
Java and asynchronous iterative applications: large scale experiments

Jacques M. Bahi, Raphaël Couturier, David Laiymani, Kamel Mazouzi
Laboratoire d’Informatique de l’université de Franche-Comté (LIFC)

IUT de Belfort-Montbéliard
Rue Engel Gros

BP 527 90016 Belfort CEDEX
France

name@iut-bm.univ-fcomte.fr

Abstract

This paper focuses on large scale experiments with Java
and asynchronous iterative applications. In those applica-
tions, tasks are dependent and the use of distant clusters
may be difficult, for example, because of latencies, hetero-
geneity, and synchronizations. Experiments have been con-
ducted on the Grid’5000 platform using a new version of the
Jace environment. We study the behavior of an application
(the Poisson problem) with the following experimentation
conditions: one and several sites, large number of proces-
sors (from 80 to 500), different communication protocols
(RMI, sockets and NIO), synchronous and asynchronous
model. The results we obtained, demonstrate both the scal-
ability of the Jace environment and its ability to support
wide-area deployments and the robustness of asynchronous
iterative algorithms in a large scale context.

1 Introduction

Computational grids [7, 13] are now widely used around
the world. They connect a large number of resources over
multiple distributed organizations and run many kind of
applications [11]. Parallel numerical algorithms, executed
in a grid-like architecture, require usually several inter-
processor synchronizations. These synchronizations are
needed to update data and to start the next computation
steps. In this case, synchronizations and global commu-
nications are an important drawback, often degrading the
performances especially when the number of processors in-
creases. This class of algorithms is well-known and unfor-
tunately it has been the main class used in scientific applica-
tions so far. To overcome this problem, a solution is to use
AIACs (Asynchronous Iteration Asynchronous Communi-
cation) algorithms [3, 6]. This class of algorithm is very

suitable in a grid computing context because it suppresses
all synchronizations between computation nodes, tolerates
the messages loss and enables the overlapping of commu-
nications by computations. Interested readers might consult
[3] for a precise classification and comparison of parallel
iterative algorithms. In this way, several experiments [3]
show the relevance of AIAC algorithms in a grid context.
These works underline the good adaptability of AIAC algo-
rithms to network and processor heterogeneity. Neverthe-
less, to the best of our knowledge no large scale experiments
exist which study the scalability of this kind of algorithms.

Moreover, many works [14, 9] show how the Java lan-
guage is a well suited language to develop grid applications.
Even if its performances are not comparable to those of the
C language for example, its portability makes it an inter-
esting solution for the grid context. In [4] we propose a
first version of Jace, a Java-based environment dedicated to
AIAC algorithms. We also show how Jace allows to de-
velop efficient Java parallel applications based on the AIAC
model. Unfortunately, the tests we conducted, only con-
cerned about 50 nodes.

The aim of this paper is twofold. First it describes the
second version of Jace (Jace V2) and shows how the archi-
tecture of this new version is scalable. Second it studies the
behavior of AIAC algorithms in a large scale context (i.e.
with a number of geographically distributed nodes greater
than 300). In order to perform our tests we have chosen to
implement the Poisson problem. This problem seems to be
a good candidate application since it presents an interesting
computation/communication ratio well suited for grid plat-
forms. The Jace environment and the Poisson application
have been deployed over the Grid’5000 wide-area platform
and the following parameters have been studied: the num-
ber of processors, the number of distant sites, the commu-
nication protocol, the problem size and the synchronization
mode (synchronous or asynchronous). The results we ob-
tained demonstrate the scalability of Jace and its ability to

1-4244-0910-1/07/$20.00 ©2007 IEEE

support wide-area deployments. They also show the robust-
ness of AIAC algorithms in a large scale context.

This paper is organized as follows. Section 2 presents
the different issues induced by large scale deployments of
numerical applications. It describes how AIAC algorithms
can overcome these difficulties. Section 3 presents the Jace
V2 environment and more particularly how this platform
is designed to face the scalability issue. In section 4 we
present and comment the different experimentation results
we obtained with the Poisson application on the Grid’5000
testbed. We underline the good behavior of AIAC algo-
rithms and of the Jace V2 environment. We end in section
5 by some concluding remarks and open works.

2 Motivations

2.1 The drawback of synchronizations

Parallel iterative algorithms can be classified in three
main classes depending on how iterations and communi-
cations are managed (for more details readers can refer to
[2]):

• Synchronous Iterations - Synchronous Communica-
tions (SISC). Here, data exchanges are performed at
the end of each iteration by global synchronous com-
munications. In this way, all the processors must begin
the same iteration at the same time. This leads to idle
times on processors when they wait for another pro-
cessor to be ready to communicate or during the com-
munication itself. Figure 1 illustrates this model. Here
the grey blocks represent the computation phases, the
white spaces the idle times and the arrows the commu-
nications.

Processor 2

Time

Processor 1

Figure 1. The Synchronous Iterations - Syn-
chronous Communications model

• Synchronous Iterations - Asynchronous Communica-
tions (SIAC). This model is similar to the previous
one except that data required on another processor are
sent without stopping current computations i.e. asyn-
chronously. This technique allows to partially overlap
communications by computations. Here, all the nodes
may not begin the same iteration at the same time but at

a time t processors are either idle or either computing
the same iteration. Again, important idle times may
occur since communication overlapping is only partial
(see figure 2).

Processor 1

Time

Processor 2

Figure 2. The Synchronous Iterations - Asyn-
chronous Communications model

• Asynchronous Iterations - Asynchronous Communica-
tions (AIAC). In this model, local computations do not
need to wait for required data. Processors perform
their iterations with the data present at that time. In
this way, processors can compute different iterations
at a given time avoiding useless idle times. Figure 3
illustrates this model.

Processor 1

Processor 2

Time

Figure 3. The Asynchronous Iterations -
Asynchronous Communications model

For AIAC algorithms, the number of iterations required
before the convergence is generally greater than for the two
former classes. But by suppressing waiting times (due to
synchronizations) on processors, AIAC algorithms are less
sensitive to heterogeneity and long distance communica-
tions issues. That is why in a grid context, where nodes
are heterogeneous and geographically distributed, the over-
all execution time can be considerably reduced. Several
works show the good behavior of AIAC algorithms com-
pared with SISC or SIAC ones [3].

2.2 The AIAC algorithms in a large scale
context

It is difficult to define what a large scale context is.
Nevertheless our practical experience shows us that using
a platform which is "nationally" distributed and composed

2

of more than about 300 computing nodes leads to several
new major algorithmic and technical difficulties. It is clear
that in such a context each choice must be very carefully
taken. From an algorithmic point of view and as explained
before, it seems that AIAC algorithms are well suited for
a large scale grid context. The crucial point concerns the
convergence detection where an important number of mes-
sages can be exchanged. In [5] a distributed solution of this
problem is proposed. From a technical point of view, the
execution environment must address the following issues:

• Portability. This characteristic is crucial whatever the
size of the deployment platform.

• Efficient Communication Layer. Since communica-
tions may be large and may occur on long distance
links, the communication layer must be carefully op-
timized and must propose several protocols.

• Low Resources Consumption. Since a large number
of nodes occurs for a computation, the number of lo-
cal resources involved (threads, buffers . . .) may grow
abnormally and cause important bottlenecks.

• Efficient Bootstrapping. As for the previous point, the
large number of nodes involved in a computation may
induce a costly bootstrapping procedure. The technics
used to load the execution environment and the com-
putation code must be carefully designed.

In the following section, we present Jace V2, a scalable
Java-based platform for AIAC algorithms. In particular, we
underline how Jace V2 is designed to face these issues. Note
that in [4] we show why existing environments and libraries,
like MPI or Proactive for instance, are not suitable to imple-
ment efficient AIAC algorithms.

3 The Jace V2 platform

Jace [4] is a Java programming and executing environ-
ment that permits to implement efficient asynchronous algo-
rithms as simply as possible. Jace builds a distributed vir-
tual machine, composed of heterogeneous machines scat-
tered over several distant sites. It proposes a simple pro-
gramming interface to implement applications using the
message passing model. The interface completely hides the
mechanisms related to asynchronism, especially the com-
munication manager and the global convergence control. In
order to propose a more generic environment, Jace also pro-
vides primitives to implement synchronous algorithms and
a simple mechanism to swap from one mode to another.
Jace relies on three components: the daemon, the comput-
ing task and the spawner.

3.1 The daemon

The daemon is the entity responsible for executing user
applications. It is a Java process running on each node tak-
ing part in the computation. Figure 4 shows the internal ar-
chitecture of the daemon which is composed of three layers
: the RMI service, the application layer and the communi-
cation layer.

TCP/Socket NIO

Messages Manager

Tasks Manager

Grid Infrastructure

Application Layer

Communication Layer

User Task’s

R
M

I
Se

rv
ic

e

Figure 4. Jace daemon architecture.

The RMI Service. When a daemon is launched, an
RMI server is started on it and continuously waiting for
remote invocations. This server provides communications
between the daemons and the spawner. It is used to man-
age the Jace environment like for example: initializing the
daemons, monitoring and gathering the results.

The Application Layer. This layer provides tasks ex-
ecution and global convergence detection. A daemon may
execute multiple tasks, allowing to reduce distant communi-
cations. Jace is designed to control the global convergence
process in a transparent way. Tasks only compute their lo-
cal convergence state and call the Jace API to retrieve the
global state. The internal mechanisms of the convergence
detection depend on the execution mode i.e. synchronous
or asynchronous.

The Communication Layer. Communications be-
tween tasks are performed using the message/object pass-
ing model. Jace uses waiting queues to store incom-
ing/outgoing messages and two threads (sender and
receiver) to deal with communications. According to
the kind of algorithm used, synchronous or asynchronous,
queues managements are different. For a synchronous exe-
cution, all messages sent by a task must be received by the
other tasks. Whereas on an asynchronous execution, only
the most recent occurrence of a message, with the same
source or destination and containing the same type of in-
formation is kept, in the queues. The older one, if existing,
is deleted.

3

For scalability issues and to achieve better performances,
the communication layer should use an efficient protocol to
exchange data between remote tasks. For this reason Jace is
based on several protocols : TCP/IP Sockets, NIO (New In-
put/Output) [1, 10] and RMI. NIO is a Java API (introduced
in Java 1.4). It provides new features and improved per-
formances in the areas of buffer management, scalable net-
work and file I/O. The most important distinction between
the original I/O library and NIO is how data is packaged
and transmitted. Original I/O deals with data in streams,
whereas NIO deals with data blocks and consumes a block
of data in one step. Furthermore, previously for network
applications, users would have had to deal with multiple
socket connections by starting a thread for each connection.
Inevitably, they would have encountered issues such as op-
erating system limits, deadlocks, or thread safety violations
more specially in a large scale context. With NIO, selectors
are used to manage multiple simultaneous socket connec-
tions on a single thread.

3.2 The Computing Task

As in MPI-like environments, the programmer decom-
poses the problem to be solved into a set of cooperating
sequential tasks. These tasks are executed on the available
processors and invoke special routines to send or receive
messages. A task is the computing unit in Jace, which is
executed like a thread rather than a process. Thus, multiple
tasks may execute in the same daemon and can share the
system resources.

To write a Jace application, the user simply needs to ex-
tend the Task class and to define a run()method contain-
ing its program code. The Task class may be considered
as the programming interface of Jace. It contains a lim-
ited set of methods and attributes dedicated to implement
asynchronous/synchronous algorithms in a message pass-
ing style. To summarize, we can find:

• the non-blocking send/receive,

• the blocking send/receive (for synchronism),

• the global communications: barrier, broadcast, ren-
dezvous

• the convergence control,

• the finalization.

We also point out here that Jace implementation relies
on the Java object serialization to transparently send objects
rather than raw data.

3.3 The Spawner

The spawner is the entity that effectively starts the user
application. After starting daemons on all nodes, compu-
tations begin by launching the spawner program with the
following parameters:

• the number of tasks to be executed

• the URL of the task byte-code

• the parameters of the application

• the list of target daemons

• the mapping algorithm (round robin, best effort)

Then, the spawner broadcasts this information to all the
daemons. As Jace V2 is designed to execute applications
on large scale architectures with a large number of nodes,
that is achieved by using an efficient broadcast algorithm
based on a binomial tree [8]. This algorithm provides better
performances compared to a binary tree.

Phase 3

7

4 5

Phase 1

Phase 2

0 1

2 3

6

Figure 5. A binomial tree broadcast proce-
dure with 23 elements.

Assuming a binomial tree of 2d nodes and assuming that
node 0 needs to send a message to all other nodes. This is
done in d parallel phases where at phase k (1 ≤ k ≤ d)
node i (with i < 2d−1) sends a message to node i + 2k−1.
In the general case, the spawning procedure is achieved in
log2(n) communication steps on n nodes. Figure 5 presents
a binomial tree broadcast procedure with 23 nodes.

Now, when a task is spawned, an identification number
(task ID) is assigned to it. This number is an integer whose
value ranges from 0 to p − 1, with p being the global num-
ber of tasks in the Jace application. This task mapping is
done by Jace and by default uses a round robin algorithm.
Another method can be used (called best effort) trying to

4

balance the number of tasks over the set of machines. To il-
lustrate these two policies, let us assume 6 tasks (0, 1 . . .5)
to be mapped on 3 processors. With a round robin algo-
rithm tasks 0 and 3 are mapped on processor 0 and so on.
With a best effort algorithm tasks 0 and 1 are mapped on
processor 0 and so on. Since communications often take
place between consecutive tasks the best effort policy en-
courages local communications and can be interesting when
using multi-processor machines.

4 Experiments

In this section we describe the experiments we have per-
formed in order to test the robustness of both Jace V2 and
AIAC algorithms with large scale platforms. For this we
have studied several problems that will allow us to measure
the adequation of our platform and algorithms with scala-
bility in a grid context with distant sites.

In order to make our experiments, we have chosen the
Poisson problem discretized in two dimensions. This is a
common problem in physics that models for instance heat
problems. This linear elliptic partial differential equations
system is defined as

−∆u = f. (1)

This equation is discretized using a finite difference scheme
on a square domain using an uniform Cartesian grid. For
more details concerning the finite difference methods, in-
terested readers are invited to consult [12].

After discretization, we use an iterative solver to obtain
the solution of the method. In parallel we use the multi-
splitting method to obtain a coarse grained algorithm suited
to grid context [5]. In [5] the authors present the multi-
splitting method used with a direct solver to solve the linear
system. For our experiments we have chosen an iterative
one: the conjugate gradient algorithm. Roughly speaking
the application consists in iteratively solving a sequential
linear system on each processor and then exchanging some
dependencies between neighbor processors before comput-
ing the next iteration. Considering the 2-dimensions case,
each processor has two neighbors.

For our experiments we have used the Grid’5000 plat-
form. Currently, this platform is composed of an aver-
age of 1, 300 bi-processors that are located in 9 sites in
France: Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay,
Rennes, Sophia-Antipolis and Toulouse (see figure 6). Most
of those sites have a Gigabit Ethernet Network for local
machines. Links between the different sites ranges from
2.5Gbps up to 10Gbps. For more details on the Grid’5000
architecture, interested readers are invited to visit the web-
site: www.grid5000.fr.

In the following experiments, we have chosen different
discretization grid sizes, different number of processors (in

Figure 6. The Grid’5000 testbed

a local cluster or in different distant clusters), using one or
two computing tasks on the same bi-processors and differ-
ent precision convergence thresholds in order to have rela-
tively short execution times.

It should be noticed that the size of the matrix to solve
is equal to the square size of the discretization grid (so a
discretization grid size of 5, 000 corresponds to a matrix of
size 25, 000, 000). Moreover results presented here are an
average of a series of 5 experiments, that is why with the
Grid’5000 architecture with distant sites we cannot conduct
longer experiments (reserving a large number of processors
is unfortunately not easy). In the following we note n × 1
if we use n bi-processors with one task per node and n × 2
with two tasks per node.

In a first series of experiments we have compared the
behavior of Jace V2 with the three different communica-
tion protocols (RMI, Socket and NIO) in order to measure
their influence with a local cluster and with distant ones.
Table 1 shows the execution times of a discretization grid
of size 3, 000 with 80 × 1 bi-processors in the Bordeaux
cluster (AMD 248 2.2GHz), so 80 cpu. Table 2 shows
the execution times of a discretization grid of size 7, 000
with 200 × 1 bi-processors located in four clusters (80 in
Bordeaux (AMD 248 2.2GHz), 50 in Lille (20 AMD 248
2.2GHz and 30 AMD 252 2.6GHz), 30 in Lyon (AMD 246
2GHz) and 40 in Rennes (Xeon 2.4GHz)), so 200 cpu.

Both of those tables shows that NIO is the fastest com-
munication protocol and that the asynchronous version is
faster than the synchronous one whatever the communica-
tion protocol used. As NIO is always the better communi-
cation protocol we always use it in the following.

5

Communication Execution times in s.
protocol Synchronous Asynchronous
RMI 344 250
Socket 343 230
NIO 340 220

Table 1. Influence of the communication pro-
tocol with a 3, 000 discretization grid size and
with 80 × 1 bi-processors in Bordeaux

Communication Execution times in s.
protocol Synchronous Asynchronous
RMI 976 500
Socket 793 463
NIO 773 406

Table 2. Influence of the communication pro-
tocol with a 7, 000 discretization grid size and
with 200 × 1 bi-processors scattered in Bor-
deaux, Lille, Lyon and Rennes

In a second series of experiments we have compared the
behavior of Jace V2 using bi-processors with two tasks or
using twice the number of bi-processors with only one task.
We have used 40 × 2 bi-processors, so 80 cpu, in the clus-
ter of Bordeaux (AMD 248 2.2GHz) using a round robin
or best effort distribution mode of the tasks and with a dis-
cretization grid of size 3, 000. Results are presented in ta-
ble 3. In the best effort mode, tasks 0 and 1 are on the same
machine, tasks 2 and 3 are also on another one and so on,
whereas with the round robin distribution, the first machine
is in charge of tasks 0 and 40. So the best effort mode en-
courages local communication and is obviously preferred as
shown in Table 3.

Distribution Execution times in s.
mode Synchronous Asynchronous
Round robin 413 297
Best effort 346 260

Table 3. Influence of the distribution mode
with a 3000 discretization grid size and with
40 × 2 bi-processors in Bordeaux

Note that for the synchronous mode the best effort mode
is close to the NIO results in table 1 (for 80 × 1) . For
the asynchronous mode, using bi-processors is quite slower.
This can be explained by the fact that on each processor the

thread which manages communications is not always active
because there are two computing tasks and threads are not
so reactive in Java.

In a third series of experiments we compared the results
of table 1 with executions on distant clusters with the same
number of processors. In Table 4 we report the execution
times with a discretization grid of size 3, 000 with 80×1 bi-
processors located in four clusters (20 in Bordeaux (AMD
248 2.2GHz), 20 in Lille (10 AMD 248 2.2GHz and 10
AMD 252 2.6GHz), 20 in Lyon (AMD 246 2GHz) and 20
in Rennes (Xeon 2.4GHz)).

Execution times in s.
Synchronous Asynchronous
370 250

Table 4. Execution times of a 3, 000 discretiza-
tion grid size with 80 × 1 bi-processors scat-
tered in Bordeaux, Lille, Lyon and Rennes

Compared to the results of Table 1, we can see that re-
sults are almost similar although we have used distant sites.
This confirm the good behavior of AIAC algorithms in a
grid context. This can also be explained by the fact that ma-
chines of the first experiment (from Bordeaux) are slower
than machines used with this experiment.

The last experiment has been conducted to analyze the
behavior of Jace V2 with the largest number of processors
that we could allocate during our experiment phase. We
have used a discretization grid size of 9, 000 with 250 × 2
bi-processors, so 500 cpu located in four clusters (60 in
Lille (40 AMD 248 2.2GHz and 20 AMD 252 2.6GHz), 40
Nancy (AMD 248 2.2GHz), 70 Rennes (40 Xeon 2.4GHz
and 30 AMD 246 2GHz) and 80 Sophia (AMD 246 2GHz)).

execution times in s.
synchronous asynchronous
641 382

Table 5. Execution times of a 9, 000 discretiza-
tion grid size with 250× 2 bi-processors scat-
tered in Lille, Nancy, Rennes and Sophia

To conclude these experiments we can report several im-
portant remarks. First, the asynchronous version of the
solver is always faster than the synchronous one. The gain
is about 60% on a large scale configuration. Second, NIO is
always faster than the other communication protocols, that
we have tested (RMI and Socket). Furthermore, and as de-
scribed in section 3.1, its architecture leads to better scala-

6

bility. Finally, using bi-processors with 2 tasks with a best
effort distribution offers close performances to using twice
the number of machines with only one task.

5 Conclusion

In this paper we have described a set of large scale ex-
periments conducted on asynchronous iterative applications
and with a Java-based execution environment. We show
how this kind of algorithms are well suited for large scale
grid contexts compared to synchronous ones. We also show
how the new version of the Jace platform successfully faces
the scalability issues.

Our current work focuses on developing our experiments
and analysis. We are testing Jace V2 with other scientific
applications and we are refining our quantitative analysis by
measuring different parameters such as bootstrapping time,
synchronizations time . . .

In order to complete our large scale approach, we are cur-
rently working on how AIAC algorithms behave on a peer-
to-peer (P2P) architecture. In this perspective, we carry on
with the development of Jace. We study its integration on
P2P environment such as JXTA and JGroups since these en-
vironments already propose standard P2P services such as
failure detection, NAT traversing...

References

[1] New I/O API. http://java.sun.com/j2se/1.4.2/ docs/guide/nio.
[2] J. Bahi, S. Contassot-Vivier, and R. Couturier. Asynchro-

nism for iterative algorithms in global computing environ-
ment. In 16th Int. Symposium on High Performance Com-
puting Systems and Applications, pages 90–97, Moncton,
Canada, 2002. IEEE computer society press.

[3] J. Bahi, S. Contassot-Vivier, and R. Couturier. Performance
comparison of parallel programming environments for im-
plementing AIAC algorithms. Journal of Supercomputing,
35(3):227–244, 2006.

[4] J. Bahi, S. Domas, and K. Mazouzi. More on jace: New
functionalities, new experiments. In IPDPS 2006, pages
231–239. IEEE Computer Society Press, April 2006.

[5] J. M. Bahi and R. Couturier. Parallelization of direct algo-
rithms using multisplitting methods in grid environments. In
IPDPS 2005, pages 254b, 8 pages. IEEE Computer Society
Press, 2005.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Prentice Hall, Engle-
wood Cliffs NJ, 1989.

[7] I. Foster and C. Kesselman. The Grid 2: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2003.

[8] A. V. Gerbessiotis. Architecture independent parallel bi-
nomial tree option price valuations. Parallel Computing,
30(2):301–316, 2004.

[9] F. Huet, D. Caromel, and H. E. Bal. A High Performance
Java Middleware with a Real Application. In Proceedings
of the Supercomputing Conference, Pittsburgh, Pensylvania,
USA, Nov. 2004.

[10] B. Pugh and J. Spaccol. MPJava: High Performance Mes-
sage Passing in Java using Java.nio. In Proceedings of the
Workshop on Languages and Compilers for Parallel Com-
puting, College Station, Texas, USA, Oct. 2003.

[11] K. Seymour, A. Yarkhan, S. Agrawal, and J. Dongarra. Net-
solve: Grid Enabling Scientific Computing Environments.
In L. G. editor, editor, Grid Computing and New Frontiers
of High Performance Processing, volume 14. Elsevier, 2005.

[12] J. C. Strikwerda. Finite Difference Schemes and Partial Dif-
ferential Equations. Chapman and Hall, 1989.

[13] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: the Condor experience. Concurrency and
Computation - Practice and Experience, 17(2-4):323–356,
2005.

[14] R. V. van Nieuwpoort et al. Satin: Simple and efficient Java-
based grid programming. Scalable Computing: Practice
and Experience, 6(3):19–32, 2005.

7

