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Abstract 

In large-scale distributed systems, asynchronous 

communication and future objects are becoming wide 

spread mechanisms to tolerate high latencies and to 

improve global performances. Automatic continuation, 

that is the propagation of a future object outside the 

activity that has generated it, can be used to further 

increase concurrency at system level through the 

anticipation of tasks. An important aspect of automatic 

continuation, which can cause different performance in 

different application and deployment scenarios, is the 

mechanism for updating result values of future objects, 

when they are ready. In this paper, we analyze the 

behaviour of the implementation of different updating 

strategies, by comparing them with the one currently 

implemented in ProActive. The experimental results show 

that the lazy home-based strategy behaves better than 

other strategies in some application scenarios that are 

very common in distributed applications. 

1. Introduction 

In distributed and parallel computing, applications, 

such as scientific data analysis and simulation, are 

typically composed of compute intensive tasks deployed 

on distributed machines that concurrently deal with huge 

amount of data. Performance of such applications can 

benefit from mechanisms that (1) improve concurrency 

among task activities and overlapping among computation 

and communication tasks and (2) minimize overhead tied 

to network latency involved especially in data transfer. 

Asynchronous communication represents a valid 

candidate for this optimization since it permits the sender 

to immediately continue its computation after the 

communication has been started towards the receiver.  

In many object-oriented systems, this mechanism is 

exploited to implement asynchronous method invocation 

of a remote object. With these kind of interactions, a high-

level mechanism to coordinate activities of distributed 

objects through automatic data synchronization is based on 

future objects [1], which permits the calling object to 

obtain a reference to the future result of a method 

invocation, immediately returned by the asynchronous call, 

in order to permit the calling object to continue its 

computation concurrently with the called one, delaying any 

blocking until the result value is strictly necessary for next 

computations. The future object reference returned by an 

asynchronous method invocation is used by the requester 

to explicitly access to results. Many distributed systems 

aim to exploit performance optimization of future objects.  

In [2] the authors propose a RMI extension that 

requires a pre-compilation phase of pseudo Java interfaces 

to introduce asynchronous communication and future 

objects through embedding threads into the RMI 

communication protocol. Another project based on RMI is 

RMIX [3], a framework that supports the configuration of 

different communication mechanisms based on 

synchronous and asynchronous protocols. The mechanisms 

delivered to update result values of asynchronous method 

calls are futures, completion callbacks and result queues.  

Also implementations of CORBA [4] over Java deliver 

asynchronous remote method invocations using IIOP as 

the underlying protocol. 

In the Kan System [5] the asynchronous communication 

and future object mechanism is implemented through a 

special compiler, which produces byte-code compliant 

with any standard Java Virtual Machine (JVM).  

In these distributed systems, future objects require 

explicit management of programmers, for example 

requiring to deal with the specific problem of data 



synchronization and update, such as to wait for and access 

to result values, causing a decrease of programmer 

productivity who can not focus on functional aspects of 

applications. 

A transparent and easy-to-use future object mechanism 

is delivered by ProActive [6] (version 3.1), a pure Java 

middleware that aims to simplify programming of 

distributed and parallel applications and their deployment 

on Local Area Network (LAN), on cluster of workstations, 

or on Internet-based grid systems, also featuring mobility, 

security and interoperability mechanisms.  

Often in a distributed computation, data produced by 

some activities are used as input to other activities, and so 

on, until final results are produced. For this reason, data 

dependencies determine the chain of distributed activity 

activations and their implicit synchronization.  

A classical distributed programming model based on 

such data-driven synchronization is the pipeline pattern, in 

which each pipe stage receives as input the output data of 

the previous stage and produces input data for the next 

one. Another example is the master-slave pattern, in which 

the master splits input data in sub-parts and sends each of 

them to slaves, while each slave computes the partial result 

and replies it to the master. Finally the master can 

complete its task of assembling the final result only when 

all partial results are received.  

Another scenario of data-driven synchronization is in 

the context of workflow management systems, in which a 

workflow enactment engine invokes distributed activities 

and coordinates them passing input data and receiving 

output data, following a well-defined workflow process 

description. 

Especially in the case of distributed activities, which 

require considerable execution times, concurrency and 

consequently system efficiency could benefit from 

automatic continuation [7], which is the propagation of a 

future object outside the activity that has generated it.  

Automatic continuation can be adopted to immediately 

start method invocations that require as input parameter 

the output of previous asynchronous remote method calls. 

If at the moment of invocation, the input parameter has not 

yet been computed, a future object is used instead of the 

real input value. So,  only when the called method actually 

uses the parameter, the activity is blocked until the value is 

available. By anticipating operations that are not tied to 

input parameters, automatic continuation is a mechanism 

that permits to improve performance through the 

overlapping of distributed activities that are invoked in 

sequential order [8]. 

One of the problems to address to efficiently implement 

future objects in middleware platforms is the definition of 

a strategy that minimizes data propagation in the network 

avoiding the distribution of future values to activities that 

do not use them. 

One of the most widespread middleware platforms 

whose programming model is based on future objects and 

continuation is ProActive [9].  

In this paper we study the behaviour of different 

updating strategies, namely eager home-based and lazy 

home-based strategies, and analyze them with respect to 

the eager forward-based strategy currently implemented in 

ProActive  

The rest of the paper is organized as follows. Section 2 

presents future object and automatic continuation 

mechanisms in ProActive. Section 3 presents a 

classification of update strategies and a comparison among 

them. Section 4 presents an experimental analysis of eager 

home-based and lazy home-based strategies with respect to 

the eager forward-based strategy implemented in 

ProActive. Finally Section 5 presents conclusions and 

future work. 

2. Future Objects in ProActive 

ProActive adopts extensively reflection mechanisms 

implemented through a run-time proxy based Meta-Object 

Protocol (MOP). This ensure to the middleware flexibility 

and extensibility, making the system open for adaptations 

and optimizations for improving performance without 

changes to the Java Virtual Machine (JVM), and without 

pre-processing or compiler modifications. In particular 

ProActive permits to configure the protocol used to export 

the remote objects. The default version of ProActive 

currently uses Java RMI as a portable communication 

protocol, but other protocols are supported, such as IBIS 

[10] and JINI [11].  

ProActive proposes a heterogeneous programming 

model characterized by passive and active objects. Passive 

objects are common objects, whereas active objects are 

distributed objects with the following mechanisms 

managed by the framework: location transparency, activity 

transparency and synchronization. Thanks to 

polymorphism among the passive and active objects, these 

are used like passive ones but can be remotely created and 

accessed in a transparent way via asynchronous remote 

method invocations based on automatic and transparent 

future object mechanism called wait-by-necessity [12]. 

Transparent future objects of ProActive are 

implemented through MOP, which allows to customize the 

system behavior in order to react to specific run-time 

events, such as object creations and method invocations. 

To avoid virtual machines modifications and grant 

transparency, MOP uses the Proxy design pattern and the 

automatic generation of stubs (by using the tool BCEL 

[13] or ASM [14]): surrogate objects (stubs) intercept and 

reify object creation and method invocation events and 

pass them to the meta-level.  

In ProActive the future object stub is a subclass of the  
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Figure 1. Automatic Continuation 

return parameter class, in which each method is 

overwritten in order to verify whether the future object 

value was already replied by the invoked active object. 

In ProActive, automatic continuations can occur when 

sending a request of remote invocation containing a future 

object as input parameter or when replying a result of a 

remote method invocation containing a future object not 

immediately used.  

Figure 1 shows automatic continuation of a future 

object as input parameter for method invocation. 

The updating of the result value, when it is computed, 

on all the active objects that have received the future 

object, is an important aspect of Automatic Continuation, 

which can determine different performance in different 

application and deployment scenarios. 

3. A Classification of Updating Strategies  

Several strategies can be adopted to update future 

objects [7]. They can be classified on the basis of the 

active object responsible of updating future objects and of 

the moment in which active objects receive updates.  

Typically, the updating object can be the caller of an 

asynchronous invocation or the producer of the future 

result value. Consequently, two strategies are possible: 

- forward-based: the active object that propagates the 

future object, called in the following forwarder object,

after receiving the result value by the producer, is 

responsible to propagate the result to active objects that 

received the future; 

- home-based: the producer active object is responsible 

to propagate the result to active objects that received 

the future;  

On the basis of the moment in which the update is 

performed, two main strategies are possible: 

- eager-based: when the result value of the future object 

is available, then it is immediately propagated on all 

the active objects that have previously received the 

future, including forwarder objects; 

- lazy-based: when the result value of the future object is 

available, then it is propagated only on the active 

objects that received the future and that effectively 

required it. 

Combining the strategies described above, four 

different solutions are possible: eager forward-based, lazy 

forward-based, eager home-based and lazy home-based

strategies. The behaviors of such strategies are reported in 

figure 2, 3, 4 and 5. 

In the forward-based strategy the forwarder manages a 

table (called Waiting Active Object Table) in which it 

registers the active objects that have to receive the result 

value of a future object. In the home-based strategy, 

instead, such table is managed by the producer. 

As it is possible to note observing figure 3, the lazy 

forward-based strategy needs the transmission from 

objects requiring result value to the forwarder of a 

registration request message. Such message notifies to 

forwarder the actual need of result value of the future 

object. In the eager-based one, instead, such transmission 

is not necessary because the active object which receives 

the future object is automatically registered by the 

forwarder object at the moment of method invocation.  
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Figure 2. Eager forward-based  Strategy 
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Figure 5. Lazy home-based Strategy 

Analogously, the eager home-based strategy requires 

the transmission, from active objects receiving future 

object to the producer object, of the registration request 

message necessary to receive the result notification.  

The lazy home-based strategy (see Figure 5), with 

respect to the eager-based one and to the forward-based 

strategies, in the case the forwarder object does not use the 

future object, avoids the transmission of the result value to 

it, permitting to decrease network traffic and 

communication overhead. 

In scenarios in which data network overhead is low 

(such as local area networks or clusters), or size of data to 

update is small, or it is possible to predict that all the 

distributed objects that receive future objects will use the 

related value, the forward-based strategy permits to obtain 

good performance, since does not require registration, so 

limiting communication overhead.   

On the other hand, we think that home-based strategies 

could be adopted in distributed programming to increase 

concurrency, reduce network overhead and so to increase 

performance. In particular, the home-based strategy could 

be helpful in distributed programming models in which 

one or more coordination entities are exploited to control 

the activities of multiple distributed entities synchronized 

on data flows and not to directly manage data. A typical 

example of such scenario is a workflow enactment engine, 

which has the task to invoke and coordinate activities and 

does not manipulate directly data, since it is not concerned 

in the result of such invocation, but only in the invocation 

occurring itself.  

As it is possible to see in figure 6 and 7, in such 

scenario the home-based strategy, with respect to the 

forward-based one, permits to completely move the data-

driven synchronization among producers and the 

forwarded ones, that permit a workflow enactment engine 

(that acts as forwarder object) to perform other tasks, 

simultaneously to enacted activities, such as starting other 

activities or code, input, and output data management 

tasks.  

Another consideration is that the lazy-based strategy, 

especially when result values to update are huge and when 

not all the receiving objects will use the result value, could 

be adopted to decrease communication overhead, 

especially in wide-area distributed environments in which 

high latency and limited bandwidth of interconnection 

links can affect overall performance.  
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Figure 6. Forward-based Workflow Engine 
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Figure 7. Home-based Workflow Engine 

For example for a workflow management system, the 

lazy home-based strategy could permit to completely avoid 

the transmission of the result value to the workflow 

enactment engine if the result is not explicitly used. 

In order to show the feasible performance 

improvements adopting lazy home-based strategy, in 



figure 8 it is shown a simple scenario of a sort of workflow 

enactment engine in which a forwarder object sends as 

input parameter the future object returned by the remote 

method invocation on producer object to another active 

object that requires it to execute its operations.  

The following code exemplifies this scenario. 

public class Main { 

....
 public static void main(String[] args){ 
 ...... 
   A a1 = newActive(A.class.getName(),…); 
   A a2 = newActive(A.class.getName(),…); 

   //r1 is a future 
   Result r1 = a1.invoke1();
   Result r2 = a2.invoke2(r1);
   r2.display();
  } 
}
public class A { 
...
 public Result invoke1(){
   ... 
 } 

 public Result invoke2 (Result r) { 
   ... 
 } 
}

In the case of forward-based strategy, the future object 

has to be updated on the main active object, which has the 

task to update the future object r1 on active object a2,

requiring so the transmission of two results. In the case of 

home-based strategy the home object (that is a1) has the 

task to directly update future object r1.

In the case of eager- home based strategies, the result is 

updated on both main object and active object a2, so 

permitting only a little performance improvement. In the 

case of the lazy-based strategy, the future result is updated 

only on active object a2, which actually requires such 

value, avoiding communication overhead among producer 

object and main active object, so permitting to obtain a 

more significant performance improvement. 

4. Experimental Analysis 

We implemented the eager home-based and lazy home-

based strategies in ProActive and performed some 

experimental analyses in order to show the behaviour of 

such strategies with respect to the default forward eager-

based strategy in some application scenario. The 

application scenario is represented by an active object pipe 

(C1, C2, C3 and C4), deployed on different resources, 

each of which receives, by the previous active object in the 

chain, an asynchronous method invocation including as 

input parameter a future object whose result value is 

delivered by active object B (producer object). 
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The producer is started by the active object A, which 

acts as a coordinator object, (such as a workflow 

enactment engine) that does not use the result value of 

future object, but is only responsible to start the 

computation on the pipe by invoking the first active object, 

that is C1, passing it the future object returned by B (see 

figure 9).  

We considered two cases: (1) all the active objects in 

the chain (C1, C2, C3 and C4) actually access to the result 

value of the future object; (2) only the last active object, 

C4, in the chain accesses to the result value of the future 

object.  

Figures 10 and 11 reports the update times on active 

object C4 respectively in case (1) and in case (2), 

considering different future value sizes. Each active object 

is deployed on a different node of a cluster, which is 

equipped with an Intel Xeon Dual-Core, 2 GB of RAM, 

and runs Linux 2.6.9 operating system. The cluster nodes 

are interconnected by a Gigabit Ethernet. As figure 10 

shows, in case (1), in which the result value is accessed by 

all the active objects, the eager home-based strategy does 

not permit to obtain significant improvement in update 

times on C4, while the lazy-based one permits to obtain 

lower update times because the active object A does not 

necessitate the result value, so avoiding the result transfer. 
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Figure 11. Case (2): only C4 uses the future object 

Figure 11, finally, shows the deep decrease of update 

times using the lazy home-based strategy in case (2): 

producer has to send the result value only to active object 

C4, permitting to save a great amount of time. 

An additional experimentation was conducted on the 

matrix multiplication application implemented through the 

classical master-slave pattern (see figure 12). 
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2. multiply(part2)

Slaven

. . .

2. multiply(partn)

result1

result2

results

resultn

lazy home-based

eager forward-based

Figure 12. Matrix multiplication

The master invokes the slaves, passing to each of them 

a part of the left matrix. The slaves perform multiplication 

among the received parts and the right matrix, received 

during the initialization phase, and finally the client waits 

for the set of results. 

Figure 13 shows the execution times obtained 

exploiting eight nodes of the cluster, varying the size 

matrix and adopting the default ProActive future update 

strategy (eager-forward based strategy) and the lazy home-

based strategy. As it is possible to note, the lazy home-

based strategy decreases the execution time, thanks to 

more light communication tasks. Using such strategy, in 

fact, the result computed by each slave can be directly 

replied to the client.  
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5. Conclusion 

In this paper we studied different future object update 

strategies in the context of asynchronous communication, 

that are the eager and lazy forward-based strategies and the 

eager and lazy home-based strategies.  

The implementation and experimentation conducted 

adopting the ProActive framework showed as the lazy 

home-based strategy can be exploited to improve 

performance thanks to the decrease update times of huge 

future objects when not every active object that received 

the future needs a strict access to the result. This is the 

case of distributed and parallel applications that include 

coordination entities, such as applications that follow the 

pipeline and master-slave patterns and workflow 

management systems in which a workflow enactment 

engine acts as a coordinator of various activities.  

The lazy-based strategy, moreover, with respect to the 

eager-based one, introduces the problem of storage 

management and in particular of de-allocation of future 

objects when it is sure that no more objects will access to 

it. This issue can be solved introducing a mechanism of 

distributed memory management and a sort of distributed 

garbage collection for future objects. Such problem will be 

taken into account in a future work. 

Finally, we intend to experiment with a different 

implementation of the eager home-based strategy through 

the adoption of multicast communication. In this case we 

expect to reduce update times by avoiding registration 

messages and by reducing significantly the transmission 

overhead, since only one message per group of a future 

object owners is necessary to deliver the result. 

References 

[1] E. F. Walker, R. Floyd, P. Neves. Asynchronous Remote 

Operation Execution. In the 10th International Conference 

on Distributed Computing Systems, pp. 253-259, May/June 

1990.

[2] K. E. Kerry Falkner, P. Coddington, M. J. Oudshoorn. 

Implementing Asynchronous Remote Method Invocation 

in Java. In the 6th Australian Conference on Parallel and 

Real-Time Systems, Springer-Verlag, pp. 22-34, 29 

November-1 December 1999.

[3] D. Kurzyniec, T. Wrzosek, V. Sunderam, A. Slominski. 

RMIX: A Multiprotocol RMI Framework for Java. In 2003 

International Parallel and Distributed Processing 

Symposium (IPDPS '03), Nice, France, pp. 140–146, April 

2003.

[4] A. Gokhale and D. C. Schmidt. Principles for Optimising 

CORBA Internet Inter-ORB Protocol. In HICSS 

Conference, January 1998. 

[5] Kan, Web page: http://www.ittc.ku.edu/kan/. 

[6] Proactive, Web page:  

 http://www-sop.inria.fr/oasis/ProActive. 

[7] D. Caromel and L. Henrio. A Theory of Distributed 

Objects. Springer, February 2005. 

[8] G. Tretola and E. Zimeo. Workflow Fine-grained 

Concurrency with Automatic Continuation. In  2006

International Parallel and Distributed Processing 

Symposium (IPDPS '06), Rodhes, Greece, April 25-29 

2006.

[9]  D. Caromel, W. Klauser, J. Vayssiere. Towards Seamless 

Computing and Metacomputing in Java. Concurrency & 

Computation: Practice & Experience, 10(11-13), pp.1043-

1061, 1998. 

[10] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. 

Hofman, C. Jacobs, T. Kielmann, H. E. Bal. Ibis: a 

Flexible and Efficient Java-based Grid Programming 

Environment. Concurrency & Computation: Practice & 

Experience, 17(7-8) pp. 1079-1107, 2005. 

 [11] K. Arnold, B. O'Sullivan, R. Scheifler, J. Waldo, A. 

Wollrath. The Jini Specification. Addison Wesley,

December 2000.

[12] D. Caromel. Service, Asynchrony, and Wait-by-Necessity. 

Journal of Object-Oriented Programming, 2(4), pp. 12-18, 

1989.

[13] The Byte Code Engineering Library, Web page: 

http://jakarta.apache.org/bcel. 

[14]  ASM Java Bytecode Manipulation Framework, Web page: 

http://asm.objectweb.org. 


