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Abstract

This paper describes the dynamic load-balancing and
high performance communication provided in Jcluster, an
efficient Java parallel environment. For the efficient load-
balancing, we implement a task scheduler based on a Tran-
sitive Random Stealing algorithm, which improves the Ran-
dom Stealing, a well-known load-balancing algorithm. The
experiment results show that the scheduler performs effi-
ciently, especially for a large-scale cluster. With the method
of asynchronously multithreaded transmission, a high per-
formance PVM-like and MPI-like message passing inter-
face is implemented in pure Java. The evaluation of the
communication performance is conducted among Jcluster,
LAM-MPI and mpiJava on LAM-MPI based on the Java
Grande Forum’s pingpong benchmark.

Keywords. Dynamic load balancing, transitive ran-
dom stealing, asynchronously multithreaded transmission,
large-scale heterogenous cluster

1 Introduction

Realizing the performance potential of large-scale clus-
ters as a platform for incrementally scalable computing
presents many challenges, while the load balancing and the
high performance communication become two very impor-
tant aspects.

Random Stealing (RS) is a well-known dynamic load-
balancing algorithm, used both in shared-memory and
distributed-memory systems. RS attempts to steal a task
from a randomly selected node when a node finds its own
task queue empty, repeating steal attempts until it succeeds.
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RS is provably efficient in terms of time, space, and com-
munication for the class of fully strict computations [4, 21],
and the natural algorithm is stable [2]. The communication
is only initiated when nodes are idle. When the system load
is high, no communication is needed. This causes the sys-
tem to behave well under high loads. Some systems that im-
plement RS include Cilk [3], JAWS [12], Satin [18, 19] and
so on. Cilk provides an efficient C-based runtime system
for the multithreaded parallel programming with a random
stealing scheduler. JAWS schedules load over a dynami-
cally varying computing infrastructure to provide a multi-
threaded programming environment on heterogenous clus-
ters. However, on a large-scale cluster, a node must ran-
domly steal many times to obtain a task from another node.
This will not only increase the idle time for all nodes but
also produce a heavy network communication overhead. In
order to solve this problem, Shis, one of load-balancing
policies in the EARTH system [5, 9], slightly modifies RS
by remembering the originating node (history information)
from which a task was last received and sending requests
directly to that node (the short-cut path).

In the Jcluster environment [23], we implement a Transi-
tive Random Stealing algorithm (TRS) [22], which further
improves Shis with a transitive policy. By the random base-
line technique, we experimentally compare the performance
of TRS with Shis and RS for five different load distribu-
tions on the Tsinghua EastSun cluster. And it shows that
the scheduler based on TRS can make any idle node obtain
a task from another node with much fewer stealing times on
a large-scale cluster. This greatly reduces the idle time for
all nodes and the network communication overhead, so as
to improve the scalable performance of the system.

In the performance aspects of communication, previous
efforts at Java-based message passing frameworks mainly
focus on making the functionality of the message pass-
ing interface available in Java, either through native code
wrappers to existing MPI libraries such as mpiJava [1] and
JavaMPI [13], or pure Java implementations such as JPVM



[7], MPIJ, as part of the DOGMA project at BYU [10], CCJ
[17]. In the Jcluster environment, with the method of asyn-
chronously multithreaded transmission, we implement a re-
liable, high-performance PVM-like and MPI-like message
passing interface using the lightweight UDP protocol, like
Panda project [20], in pure Java. The authors of [8] provides
a very useful MPI communication benchmark, MPIBench,
which provides a more accurate measurement of the per-
formance of MPI communication routines. However, we
don’t find a Java version of MPIBench. In this paper, the
evaluation of the communication performance is conducted
among the Jcluster environment, LAM-MPI and mpiJava
on LAM-MPI based on the Java Grande Forum’s pingpong
benchmark.

This paper is organized as follows: we simply present
the architecture of the Jcluster environment in the next sec-
tion. In Section 3 and 4, dynamic load balancing and high
performance communication are given in detail. We show
some performance evaluations for the load balancing and
the communication in Section 5. Finally, Section 6 con-
cludes the paper with remarks about the current and future
works.

2 Architecture of the Jcluster Environment

2.1 Design of the Jcluster Environment

The Jcluster environment is designed to have the follow-
ing characteristics:

• Pure Java implementation that suites the heteroge-
neous clusters.

• Automatic load balancing with the transitive random
stealing algorithm on a large-scale cluster.

• A high performance message passing API which takes
advantage of the lightweight UDP protocol and Java
thread facility.

2.2 Overview of the Architecture

The Jcluster environment provides an efficient parallel
environment for developing parallel applications in Java on
a large-scale heterogenous cluster. It consists of two parts:
a console and a runtime environment. With the console,
users can start their programs and monitor the states of their
programs on the cluster.

The runtime environment runs as a daemon in every node
on the cluster, the architecture of the runtime environment is
illustrated in Figure 1. The runtime environment includes a
communication layer, a resource manager, a task scheduler
and a PVM-like and MPI-like Message passing interface for
users to write Java parallel programs.

runtime environment

communication layer

PVM-like and MPI-like
message passing interface

resource
manager and

task scheduler

tasklettasklet spawn tasks...

Figure 1. Architecture of the runtime environ-
ment

The resource manager monitors the state of the nodes on
the cluster and maintains a list of active nodes available.
The task scheduler implements the transitive random steal-
ing algorithm to schedule tasks to reach a highly efficient
load balancing on the cluster. The resource manager and
task scheduler are at the center of the runtime environment,
providing very important functions to the Java parallel en-
vironment. They guarantee the utilization of resources effi-
ciently on the cluster.

The communication layer provides a reliable and high
performance point to point message passing interface with
asynchronously multithreaded transmission using UDP pro-
tocol. Based on the communication layer, a high perfor-
mance PVM-like and MPI-like message passing interface
is implemented.

Every user program runs in the runtime environment as
one or more threads, called a tasklet. A Tasklet communi-
cates with a local tasklet or a remote tasklet through either
the PVM-like or the MPI-like message passing interface.
A Tasklet can spawn subtasks to the task scheduler for the
PVM-like message passing interface. In the future, we will
provide the function of spawning subtasks for the MPI-like
message passing interface, which appears in the functions
of MPI 2.0 [16].

3 Dynamic Load Balancing Based on TRS

Our design philosophy for dynamic load balancing is to
reduce the idle time for all nodes, rather than balancing
work loads equally on all nodes. A node is said to be in
the idle state when it has no tasks to execute. Distributing
the workload during an application execution is achieved by
sending the tokens to the schedulers on remote nodes. A to-
ken contains all the necessary information to create a new
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tasklet. Tokens are stored in the task queue on each node.
We illustrate a figure to present the architecture of the re-
source manager and the task scheduler.
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Figure 2. Resource manager and task sched-
uler

The resource manager is responsible for adding or delet-
ing nodes and maintaining a list of active nodes on the clus-
ter available. When the runtime environment on a node
starts at the first time, it broadcasts a message to all other
nodes. The resource managers in other nodes add the node
to the list of nodes when the message arrives. In the same
way, when the runtime environment on a node exits nor-
mally, it broadcasts a message to all other nodes. The re-
source managers in other nodes delete the node from the
list of nodes when the message arrives. Another important
feature is that the resource manager can detect failures of
other remote runtime environments by timeouts of some de-
tecting messages and delete the node from its list of nodes.
And the resource manager tells the failure message to the
resource managers of other remote nodes.

The task queue is a double-ended queue used to store
tasks that have been spawned by the tasklets or have been
added by users, but not yet executed. New tasks spawned
by the tasklets are pushed into the queue from one end and a
task is also popped from the same end for execution on the
local node. However, new tasks added by users are pushed
into the queue from the other end and a task is also popped
from the other end of the task queue when remote nodes
ask for tasks. The transId is a variable which remembers
the nodeId of other remote node.

The Jcluster environment implements a task scheduler
based on the transitive random stealing algorithm (TRS) to
reach an efficient dynamic load balancing on a large-scale
cluster. TRS not only remembers the originating node (his-
tory information) from which a task was last received and

sends requests directly to that node (the short-cut path) be-
ing the same as Shis, but also forwards this history informa-
tion to other nodes which want to steal a task from it (the
transitive policy). Thus the scheduler can make any idle
node obtain a task from another node with fewer stealing
times on a large-scale cluster. As a result, this will greatly
reduce the idle time for all nodes and the network communi-
cation overhead, so as to improve the scalable performance
of the system.
Note. In some very special conditions, there may be a
loop transition of the transId. In order to avoid this case,
the implementation of task scheduler limits the times of
transition of the transId. In the Jcluster environment, we
empirically limit the times of transition of the transId by
max{[log2n − 3], 1}, where n is the number of the nodes
on the cluster.

4 Asynchronously Multithreaded Transmis-
sion

For an efficient Java parallel environment, a high per-
formance communication is essential. In the Jcluster envi-
ronment, with the method of asynchronously multithreaded
transmission, we implement a reliable, high-performance
PVM-like and MPI-like message passing interface using the
lightweight UDP protocol in pure Java.

The communication layer provides a reliable and high
performance point to point message passing interface.
For fully exploiting the bandwidth of the network, the
layer implements an asynchronously multithreaded trans-
mission with UDP. Asynchronously multithreaded trans-
mission makes use of some Java threads (the number of Java
threads can be configured according to the performance of
the network) to send blocks of the messages and to receive
acknowledging messages asynchronously. This layer in-
cludes two parts: a sender and a receiver. Figure 3 gives
an illustration of the sender and the receiver.

The sender decomposes a message into blocks first (the
maximum of the block size is set in the Jcluster environ-
ment). Each block has a 17-bytes block header which con-
tains a random number (1 byte), the number of the block
(2 bytes), the number of all the blocks in the message (2
bytes), the number of the message (2 bytes), sourceId (4
bytes), destinationId (4 bytes) and the length of the block (2
bytes).

The sending thread sends a block to the receiver and
waits for an acknowledging message from the receiver. If
in a certain time period, the acknowledging message has not
been received, the sending thread sends the block again (the
times of resending is set in the Jcluster environment). If no
acknowledging messages are received by the sending thread
after the times of resending exceeds the setting value, the
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Figure 3. Sender and receiver

sender assumes that the destination node fails and informs
the failure information to the resource manager.

When the receiver receives a block, it replies an ac-
knowledging message to the corresponding sending thread.
Then the receiver sends the block to a processor, which is
responsible for sorting and reconstructing the message by
the block header. Finally, the processor puts the message to
some message queue in order.

The functions of directed sending and buffered send-
ing are supported by the sender. For directed sending, the
blocks are submitted to the sending threads directly and for
buffered sending, the blocks are put into the sending queue
and wait for the idle sending threads sending them.

The asynchronously multithreaded transmission pro-
vides a reliable and efficient point to point message pass-
ing interface. It maintains the order of messages between
the sender and the receiver. With this interface, we imple-
ment a high performance PVM-like and MPI-like message
passing interface. In addition, an object passing interface is
supported by the Java object serialization.

5 Performance Evaluation

5.1 Performance Evaluation for TRS

In this section, using the random baseline technique, we
experimentally compare TRS with Shis and RS for five dif-
ferent load distributions on the Tsinghua EastSun cluster
which has 32 nodes (4×Xeon III 700s, Fast Ethernet, Red-
hat 8.1, IBM JDK 1.4.0). Here we implement each of the
three algorithm in an MPI application in which a process
simulates a node. The processes implement two threads
except the process with the rank 0, one thread for dealing
the main loop, the other for handling the request. The pro-
cess with the rank 0, by the random baseline technique, im-
plements a task generator which distributes the same load

distributions to the other processes for the three algorithms
respectively.

In order to stress to test the performance of these al-
gorithms on different load distributions, we make use of
the task generator randomly generating five different load
distributions instead of scheduling some real parallel pro-
grams. The task generator generates three types of load
distributions uniformly distributed on all nodes, half of all
nodes and 1/8 of all nodes, two types of binomial distri-
butions, Bi(n, 1/3) and Bi(n, 1/8), where n is the number
of the nodes. From the knowledge of Statistics, the bino-
mial distribution Bi(n, p) approaches the Poisson distribu-
tion, when the number n is large and the probability p is
small. All of the five types of load distributions distribute
5n tasks to the nodes of 10 times in the runtime. We assume
that every task has the same executing time.

We compare the performance of the three algorithms by
counting the total times of stealing from other nodes for
each algorithm (the total times includes the times of steal-
ing nothing from other nodes). Figure 4,5,6,7,8 illustrate
the results for the five type of task load distributions.
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Figure 4. Task load uniformly distributed on
all nodes

For the task load distribution uniformly distributed on all
nodes, the difference of the performance for the three algo-
rithms is not so distinct on the small-scale cluster. How-
ever, along with the increase of the size of the nodes, TRS
behaves a good performance. For the other four task load
distributions, several ten thousands of or several hundred
thousands of stealing times are economized for TRS than
Shis and RS on the large-scale clusters. This greatly reduces
the idle time for all nodes and the network communication
overhead, so as to improve the scalable performance of the
system. These experimental results convince us that TRS
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Figure 5. Task load uniformly distributed on
half of all nodes

is a highly efficient dynamic load balancing algorithm on a
large-scale cluster.

5.2 Communication Evaluation

In this section, we compare the Jcluster environment
with LAM-MPI and mpiJava on LAM-MPI for a pingpong
benchmark. The benchmark, based on the Java Grande Fo-
rum’s pingpong benchmark, measures the roundtrip time on
the messages with different sizes between two nodes. The
results base on the Tsinghua EastSun cluster (4×Xeon III
700s, Fast Ethernet, Redhat 8.1, IBM JDK 1.4.0). Figure 9
shows the results of the latencies for the messages of small
sizes. The results of the bandwidths for the messages of
large sizes are illustrated in figure 10.

As we can see, the LAM-MPI C primitive, has the low-
est communication overhead; mpiJava, as a wrapper imple-
mentation over native LAM-MPI, has larger latencies due
to the overhead of calling the native LAM-MPI routines
through JNI; The Jcluster environment, although as a pure
Java implementation, has sightly smaller latencies than mpi-
Java with the lightweight UDP protocol.

Figure 10 shows that the Jcluster environment, fully ex-
ploiting the bandwidth of the network with the method
of asynchronously multithreaded transmission, has larger
bandwidths than LAM-MPI and mpiJava on LAM-MPI for
the messages on larger sizes, and is very close to the theo-
retical bandwidth of Fast Ethernet (12.5 MB/s).

6 Conclusions and Further Works

The Jcluster environment implements an efficient task
scheduler based on the transitive random stealing algorithm
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and implements a PVM-like and MPI-like message passing
interface in pure Java. The evaluations show that the task
scheduler based on TRS can make any idle node obtain a
task from another node with much fewer stealing times on
a large-scale cluster. This greatly reduces the idle time for
all nodes and the network communication overhead, so as
to improve the scalable performance of the system. Com-
paring with mpiJava based on the Java Grande Forum’s
pingpong benchmark, the message passing interface imple-
mented in pure Java behaves a good performance on the Fast
Ethernet. In the future, we will implement some features in
MPI 2.0 such as the process creation and management.
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