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Abstract

Component-based development has emerged as an 

effective approach to building flexible systems, but 

there is little experience in applying this approach to 

Grid programming. This paper presents our 

experience with reengineering a high performance 

numerical solver to become a component-based Grid 

application. The adopted component model is an 

extension of the generic Fractal model that specifically 

targets grid environments. The paper provides 

qualitative and quantitative evidence that 

componentisation has improved the modifiability and 

reusability of the application while not significantly 

affecting performance. 

1. Introduction 

As Grid technologies are becoming widely 
available, managing the complexity of building and 
evolving Grid applications is becoming increasingly 
important. Component-based development has 
emerged as an effective approach to building complex 
software systems; its benefits include reduced 
development costs through reusing off-the-self 
components and increased adaptability through adding, 
removing, or replacing components. Naturally, 
applying component-based development to Grid 
programming is currently attracting much interest. 
Examples of component models applicable to this field 
include CCA (Common Component Architecture) [9], 
CCM (Corba Component model) [17], and the 
emerging GCM (Grid Gomponent Model) [10], 
currently under development within the CoreGRID 
European project. Despite this growing interest, there 
is still little experience in applying components to Grid 

computing, and developers are not provided with 
adequate guidance and support.  

The main aim of this work is to present our 
experience with applying component-based 
development to the domain of high performance 
scientific applications running on the Grid. 
Specifically, the work describes how a numerical 
solver, originally implemented as distributed object 
application, was reengineered into a component-based 
application. The adopted component model extends the 
generic Fractal model [7], similarly to the GCM. The 
model is implemented on top of the ProActive 
middleware [19]. We show that componentisation has 
increased the modifiability of the application without 
any significant negative effects on performance.  

The rest of this paper is structured as follows. 
Section 2 provides background on the numerical 
application, called Jem3D, and the distributed object 
platform on which it is built. Section 3 presents our 
approach to reengineering this application, which 
comprises a general componentisation process and a 
Grid-enabled component model. Section 4 then 
describes our componentisation experience and the 
resulting system. Section 5 provides some performance 
results, and section 6 discusses related work. Finally, 
section 7 concludes the paper. 

2. Background 

This section provides background on Jem3D, the 
application at the focus of this paper, and the 
ProActive library, the distributed object platform used 
by Jem3D. 

2.1. Jem3D overview 

Jem3D is a numerical solver for the 3D Maxwell’s 
equations modelling the time domain propagation of 
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electromagnetic waves [4]. It relies on a finite volume 
approximation method operating on unstructured 
tetrahedral meshes. At each time step, the method 
evaluates flux balances as the combination of 
elementary fluxes computed through the four facets of 
a tetrahedron. The complexity of the calculation can be 
changed by modifying the number of tetrahedra in the 
domain. This is done through setting the mesh size;
i.e., the triplet (m1×m2×m3) that specifies the number 
of points on the x, y, and z axes used for building the 
mesh. Parallelisation relies on dividing the 
computational domain into a number of subdomains; 
the domain division is controlled by another triplet 
(d1×d2×d3) that determines the number of subdomains 
on each axis. Since some facets are located on the 
boundary between subdomains, neighbouring 
subdomains must communicate to compute the values 
of those border facets. The original Jem3D builds on 
the ProActive library, outlined next. 

2.2. The ProActive library 

The ProActive library is a Java middleware for 
parallel, distributed, and concurrent programming [19]. 
The ProActive core supports a uniform programming 
model based on remotely accessible active objects.
Each active object has its own thread of control and 
decides in which order to serve incoming method calls. 
Remote method calls on active objects are 
asynchronous with automatic synchronization.  

Two key features of ProActive are its support for 
typed group communication and descriptor-based 
deployment. Group communication enables triggering 
method calls on a group of active objects with 
compatible type, dynamically generating a group of 
results. Invoking a group of active objects takes 
exactly the same form as invoking one active object, 
which simplifies the programming of applications with 
similar activities running in parallel. Moreover, group 
invocations incorporate optimisations that make them 
more efficient than sequentially invoking a set of 
objects. Descriptor-based deployment enables 
deploying distributed applications anywhere without 
having to modify the source code. References to hosts, 
protocols and other infrastructure details are removed 
from the application code, and specified in XML 
descriptor files.  

2.3. Jem3D architecture 

Figure 1 shows the runtime structure of the original 
Jem3D (a 2×2×1 domain division is assumed); the 
main elements of the architecture are outlined next. 

Distributed 

Object

Creates

Invokes

Figure 1. Jem3D Architecture 

Subdomains correspond to partitions of the 3D 
computational domain; they perform electromagnetic 
computations and communicate with their closest 
neighbours in the 3D grid. Moreover, they send partial 
solutions with a predefined frequency to the main 
collector. The main collector is responsible for 
monitoring and steering the computation by interacting 
with the subdomains. The monitoring and steering 
functionality is used by one or more steering agents,
which are dynamically registered with the main 
collector. The application includes a command-line 
agent and a graphical agent with visualisation 
capabilities. Steering agents communicate with each 
other to ensure that only a single agent at a time has 
the right to control the computation. Finally, the 
launcher is responsible for obtaining the input data, 
creating the main collector and the subdomains, setting 
up the necessary connections between them, 
initialising them with the necessary information, and 
starting the computation. Communication between the 
entities relies on the asynchronous remote invocation 
and group communication mechanisms provided by 
ProActive. 

The original Jem3D application suffers from limited 
modifiability and limited reusability of its parts. This 
can be largely attributed to two factors. First, the 
application lacks reliable architectural documentation, 
which is essential for understanding and evolving 
complex software systems. Jem3D has been subjected 
to successive changes by multiple people without 
corresponding updates to the architectural information. 
Second, the application parts are tightly coupled 
together. Indeed, as in most object-oriented 



applications, the code includes hard-wired 
dependencies to classes, which limits the reusability of 
classes, increases the impact of changes, and inhibits 
run-time variability. For example, changing the 
subdomain implementation requires updating the 
source code of both the main collector and the 
launcher and rebuilding the whole application. As 
another example, although the Jem3D parallelisation 
follows a typical geometric decomposition pattern 

[15], no part of the application can be reused in other 
contexts where this pattern is applicable. To address 
such modifiability and reusability limitations, Jem3D 
was re-engineered into a component-based system.  

3. Approach 

This section presents our approach for addressing 
the modifiability and reusability limitations of Jem3D. 
The approach consists of a general componentisation 
process and the use of the Fractal/ProActive 
component technology, discussed in the following two 
sections. 

3.1. Componentisation process 

The purpose of the componentisation process is to 
transform an object-based system to a component-
based system. The process assumes that the target 
component platform allows connecting components via 
provided and required interfaces, and that it minimally 
supports the same communication styles as the object 
platform (e.g., remote method invocation, streams, and 
events). Figure 2 shows the main activities and 
artefacts defined by the componentisation process. The 
activities are summarised next (more details can be 
found in [18] .

Recover Original Architecture 

This activity uses as input the source code, 
documentation, build files, and any other software 
artefacts and produces an architectural description of 
the original system. At a minimum, the description 
must include a run-time view of the architecture 
containing executing entities, communication paths, 
and interactions over those paths. 

Figure 2. Componentisation process 

Design Component Architecture 

This activity produces the target component 
architecture. It uses the executing entities of the 
original architecture as candidate components to form 
an initial component architecture. This initial 
architecture is then refined to address modifiability and 
performance concerns and to exploit the available 
features provided by the target component model (e.g., 
hierarchical composition in Fractal).  

Restructure Original System

This activity restructures the original code to make 
it match closely the target component architecture, 
while avoiding any dependencies on the target 
component platform. Specifically, the activity involves 
implementing and testing an interface-based version of 
the system in which entities communicate as much as 
possible via explicitly identified provided/required 
interfaces. The motivation for the activity is to validate 
a large part of the target architecture at an earlier time. 
Moreover, the activity makes the migration to the 
component platform easier than it would otherwise be.  

Implement Component-based system 

This activity implements and tests the new 
component-based system. It uses as inputs the 
component architecture and the restructured, interface-
based version. It typically involves minor changes for 
repackaging classes as component implementations.  

3.2. Fractal/ProActive 

Fractal/ProActive is a parallel and distributed 
component model that specifically targets Grid 



applications [5]. Fractal/ProActive conforms to the 
generic Fractal model [7] and extends it with a number 
of features that support Grid programming. 
Fractal/ProActive is implemented on top of the 
ProActive library [19]. Fractal and the 
Fractal/ProActive-defined extensions are examined in 
turn next.  

Fractal components are runtime entities that 
communicate exclusively through interfaces of two 
types: client interfaces that emit operation invocations 
and server interfaces that accept them. Interfaces are 
connected through communication paths, called 
bindings. Fractal distinguishes primitive components 
from composite components formed by hierarchically 
assembling other components (called sub-
components). This hierarchical composition is a key 
Fractal feature that helps managing the complexity of 
understanding and developing component systems. 
Another important Fractal feature is its support for 
extensible reflective facilities. Specifically, each 
component exposes an extensible set of controller

interfaces for inspecting and reconfiguring internal 
features of the component. (e.g., for modifying the set 
of sub-components). Finally, Fractal includes an 
architecture description language (ADL) for specifying 
configurations comprising components, their 
composition relationships, and their bindings. 

The Fractal/ProActive model extends Fractal in the 
following ways. Primitive components are specialised 
to obtain the properties of remotely accessible active 
objects. Composite components can contain multiple 
active objects and can be distributed over different 
machines. Component communication relies on 
asynchronous method invocations. A multicast 
communication style is also supported, analogous to 
the group communication mechanism in ProActive. 
Specifically, the model defines a specialisation of 
Fractal interfaces, called multicast interfaces that

enable treating a set of invocations as a single 
invocation. As with standard interfaces, multicast 
interfaces can have a client or server type. Finally, the 
component model supports configurable component 
deployment based on the deployment descriptors 
provided by ProActive. 

4. Componentising Jem3D 

 Jem3D was componentised using the approach 
presented earlier. Most of the effort was spent on the 
architecture recovery activity because of the 
undocumented and degraded structure of the system. 
The run-time view of the original architecture was 
described using UML object diagrams—such as the 

one in Figure 1—and UML interaction diagrams. 
During the component architecture design, the 
launcher entity (an executing Java program) was 
decomposed into a subdomain factory component and
an activator component; the former is assigned the 
responsibilities for creating, initialising, and 
connecting the subdomains, while the latter the 
responsibilities for obtaining the input data, passing 
them to the factory, and starting the computation. The 
reason for the decomposition was to make the factory 
reusable beyond Jem3D. A later iteration of the 
activity grouped the factory and the subdomains into a 
composite domain component, exploiting the 
hierarchical composition feature of Fractal/ProActive. 
Implementing the interface-based version served to 
increase confidence in the new component architecture 
and drastically simplified the final component-based 
implementation. The component-based implementation 
involved wrapping classes to form Fractal components 
and replacing a large part of the injector logic with 
Fractal ADL descriptions, as seen next.  

Figure 3 shows the static structure of the resulting 
component-based Jem3D using a UML component 
diagram (multicast interfaces are represented as 
stereotyped UML interfaces with special notation). The 
runtime configuration consists of multiple subdomains, 
logically arranged in a 3D mesh, with each subdomain 
connected to its neighbours via multicast interfaces. 
The runtime configuration also includes a dynamically 
varying number of steering agents. The main collector 
is connected to the current set of agents via a multicast 
interface. A multicast interface is also used to connect 
each agent to all other agents. 

Figure 3. Component-based Jem3D structure 



The initial configuration of Jem3D is described 
using the Fractal ADL, as seen in Figure 4 (pseudo 
code is used for brevity). Note that the ADL is not 
used to express the configuration of subdomains, 
which depends on the dynamically-determined domain 
division. Since allowable configurations follow a 
fixed, canonical structure in the form of a 3D mesh, a 
parameterised description would be useful for 
automatically generating subdomain configurations. 
However, the Fractal ADL includes currently no 
variability mechanisms for expressing such 
descriptions. The ADL does include a simple 
parameterisation mechanism, which is used to 
configure the factory with the required subdomain 
implementation.  

Figure 4. Initial configuration in the ADL 

Evaluation 

We now examine whether the new, component-
based Jem3D addresses the modifiability and 
reusability limitations of the original system. Owning 
to the componentisation process, the new system has 
gained reliable architectural documentation, which 
facilitates understanding and evolving the system. 
Moreover, an important part of the architecture—i.e., 
the initial component configuration—is captured in the 
ADL. As a result, the component platform can 
automatically enforce architectural structure on 
implementation, which helps reduce future 
architectural erosion. The use of provided and required 

interfaces as specified by the component model 
minimizes inflexible, hard-wired dependencies and 
allows flexible configuration after development time. 
Considering the scenario of changing the subdomain 
implementation, this can now be achieved simply by 
replacing a name in the ADL description (i.e., the 
SubDomainImpl name in Figure 4). Moreover, the 
domain component now serves as a reusable unit of 
functionality that supports the geometric 
decomposition pattern. Specifically, the component 
accepts as input the subdomain implementation and the 
domain division and embodies the logic to create and 
manage the runtime subdomain configuration. 

5. Performance results 

Comparison between object-based and component-

based versions
Component ConsoleSteeringAgent

definition = SteeringAgentImpl 

Component MainCollector  We first deployed the application on a single cluster 
so that measurements could be realized in a stable and 
homogeneous environment, and so that comparison 
would be possible. We used a fixed mesh size of 
121*121*121. The mesh was sufficiently small so that 
the application could be deployed on a reduced number 
of nodes and sufficiently large so that communication 
time did not exceed computation time. The deployment 
of the Jem3D application proceeds as follows: first, the 
collector is instantiated on a single node. Second, a set 
of virtual machines is created according to the 
deployment descriptor, and using the standard cluster 
scheduling protocols. Third, active objects are 
instantiated on the virtual machines. For the 
component version, once the components are 
instantiated (as active objects), there are also an 
assembly and a binding phase to create the system 
dependencies. We measured the initialization time as 
the time between the creation of all remote virtual 
machines, and the beginning of the computation. We 
also measured the computation time for a fixed number 
of iterations with the Jem3d application. The 
benchmarks took place on one of the clusters in INRIA 
Sophia-Antipolis, with machines equipped with 
Opteron processors at 2GHz and 2GB of RAM, and 
connected through Gigabit Ethernet connections. The 
JVMs were deployed with an allocated heap size of 
1500MB. The results are presented in Figure 5.  

definition = MainCollectorImpl 

Component Activator

definition = ActivatorImpl 

Component Domain 

Interface … // interfaces omitted

Component SubDomainFactory  

   Definition=FactoryImpl (SubDomainImpl)            

// bindings within composite 
// interfaces names omitted

Binding This to SubDomainFactory 

Binding SubDomainFactory to This 

// bindings among top-level components 
// interface names omitted  

Binding ConsoleSteeringAgent to MainCollector 

Binding MainCollector to ConsoleSteeringAgent

Binding Activator to MainCollector 

Binding Activator to Domain 

Binding MainCollector to Domain 

Binding Domain to MainCollector 

We observe that:  
The computation times are similar for the 
component and the object-based version, which 
means that there is no significant overhead 
induced by the component framework during the 
computation. 



The deployment time (referred to as initialization 
time in the figure) is a little longer for the 
component-based version. This is due to a more 
elaborate deployment process that not only 
creates component instances, but also assembles 
them and binds them. The overhead for 
deployment seems very much acceptable. 
With a mesh size of 121*121*121, and with an 
available heap size of 1500MB for each 
computing entity, the computation needs to be 
distributed on a minimum of 15 machines so that 
the mesh data can be loaded in memory (the mesh 
is divided among participants: the higher the 
number of participants, the smaller the size of the 
mesh for each participant). 
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Figure 5. Comparison of execution times 

Grid scalability 

We used the experimental French grid infrastructure 
Grid’5000 [8] for performance measurements using 
several Grid’5000 clusters. The objective was to 
evaluate the scalability of the component-based 
version. 

We ran several experiments, increasing the mesh 
size and the number of machines used. One sub-
domain component or object is deployed on each node. 
We report the results in Table 1, also describing the 
set-up of the different experiments. The parameters 
that varied were the mesh size and the distribution over 
the different clusters (a possible distribution is shown 
in Figure 6). It is important to state that Jem3D does 
not offer control over the distribution of the 
computation entities (the sub-domains). All sub-
domain entities are deployed on a unique virtual node, 
which is later mapped onto the physical infrastructure. 
Using several virtual nodes would allow control over 
the virtual distribution, hence possibly control over the 
physical one, however this was not possible without 
completely changing the design of Jem3D. As a 
consequence, some highly communicating neighbours 
may be located on separate clusters, in which case 

there is an induced latency overhead in their 
communications. In the Grid’5000 infrastructure, 
which uses dedicated and optimized networks, the 
latency between machines of a cluster is about 0.05ms, 
while the latency between clusters can be up to 10ms 
(this is the case between clusters in Sophia-Antipolis 
and clusters in Rennes): the latency is up to 200 times 
higher for inter-cluster than intra-cluster 
communications. Measuring computation time in this 
context is very difficult for a tightly-coupled 
application because of both lack of control over 
deployment and the inherent instability of Grids. This 
is why we preferred to present the results from a few 
experiments, without drawing any conclusion on the 
performance in this context. 
The results of the experiments as reported in Table 1 
demonstrate the scalability of the component 
framework: we managed to deploy and run a 
component-based version of the Jem3D application on 
more than 300 processors and up to 4 remote clusters. 
We were also able to compute with bigger meshes 
when increasing the number of machines. 

Discussion

From our experience with the deployment and 
benchmarking of the Jem3D application, we can draw 
the following conclusions: 

Componentisation has no adverse impact on the 
performance of the Jem3D application. 
Specifically, the component framework does not 
induce any overhead during computation, and the 
initialization is only slightly longer than for the 
object-based version. We also demonstrated that 
the framework is scalable. 
Computational benchmarks for tightly coupled 
and highly communicating applications need to 
be performed on homogeneous environments, 
such as a single cluster. Otherwise performance 
measurements are unreadable, because inter-
cluster communications are several orders of 
magnitude longer than intra-cluster ones, and 
because of the inherent instability of Grids: the 
more different administrative domains involved, 
the higher the chances of some local dysfunction. 
An application, to take advantage of a 
computational Grid, must provide a partitioning 

method at design time, which at runtime creates 
partitions depending on the application 
parameters and the runtime infrastructure. A 
partition identifies tightly-coupled entities which 
must be co-located, while the coupling between 
partitions is looser. Partitions can be attached to 
virtual nodes, which are mapped on separate 
deployment infrastructures at deployment time, if 



needed, resulting in an efficient distribution of 
the application. The component-based approach 
provides a convenient way to design suitable 
partitions for both loosely-coupled and tightly-
coupled applications. 
Grids, by providing large computational 
infrastructures, allow new categories of problems 
to be solved [11]. For instance, the Jem3D 
application can solve problems with mesh sizes 
over 200*200*200, which is impossible on a 
single cluster with machine equipped of 2GB 
RAM, because of memory problems. 

Figure 6. Possible distribution of Jem3D over 
Grid’5000 clusters

Table 1. Jem3D experiments 
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81*81*81 70 0.94 20 10 20 20 0 0
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1

138 3.85 138 0 0 0 0 0

241*241*24
1

258 4.29 138 0 120 0 0 0

241*241*241 308 3.72 138 0 120 0 0 50

6. Related work 

As mentioned earlier, there is little experience in 
applying component-based development to Grid 
computing. Most related work to ours is that associated 
with CCA [9]. CCA is a component model for high-
performance scientific computing that has been applied 
to a large range of application domains [6]. CCA 
components are dynamically connected through 
provides and uses ports. The main difference with 
Fractal is that CCA lacks hierarchical composition as a 
first-class part of the model. Ccaffeine [2] is an 
implementation of CCA that supports parallel 
computing. Ccaffeine-based components interact 
within a given process using CCA ports; parallel 
instances of Ccaffeine-based components interact 
across different processes using a separate 
programming model, typically MPI. XCAT3 [12] is 
another CCA implementation that supports 
components distributed over different address spaces 
and accessible as collections of Grid services 
compliant to OGSI (Open Grid Services 
Infrastructure). In [16], CCA/Ccaffeine is used to 
componentise simulation software for partial 
differential equations. Components are produced by 
creating thin wrappers over existing numerical 
libraries. A simple process for converting such 
libraries to components is presented in [3]; the process 
involves first grouping provided and used library 
functions to provide and uses CCA ports, and then 
deciding how ports are associated to components. 

Beyond grid computing, several researchers have 
reported experiences with componentising large 
software systems. [13] describes the componentisation 
of operating system software for MPSoC (multi-
processor system on chip) platforms. 
Componentisation relies on a lightweight Fractal 
implementation that targets embedded systems 
software. Other case studies have concentrated on 
componentising programmable controller software 
[14] and real-time telecommunication software [1]. 
Such work provides evidence of the positive effect of 
componentisation on modifiability but does not focus 
on the componentisation process. 

7. Conclusion 

This paper has presented a case study in 
reengineering a scientific application into a 
component-based, grid-enabled application built on 
Proactive/Fractal. The transformation from an object-
based to a component-based system has followed a 
general componentisation process, reusable in other 
contexts. The paper has provided qualitative evidence 



that componentisation using Fractal/ProActive is 
beneficial to the modifiability and reusability of the 
application. The paper has also provided quantitative 
evidence that componentisation has no adverse effect 
on performance. 

There are two main directions for future work. First, 
we plan to apply the componentisation process and the 
Fractal/ProActive component technology to other 
applications in diverse domains. Such work will enable 
a more complete assessment of their usefulness and 
usability, and generate further suggestions for 
improvement. Second, we plan to add support for 
dynamic reconfiguration in the component-based 
Jem3D application in order to accommodate variations 
in the availability of underlying resources. Supporting 
reconfiguration will involve the introduction of 
manager components that build on the reconfiguration 
primitives already provided by the component model 
(e.g., connect or disconnect components), without 
requiring any change to existing code. 
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