
1-4244-0910-1/07/$20.00 © 2007 IEEE.

Analysis of Different Future Objects Update

Strategies in ProActive

Nadia Ranaldo1 and Eugenio Zimeo2

1Department of Engineering 2Research Centre on Software Technology

 University of Sannio University of Sannio

 82100 Benevento – ITALY 82100 Benevento – ITALY

 ranaldo@unisannio.it zimeo@unisannio.it

Abstract

In large-scale distributed systems, asynchronous

communication and future objects are becoming wide

spread mechanisms to tolerate high latencies and to

improve global performances. Automatic continuation,

that is the propagation of a future object outside the

activity that has generated it, can be used to further

increase concurrency at system level through the

anticipation of tasks. An important aspect of automatic

continuation, which can cause different performance in

different application and deployment scenarios, is the

mechanism for updating result values of future objects,

when they are ready. In this paper, we analyze the

behaviour of the implementation of different updating

strategies, by comparing them with the one currently

implemented in ProActive. The experimental results show

that the lazy home-based strategy behaves better than

other strategies in some application scenarios that are

very common in distributed applications.

1. Introduction

In distributed and parallel computing, applications,

such as scientific data analysis and simulation, are

typically composed of compute intensive tasks deployed

on distributed machines that concurrently deal with huge

amount of data. Performance of such applications can

benefit from mechanisms that (1) improve concurrency

among task activities and overlapping among computation

and communication tasks and (2) minimize overhead tied

to network latency involved especially in data transfer.

Asynchronous communication represents a valid

candidate for this optimization since it permits the sender

to immediately continue its computation after the

communication has been started towards the receiver.

In many object-oriented systems, this mechanism is

exploited to implement asynchronous method invocation

of a remote object. With these kind of interactions, a high-

level mechanism to coordinate activities of distributed

objects through automatic data synchronization is based on

future objects [1], which permits the calling object to

obtain a reference to the future result of a method

invocation, immediately returned by the asynchronous call,

in order to permit the calling object to continue its

computation concurrently with the called one, delaying any

blocking until the result value is strictly necessary for next

computations. The future object reference returned by an

asynchronous method invocation is used by the requester

to explicitly access to results. Many distributed systems

aim to exploit performance optimization of future objects.

In [2] the authors propose a RMI extension that

requires a pre-compilation phase of pseudo Java interfaces

to introduce asynchronous communication and future

objects through embedding threads into the RMI

communication protocol. Another project based on RMI is

RMIX [3], a framework that supports the configuration of

different communication mechanisms based on

synchronous and asynchronous protocols. The mechanisms

delivered to update result values of asynchronous method

calls are futures, completion callbacks and result queues.

Also implementations of CORBA [4] over Java deliver

asynchronous remote method invocations using IIOP as

the underlying protocol.

In the Kan System [5] the asynchronous communication

and future object mechanism is implemented through a

special compiler, which produces byte-code compliant

with any standard Java Virtual Machine (JVM).

In these distributed systems, future objects require

explicit management of programmers, for example

requiring to deal with the specific problem of data

synchronization and update, such as to wait for and access

to result values, causing a decrease of programmer

productivity who can not focus on functional aspects of

applications.

A transparent and easy-to-use future object mechanism

is delivered by ProActive [6] (version 3.1), a pure Java

middleware that aims to simplify programming of

distributed and parallel applications and their deployment

on Local Area Network (LAN), on cluster of workstations,

or on Internet-based grid systems, also featuring mobility,

security and interoperability mechanisms.

Often in a distributed computation, data produced by

some activities are used as input to other activities, and so

on, until final results are produced. For this reason, data

dependencies determine the chain of distributed activity

activations and their implicit synchronization.

A classical distributed programming model based on

such data-driven synchronization is the pipeline pattern, in

which each pipe stage receives as input the output data of

the previous stage and produces input data for the next

one. Another example is the master-slave pattern, in which

the master splits input data in sub-parts and sends each of

them to slaves, while each slave computes the partial result

and replies it to the master. Finally the master can

complete its task of assembling the final result only when

all partial results are received.

Another scenario of data-driven synchronization is in

the context of workflow management systems, in which a

workflow enactment engine invokes distributed activities

and coordinates them passing input data and receiving

output data, following a well-defined workflow process

description.

Especially in the case of distributed activities, which

require considerable execution times, concurrency and

consequently system efficiency could benefit from

automatic continuation [7], which is the propagation of a

future object outside the activity that has generated it.

Automatic continuation can be adopted to immediately

start method invocations that require as input parameter

the output of previous asynchronous remote method calls.

If at the moment of invocation, the input parameter has not

yet been computed, a future object is used instead of the

real input value. So, only when the called method actually

uses the parameter, the activity is blocked until the value is

available. By anticipating operations that are not tied to

input parameters, automatic continuation is a mechanism

that permits to improve performance through the

overlapping of distributed activities that are invoked in

sequential order [8].

One of the problems to address to efficiently implement

future objects in middleware platforms is the definition of

a strategy that minimizes data propagation in the network

avoiding the distribution of future values to activities that

do not use them.

One of the most widespread middleware platforms

whose programming model is based on future objects and

continuation is ProActive [9].

In this paper we study the behaviour of different

updating strategies, namely eager home-based and lazy

home-based strategies, and analyze them with respect to

the eager forward-based strategy currently implemented in

ProActive

The rest of the paper is organized as follows. Section 2

presents future object and automatic continuation

mechanisms in ProActive. Section 3 presents a

classification of update strategies and a comparison among

them. Section 4 presents an experimental analysis of eager

home-based and lazy home-based strategies with respect to

the eager forward-based strategy implemented in

ProActive. Finally Section 5 presents conclusions and

future work.

2. Future Objects in ProActive

ProActive adopts extensively reflection mechanisms

implemented through a run-time proxy based Meta-Object

Protocol (MOP). This ensure to the middleware flexibility

and extensibility, making the system open for adaptations

and optimizations for improving performance without

changes to the Java Virtual Machine (JVM), and without

pre-processing or compiler modifications. In particular

ProActive permits to configure the protocol used to export

the remote objects. The default version of ProActive

currently uses Java RMI as a portable communication

protocol, but other protocols are supported, such as IBIS

[10] and JINI [11].

ProActive proposes a heterogeneous programming

model characterized by passive and active objects. Passive

objects are common objects, whereas active objects are

distributed objects with the following mechanisms

managed by the framework: location transparency, activity

transparency and synchronization. Thanks to

polymorphism among the passive and active objects, these

are used like passive ones but can be remotely created and

accessed in a transparent way via asynchronous remote

method invocations based on automatic and transparent

future object mechanism called wait-by-necessity [12].

Transparent future objects of ProActive are

implemented through MOP, which allows to customize the

system behavior in order to react to specific run-time

events, such as object creations and method invocations.

To avoid virtual machines modifications and grant

transparency, MOP uses the Proxy design pattern and the

automatic generation of stubs (by using the tool BCEL

[13] or ASM [14]): surrogate objects (stubs) intercept and

reify object creation and method invocation events and

pass them to the meta-level.

In ProActive the future object stub is a subclass of the

a:A b:B

c:C

1. d = b.create()

d:Future_D

2. new Future_D

3. c.use(d)

d: Future_D

3.1. receives future d

4. computes value_d

value_d:D

Figure 1. Automatic Continuation

return parameter class, in which each method is

overwritten in order to verify whether the future object

value was already replied by the invoked active object.

In ProActive, automatic continuations can occur when

sending a request of remote invocation containing a future

object as input parameter or when replying a result of a

remote method invocation containing a future object not

immediately used.

Figure 1 shows automatic continuation of a future

object as input parameter for method invocation.

The updating of the result value, when it is computed,

on all the active objects that have received the future

object, is an important aspect of Automatic Continuation,

which can determine different performance in different

application and deployment scenarios.

3. A Classification of Updating Strategies

Several strategies can be adopted to update future

objects [7]. They can be classified on the basis of the

active object responsible of updating future objects and of

the moment in which active objects receive updates.

Typically, the updating object can be the caller of an

asynchronous invocation or the producer of the future

result value. Consequently, two strategies are possible:

- forward-based: the active object that propagates the

future object, called in the following forwarder object,

after receiving the result value by the producer, is

responsible to propagate the result to active objects that

received the future;

- home-based: the producer active object is responsible

to propagate the result to active objects that received

the future;

On the basis of the moment in which the update is

performed, two main strategies are possible:

- eager-based: when the result value of the future object

is available, then it is immediately propagated on all

the active objects that have previously received the

future, including forwarder objects;

- lazy-based: when the result value of the future object is

available, then it is propagated only on the active

objects that received the future and that effectively

required it.

Combining the strategies described above, four

different solutions are possible: eager forward-based, lazy

forward-based, eager home-based and lazy home-based

strategies. The behaviors of such strategies are reported in

figure 2, 3, 4 and 5.

In the forward-based strategy the forwarder manages a

table (called Waiting Active Object Table) in which it

registers the active objects that have to receive the result

value of a future object. In the home-based strategy,

instead, such table is managed by the producer.

As it is possible to note observing figure 3, the lazy

forward-based strategy needs the transmission from

objects requiring result value to the forwarder of a

registration request message. Such message notifies to

forwarder the actual need of result value of the future

object. In the eager-based one, instead, such transmission

is not necessary because the active object which receives

the future object is automatically registered by the

forwarder object at the moment of method invocation.

a:A b:B

c:C

d:Future_D

3. sends value_d

d:Future_D

value_d:D

value_d:D 3.1 updates
value_d

4.1 updates value_d

value_d:D

2. computes
 value_d

1. c.use(f)

Waiting
Active Object

Table 1.2 register(c)

1.1 receives future d

4. sends value_d

Figure 2. Eager forward-based Strategy

a:A b:B

c:C

d:Future_D

3. sends value_d

d:Future_D

value_d:D

value_d:D
3.1. updates
value_d

5. sends value_d

5.1 updates value_d

value_d:D

4. tries to use d

4.1 sends a
registration
request message

Waiting
Active Object

Table 4.2 register(c)

1. c.use(d)

1.1. receives future d

2. computes
value_d

Figure 3. Lazy forward-based Strategy

a:A b:B

c:C

d:Future_D

3. sends
value_d

d:Future_D

value_d:D

value_d:D

3.1 updates
value_d

1.2 sends registration
request message

4.1 updates value_d
value_d:D

4. sends value_d
to registered object c

1. c.use(d)

1.1 receives
future d

2. computes
value_d

Active Object
Table

1.3 register(c)

Figure 4. Eager home-based Strategy

a:A b:B

c: C

d:Future_D

d:Future_D

value_d:D

value_d:D 3.2 sends registration
request message

4.1 updates value_d
value_d:D

4. sends value_d
to registered object c

1. c.use(d)

1.1 receives
future d

2. computes
value_d

Waiting
Active Object

Table

3.3 register(c)

3. tries to use d

Figure 5. Lazy home-based Strategy

Analogously, the eager home-based strategy requires

the transmission, from active objects receiving future

object to the producer object, of the registration request

message necessary to receive the result notification.

The lazy home-based strategy (see Figure 5), with

respect to the eager-based one and to the forward-based

strategies, in the case the forwarder object does not use the

future object, avoids the transmission of the result value to

it, permitting to decrease network traffic and

communication overhead.

In scenarios in which data network overhead is low

(such as local area networks or clusters), or size of data to

update is small, or it is possible to predict that all the

distributed objects that receive future objects will use the

related value, the forward-based strategy permits to obtain

good performance, since does not require registration, so

limiting communication overhead.

On the other hand, we think that home-based strategies

could be adopted in distributed programming to increase

concurrency, reduce network overhead and so to increase

performance. In particular, the home-based strategy could

be helpful in distributed programming models in which

one or more coordination entities are exploited to control

the activities of multiple distributed entities synchronized

on data flows and not to directly manage data. A typical

example of such scenario is a workflow enactment engine,

which has the task to invoke and coordinate activities and

does not manipulate directly data, since it is not concerned

in the result of such invocation, but only in the invocation

occurring itself.

As it is possible to see in figure 6 and 7, in such

scenario the home-based strategy, with respect to the

forward-based one, permits to completely move the data-

driven synchronization among producers and the

forwarded ones, that permit a workflow enactment engine

(that acts as forwarder object) to perform other tasks,

simultaneously to enacted activities, such as starting other

activities or code, input, and output data management

tasks.

Another consideration is that the lazy-based strategy,

especially when result values to update are huge and when

not all the receiving objects will use the result value, could

be adopted to decrease communication overhead,

especially in wide-area distributed environments in which

high latency and limited bandwidth of interconnection

links can affect overall performance.

Workflow
Engine

Activity1

Activity2

Client
1. service()

2.1 task1()

2.2 task2(data1)

Activityn

. . .

2.n taskn(datan-1)

data1

data2

final data

datan

3. manage(datan)

Figure 6. Forward-based Workflow Engine

Workflow
Engine

Activity1

Activity2

Client

1. service()
2.1 task1()

2.2 task2(data1 future)

Activityn

. . .

2.n taskn(datan-1 future)

data1 future

data2 future

final data

datan future

data1

data2

. . .

datan-1

3. manage(datan)

Figure 7. Home-based Workflow Engine

For example for a workflow management system, the

lazy home-based strategy could permit to completely avoid

the transmission of the result value to the workflow

enactment engine if the result is not explicitly used.

In order to show the feasible performance

improvements adopting lazy home-based strategy, in

figure 8 it is shown a simple scenario of a sort of workflow

enactment engine in which a forwarder object sends as

input parameter the future object returned by the remote

method invocation on producer object to another active

object that requires it to execute its operations.

The following code exemplifies this scenario.

public class Main {

....
 public static void main(String[] args){

 A a1 = newActive(A.class.getName(),…);
 A a2 = newActive(A.class.getName(),…);

 //r1 is a future
 Result r1 = a1.invoke1();
 Result r2 = a2.invoke2(r1);
 r2.display();
 }
}
public class A {
...
 public Result invoke1(){
 ...
 }

 public Result invoke2 (Result r) {
 ...
 }
}

In the case of forward-based strategy, the future object

has to be updated on the main active object, which has the

task to update the future object r1 on active object a2,

requiring so the transmission of two results. In the case of

home-based strategy the home object (that is a1) has the

task to directly update future object r1.

In the case of eager- home based strategies, the result is

updated on both main object and active object a2, so

permitting only a little performance improvement. In the

case of the lazy-based strategy, the future result is updated

only on active object a2, which actually requires such

value, avoiding communication overhead among producer

object and main active object, so permitting to obtain a

more significant performance improvement.

4. Experimental Analysis

We implemented the eager home-based and lazy home-

based strategies in ProActive and performed some

experimental analyses in order to show the behaviour of

such strategies with respect to the default forward eager-

based strategy in some application scenario. The

application scenario is represented by an active object pipe

(C1, C2, C3 and C4), deployed on different resources,

each of which receives, by the previous active object in the

chain, an asynchronous method invocation including as

input parameter a future object whose result value is

delivered by active object B (producer object).

a2:AMain a1:A

r1 = a1.invoke1()

r2 = a2.invoke(r1)

e
x
e
c
u

ti
o

n
 t

im
e

Eager-based Forward Strategy

update r1

update r2

update r1

a2:AMain a1:A

r1 =a1.invoke1()

r2 = a2.invoke(r1)

waiting

running

Lazy-based Home Strategy

update r1

update r2

a2:AMain a1:A

r1 = a1.invoke1()

r2 = a2.invoke2(r1)

Eager-based Home Strategy

update r1

update r2

update r1

Figure 8. Comparison of different update strategies

The producer is started by the active object A, which

acts as a coordinator object, (such as a workflow

enactment engine) that does not use the result value of

future object, but is only responsible to start the

computation on the pipe by invoking the first active object,

that is C1, passing it the future object returned by B (see

figure 9).

We considered two cases: (1) all the active objects in

the chain (C1, C2, C3 and C4) actually access to the result

value of the future object; (2) only the last active object,

C4, in the chain accesses to the result value of the future

object.

Figures 10 and 11 reports the update times on active

object C4 respectively in case (1) and in case (2),

considering different future value sizes. Each active object

is deployed on a different node of a cluster, which is

equipped with an Intel Xeon Dual-Core, 2 GB of RAM,

and runs Linux 2.6.9 operating system. The cluster nodes

are interconnected by a Gigabit Ethernet. As figure 10

shows, in case (1), in which the result value is accessed by

all the active objects, the eager home-based strategy does

not permit to obtain significant improvement in update

times on C4, while the lazy-based one permits to obtain

lower update times because the active object A does not

necessitate the result value, so avoiding the result transfer.

C1A

Master

C2

C3

C4

f=
b

.c
re

a
te

()

c1.use(f)

c2.use(f)

c3.use(f)

c4.use(f)

Figure 9. Benchmark scenario

10000

15000

20000

25000

30000

500 7501000 1500 2000 2500 3000 4000 5000

U
p
d
a

te
 t

im
e

 (
m

s
)

Result value size (KB)

Eager Forward-based
Eager Home-based

Lazy Home-based

Figure 10. Case (1): all the active objects use
the future object

10000

15000

20000

25000

30000

500 7501000 1500 2000 2500 3000 4000 5000

U
p
d
a

te
 t

im
e

 (
m

s
)

Result value size (KB)

Eager Forward-based
Eager Home-based
Lazy Home-based

Figure 11. Case (2): only C4 uses the future object

Figure 11, finally, shows the deep decrease of update

times using the lazy home-based strategy in case (2):

producer has to send the result value only to active object

C4, permitting to save a great amount of time.

An additional experimentation was conducted on the

matrix multiplication application implemented through the

classical master-slave pattern (see figure 12).

Master Slave1

Slave2

Client

1. multiply(parts) 2. multiply(part1)

2. multiply(part2)

Slaven

. . .

2. multiply(partn)

result1

result2

results

resultn

lazy home-based

eager forward-based

Figure 12. Matrix multiplication

The master invokes the slaves, passing to each of them

a part of the left matrix. The slaves perform multiplication

among the received parts and the right matrix, received

during the initialization phase, and finally the client waits

for the set of results.

Figure 13 shows the execution times obtained

exploiting eight nodes of the cluster, varying the size

matrix and adopting the default ProActive future update

strategy (eager-forward based strategy) and the lazy home-

based strategy. As it is possible to note, the lazy home-

based strategy decreases the execution time, thanks to

more light communication tasks. Using such strategy, in

fact, the result computed by each slave can be directly

replied to the client.

5000

7500

10000

12500

15000

1000 1100 1150 1200 1250 1300 1350 1400 1500

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Matrix size

Eager Forward-based Strategy
Lazy Home-based Strategy

Figure 13. Experimental results

5. Conclusion

In this paper we studied different future object update

strategies in the context of asynchronous communication,

that are the eager and lazy forward-based strategies and the

eager and lazy home-based strategies.

The implementation and experimentation conducted

adopting the ProActive framework showed as the lazy

home-based strategy can be exploited to improve

performance thanks to the decrease update times of huge

future objects when not every active object that received

the future needs a strict access to the result. This is the

case of distributed and parallel applications that include

coordination entities, such as applications that follow the

pipeline and master-slave patterns and workflow

management systems in which a workflow enactment

engine acts as a coordinator of various activities.

The lazy-based strategy, moreover, with respect to the

eager-based one, introduces the problem of storage

management and in particular of de-allocation of future

objects when it is sure that no more objects will access to

it. This issue can be solved introducing a mechanism of

distributed memory management and a sort of distributed

garbage collection for future objects. Such problem will be

taken into account in a future work.

Finally, we intend to experiment with a different

implementation of the eager home-based strategy through

the adoption of multicast communication. In this case we

expect to reduce update times by avoiding registration

messages and by reducing significantly the transmission

overhead, since only one message per group of a future

object owners is necessary to deliver the result.

References

[1] E. F. Walker, R. Floyd, P. Neves. Asynchronous Remote

Operation Execution. In the 10th International Conference

on Distributed Computing Systems, pp. 253-259, May/June

1990.

[2] K. E. Kerry Falkner, P. Coddington, M. J. Oudshoorn.

Implementing Asynchronous Remote Method Invocation

in Java. In the 6th Australian Conference on Parallel and

Real-Time Systems, Springer-Verlag, pp. 22-34, 29

November-1 December 1999.

[3] D. Kurzyniec, T. Wrzosek, V. Sunderam, A. Slominski.

RMIX: A Multiprotocol RMI Framework for Java. In 2003

International Parallel and Distributed Processing

Symposium (IPDPS '03), Nice, France, pp. 140–146, April

2003.

[4] A. Gokhale and D. C. Schmidt. Principles for Optimising

CORBA Internet Inter-ORB Protocol. In HICSS

Conference, January 1998.

[5] Kan, Web page: http://www.ittc.ku.edu/kan/.

[6] Proactive, Web page:

 http://www-sop.inria.fr/oasis/ProActive.

[7] D. Caromel and L. Henrio. A Theory of Distributed

Objects. Springer, February 2005.

[8] G. Tretola and E. Zimeo. Workflow Fine-grained

Concurrency with Automatic Continuation. In 2006

International Parallel and Distributed Processing

Symposium (IPDPS '06), Rodhes, Greece, April 25-29

2006.

[9] D. Caromel, W. Klauser, J. Vayssiere. Towards Seamless

Computing and Metacomputing in Java. Concurrency &

Computation: Practice & Experience, 10(11-13), pp.1043-

1061, 1998.

[10] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R.

Hofman, C. Jacobs, T. Kielmann, H. E. Bal. Ibis: a

Flexible and Efficient Java-based Grid Programming

Environment. Concurrency & Computation: Practice &

Experience, 17(7-8) pp. 1079-1107, 2005.

 [11] K. Arnold, B. O'Sullivan, R. Scheifler, J. Waldo, A.

Wollrath. The Jini Specification. Addison Wesley,

December 2000.

[12] D. Caromel. Service, Asynchrony, and Wait-by-Necessity.

Journal of Object-Oriented Programming, 2(4), pp. 12-18,

1989.

[13] The Byte Code Engineering Library, Web page:

http://jakarta.apache.org/bcel.

[14] ASM Java Bytecode Manipulation Framework, Web page:

http://asm.objectweb.org.

