for example—in a reusable pack-
age. Unfortunately, developers of real-time systems are
often cut off from such benefits because these libraries
provide no WCET information. End users usually do
not wish to perform this analysis themselves, and even
if the vendors are willing to perform a WCET anal-
ysis and add the necessary source code annotations,
they may not wish to expose this code to the out-
side world. The abstract timing approach advocated
by Puschner solves these problems by allowing ven-
dors to bundle WCET information with their code in

9We define “high-level” as “above bytecode level.”

a portable, reusable format that keeps source code pri-
vate.

Like Puschner, Hu [14] also developed techniques
for making WCET information more portable. In-
stead of performing an analysis, however, Hu focused
on WCET source code annotations, introducing a new
format called XAC, or Extensible Annotation Class.
Similar in scope to Bernat’s WCETAn technique [4],
XAC encodes timing hints as source code comments
rather than explicit method calls. This improvement
over WCETAn eliminates the relatively complex task
of re-writing the bytecode to remove the method calls
(in order to eliminate their performance penalty). Hu
also specified an extensible file format for bundling
WCET annotations with their corresponding class files.

Later that same year, Hu extended his XAC format
to handle the problem of dynamic dispatch [13]. Typ-
ical in object-oriented programs, dynamic dispatch of
method invocations (e.g., polymorphism) is simply dis-
allowed in most WCET tools. Such tools are normally
designed for procedural languages, such as C, where dy-
namic dispatch is much less common. In Java, however,
almost every method call requires dynamic dispatch.
Hu addressed this problem by providing new WCET
annotation types designed for class hierarchies. For ex-
ample, the programmer could specify a subset of child
classes that are valid for a particular method invocation
on a base class. This simplistic approach dumps most
of the work in the programmer’s lap, relying entirely
on manual annotations to tighten the WCET bounds
of dynamic dispatch.

In stark contrast with Hu’s style, Guedes [10] dis-
pensed with annotations altogether, explaining how
Gustafsson’s “abstract interpretation” technique [11]
could be applied to Java. The goal was to remove the
need for annotations as much as possible, saving the
trouble of having to provide WCET parameters (loop
bounds in particular) in many cases. This very pre-
liminary work was largely theoretical and has not been
pursued.

The remaining work in high-level analysis comes
from a European initiative to advance the role of
Java in real-time systems. Dubbed HIDOORS (High
Integrity Distributed Object-Oriented Realtime Sys-
tems) [26], it had many goals, some of which were
perhaps unrealistic for a 30-month project: a real-
time garbage collector, a graphical UML-based mod-
eling tool, a distributed real-time event manager, and
a WCET analysis tool. While the real-time garbage
collector has seen new life as part of the Jamaica Vir-
tual Machine [25], the WCET tool never progressed
beyond the specification stage.10

10Perhaps one reason the HIDOORS project did not prove

5. Low-level WCET Analysis for Java
Bytecode

WCET analysis of bytecode is only a partial solu-
tion. Computation of the actual WCET requires low-
level analysis that takes into account the particular
timing characteristics of a target processor.

Toward that end, Bate expanded on Bernat’s work
by developing a framework for low-level WCET anal-
ysis of Java bytecode [2]. To remain portable among
processors, the framework differs from traditional ap-
proaches: Instead of calculating the WCET of each
basic block (which is impossible at the bytecode level),
it calculates bytecode frequencies. When a particular
target architecture is known, the frequency vectors can
then be mapped to a concrete timing model. Two years
later, Bate integrated this approach into a single frame-
work [3] that combines the high-level [4] and low-level
[2] techniques in one vertical package.

Instead of concentrating on a portability solution
for WCET analysis tools, Hu targeted the Java plat-
form itself. Citing the growing interest in pure, 100%
Java real-time specifications, such as the RTSJ [5] and
the Real-time Core Extensions [8],11 Hu observed that
none offered any mechanism for WCET analysis. In
addition, existing analysis techniques were exclusive to
procedural programming languages, ignoring the dy-
namic dispatching features of Java.

Hu therefore adapted Bernat’s existing WCET
framework for the needs of Java, re-branding it the
XRTJ (eXtended Real-Time Java) [17]. Essentially a
refinement of this existing framework, it added one no-
table new feature for low-level WCET analysis. Specifi-
cally, XRTJ prescribed a measurement-based technique
for deriving a timing model of an arbitrary Java vir-
tual machine [15]. This timing model is simply a per-
formance profile, a benchmark of the target proces-
sor’s ability to interpret bytecodes in the presence of an
operating system and virtual machine. The resulting
WCET is therefore an estimate and does not provide
the hard guarantee of a static analysis. However, it
works across all Java systems and requires no modifi-
cations to the virtual machine.

more successful is that it was based on J Consortium’s now-
defunct RTCE specification, rather than Sun’s RTSJ. In other
words, HIDOORS appears to have “bet on the wrong horse.”

11The RTSJ and the RTCE were two competing real-time spec-
ifications for Java. Although they were largely similar, the RTSJ
had the support of Sun. As a result, all development of RTCE
has ceased, the J Consortium has disbanded, and the web site
(j-consortium.org) has been taken over by a domain squatter.

5.1. Discussion

These efforts are the only published work on low-
level WCET analysis for Java bytecode. This begs
the question of why other groups have not pursued the
same challenge. The explanation is manifold:

• Even today, the concept of real-time Java is rela-
tively new. Reliable implementations of the RTSJ,
for example, became available only in the last few
years. Despite new large-scale projects [20], accep-
tance of Java for real-time systems is still limited,
even among the research community.

• Low-level analysis of bytecode is extremely diffi-
cult. Mapping a non-Java language to bytecode is
a formidable challenge by itself. In addition, the
bytecode must be translated to an arbitrary tar-
get architecture, all the while maintaining tight
WCET bounds. This requires a detailed analy-
sis to account for pipeline and cache effects, not
to mention the overhead of the operating system
and the virtual machine. As a result of this com-
plexity, the WCET analysis is often pessimistic,
counteracting the benefits that bytecode portabil-
ity brings.

• The multiple layers of OS, VM, and processor com-
plicate low-level bytecode analysis. One way to
mitigate this problem is to adopt a Java-native
processor such as Schoeberl’s JOP [24] or aJile
System’s aJ-100 [12]. These processors collapse
the vertical stack, removing the OS and VM layers
entirely and greatly simplifying low-level analysis.
Until recently, however, viable Java-native proces-
sors such as these were unavailable, making them
even less prevalent in the research community than
real-time Java. In addition, restricting low-level
analysis to these processors limits the portability,
and thus the acceptance, of any analysis technique.

These issues have made low-level bytecode analysis
an unattractive research topic.

6. WCET Analysis for Java-specific
Processors

Modern CPU architecture is the WCET researcher’s
worst nightmare. Large pipelines, branch prediction,
and sophisticated multi-level caching have greatly im-
proved average throughput, but not without cost. Pro-
viding a tight guarantee on worst-case execution time is
horrendously difficult on these superscalar processors.

As a result, new processor architectures have
emerged that are designed specifically for real-time sys-
tems, making them an easier target for WCET analy-
sis. An example from the Java domain is JOP, or Java
Optimized Processor [24], a WCET-aware CPU that
executes bytecode natively without the need for an OS
or virtual machine.

JOP offers three key features that allow bytecode
execution time to be predicted tightly:

• JOP translates bytecodes into microcode instruc-
tions, each of which executes in a single cycle.
And because there are no dependencies between
bytecodes, calculating WCET of basic blocks is a
simple matter of summing the cycle count of each
bytecode.

• JOP has a short four-stage pipeline, allowing
branch prediction logic (which complicates WCET
analysis) to be discarded with minimal perfor-
mance loss.

• JOP provides a unique instruction cache specially
designed for WCET analysis in Java. It is based on
the observation that no branch instructions in Java
jump outside of a method; therefore, the “method
cache” in JOP [23] is based on whole methods
rather than small cache lines. Consequently, hit
and miss detection occurs only during method in-
vocation and return, allowing WCET analysis of
the cache to be ignored entirely during the execu-
tion of individual methods.

In other work on Java-specific processors, Chai [7]
developed a technique for pre-processing class files that
were destined for embedded systems. Noting that such
systems normally prohibit dynamic class loading and
garbage collection, Chai relies on these assumptions to
replace certain bytecodes with “optimized” variants.
These altered bytecodes exchange flexibility for fewer
cycles per instruction, leading to a reduced WCET. As
such, Chai’s proposal is better described as a speed
optimization, not a WCET analysis technique.

7. Other Work in WCET Analysis for
Java

Portability, low-level analysis, and high-level analy-
sis are where most WCET research for Java has been
applied. This section presents work in WCET analysis
that does not fall cleanly into one of these three main
categories.

Persson describes a development environment for
real-time Java that incorporates WCET information

[21]. Called Sk̊anerost, it displays the WCET of a par-
ticular method in the margins of its source code edi-
tor. The WCET value is updated continuously, as the
source code changes, to provide feedback to the de-
veloper. (Persson does not describe exactly how this
WCET value is obtained; an analysis tool and the ap-
propriate annotations are assumed to be available.)

Hu developed a “gain time” reclamation framework
for hard real-time Java [16]. Based on the assumption
that real-time tasks often do not follow the worst-case
path at run-time, the goal is to reclaim this “gain time”
by detecting when a task has completed before its pre-
dicted worst-case time. A lower-priority task can then
be executed, increasing overall CPU utilization. The
novelty of Hu’s approach lies in the ability to track ob-
ject types as they change (via a so-called Object Type
Lifetime Graph), thus yielding tighter WCET bounds
than would otherwise be possible in dynamic dispatch
languages like Java.

Corsaro addressed the problem of obtaining tight
WCET bounds on memory allocations in Java [9]. Bor-
rowing principles from UNIX file systems, the approach
gains predictable allocation time at the cost of wasted
space. The basic idea is to permit fragmentation of
memory chunks. Allocation and deallocation of the
chunks can then be accomplished in linear time, im-
proving the WCET of memory operations.

Finally, Lei focused on tightening the WCET of
RTSJ’s asynchronous transfer of control (ATC) mech-
anism [6]. Conventional ATC implementations rely on
a recursive procedure to locate the appropriate catch
class, making WCET analysis difficult. Lei solves this
problem by performing class resolution and linking at
compile-time rather than run-time (if certain assump-
tions about the run-time environment can be made).
ATC then reduces to a simple comparison, and its
WCET is more predictable.

8. Conclusion

Given that the entire collective work in WCET anal-
ysis for Java can be summarized in little more than
three pages, much remains to be done. Several open
problems persist:

• Can dynamic dispatch be handled in any auto-
matic way (without a total dependency on manual
annotations [13])?

• All of the prototype tools work on a per-method
basis only. Is it possible to calculate a whole-
program WCET?

• Given the difficulty of performing a fully static
analysis on the Java stack, could measurement-
based or probabilistic approaches be a sufficient
replacement?

For the first two open questions, we believe that a
whole-program control-flow graph, combined with new
research into program slicing techniques, can address
these problems, and we are actively conducting re-
search in this area. For the last question, it may be
possible to adapt existing commercial tools for C, such
as RapiTime, for measurement-based analysis of Java.
Of course, the true solution is unclear, and many chal-
lenges still lie on the horizon.

References

[1] D. F. Bacon, P. Cheng, and V. T. Rajan. The
Metronome: A simpler approach to garbage collection
in real-time systems. In R. Meersman and Z. Tari, ed-
itors, On The Move to Meaningful Internet Systems:
OTM 2003 Workshops, volume 2889 of Lecture Notes
in Computer Science, pages 466–478. Springer Berlin,
November 2003.

[2] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-
level analysis of a portable Java byte code WCET
analysis framework. In Proceedings of the Seventh In-
ternational Conference on Real-Time Computing Sys-
tems and Applications (RTCSA 2000), pages 39–48,
Los Alamitos, CA, USA, December 2000. IEEE Com-
puter Society.

[3] I. Bate, G. Bernat, and P. Puschner. Java virtual-
machine support for portable worst-case execution-
time analysis. In Proceedings of the Fifth IEEE Inter-
national Symposium on Object-oriented Real-time dis-
tributed Computing (ISORC 2002), pages 83–90, April
2002.

[4] G. Bernat, A. Burns, and A. Wellings. Portable worst-
case execution time analysis using Java byte code. In
Proceedings of the 12th Euromicro Conference on Real-
Time Systems (Euromicro-RTS 2000), pages 81–88,
Los Alamitos, CA, USA, June 2000. IEEE Computer
Society.

[5] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specifi-
cation for Java. Addison Wesley Longman, January
2000.

[6] Z. Chai, W. Chen, Z. Tang, Z. Chen, and S. Tu. Asyn-
chronous transfer of control in the RTSJ-compliant
Java processor. In The Fifth International Conference
on Computer and Information Technology (CIT 2005),
pages 764–770. IEEE Computer Society, September
2005.

[7] Z. Chai, Z. Tang, L. Wang, and S. Tu. An effective
instruction optimization method for embedded real-
time Java processor. In 2005 International Conference
on Parallel Processing Workshops (ICPPW’05), pages

225–231, Los Alamitos, CA, USA, June 2005. IEEE
Computer Society.

[8] J. Consortium. Real-time core extensions, September
2000.

[9] A. Corsaro and C. Santoro. Optimizing JVM ob-
ject operations to improve WCET predictability. In
Proceedings of the Fourth International Workshop on
Worst-Case Execution Time Analysis (WCET 2004),
pages 15–18, June 2004.

[10] P. A. Guedes and S. V. Cavalcante. On the design of
an extensible platform for flow analysis of Java using
abstract interpretation. In Proceedings of the Third In-
ternational Workshop on Worst-Case Execution Time
Analysis (WCET 2003), pages 47–50, July 2003.

[11] J. Gustafsson. Analyzing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation.
PhD thesis, Mlardalen University, Vsters, Sweden,
May 2000.

[12] D. S. Hardin. Real-time objects on the bare metal:
An efficient hardware realization of the Java vir-
tual machine. Fourth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing
(ISORC 2001), pages 53–59, May 2001.

[13] E. Y.-S. Hu, G. Bernat, and A. Wellings. Address-
ing dynamic dispatching issues in WCET analysis
for object-oriented hard real-time systems. In Pro-
ceedings of the Fifth IEEE International Symposium
on Object-oriented Real-time distributed Computing
(ISORC 2002), pages 109–116, Los Alamitos, CA,
USA, April 2002. IEEE Computer Society.

[14] E. Y.-S. Hu, G. Bernat, and A. Wellings. A static
timing analysis environment using Java architecture
for safety critical real-time systems. In Proceedings of
the Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS
2002), pages 77–84, Los Alamitos, CA, USA, January
2002. IEEE Computer Society.

[15] E. Y.-S. Hu, A. Wellings, and G. Bernat. Deriving
Java machine timing models for portable worst-case
execution time analysis. In On the Move to Meaning-
full Internet Systems 2003: Workshop on Java Tech-
nologies for Real-Time and Embedded Systems, volume
2889 of Lecture Notes in Computer Science, pages 411–
424. Springer, November 2003.

[16] E. Y.-S. Hu, A. Wellings, and G. Bernat. Gain time re-
claiming in high performance real-time Java systems.
In Proceedings of the Sixth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2003), pages 249–256, Los Alamitos,
CA, USA, May 2003. IEEE Computer Society.

[17] E. Y.-S. Hu, A. Wellings, and G. Bernat. XRTJ:
An extensible distributed high-integrity real-time Java
environment. In Proceedings of the Ninth Interna-
tional Conference on Real-Time and Embedded Com-
puting Systems and Applications (RTCSA 2003), vol-
ume 2968 of Lecture Notes in Computer Science, pages
208–228. Springer Berlin, February 2003.

[18] R. Kirner and P. Puschner. Discussion of misconcep-
tions about WCET analysis. In Proceedings of the

Third International Workshop on Worst-Case Execu-
tion Time Analysis (WCET 2003), pages 61–64, July
2003.

[19] E. Kligerman and A. D. Stoyenko. Real-time Eu-
clid: a language for reliable real-time systems. IEEE
Transactions on Software Engineering, 12(9):941–949,
September 1986.

[20] D. Lammers. REAL-TIME JAVA: Reliability quest
fuels RT Java projects. EE Times, March 2005.

[21] P. Persson and G. Hedin. An interactive environment
for real-time software development. In Proceedings of
the Technology of Object-Oriented Languages and Sys-
tems (TOOLS 2000), pages 57–68, Washington, DC,
USA, June 2000. IEEE Computer Society.

[22] P. Puschner and G. Bernat. WCET analysis of
reusable portable code. In Proceedings of the 13th Eu-
romicro Conference on Real-Time Systems (ECRTS
2001), pages 45–52, Washington, DC, USA, 2001.
IEEE Computer Society.

[23] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the Fourth Interna-
tional Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2006), October 2006.

[24] M. Schberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna Uni-
versity of Technology, Vienna, Austria, January 2005.

[25] F. Siebert. Hard real-time garbage-collection in the Ja-
maica virtual machine. In Proceedings of the Sixth In-
ternational Conference on Real-Time Computing Sys-
tems and Applications (RTCSA 1999), pages 96–102,
Washington, DC, USA, December 1999. IEEE Com-
puter Society.

[26] J. Ventura, F. Siebert, A. Walter, and J. Hunt. HI-
DOORS - a high integrity distributed deterministic
Java environment. In Proceedings of the Seventh IEEE
International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS 2002), pages
113–118, Los Alamitos, CA, USA, January 2002. IEEE
Computer Society.

