
Performance and Scalability of a Component-Based Grid Application

Nikos Parlavantzas1, Matthieu Morel2, Vladimir Getov1, Françoise Baude2, Denis Caromel2

1
Harrow School of Computer Science,

University of Westminster, HA1 3TP, U.K.

{N.Parlavantzas, V.S.Getov}

@westminster.ac.uk

2
INRIA Sophia Antipolis,

2004, route des Lucioles, BP 93,

F-06902 Sophia Antipolis Cedex, France

FirstName.LastName@inria.fr

Abstract

Component-based development has emerged as an

effective approach to building flexible systems, but

there is little experience in applying this approach to

Grid programming. This paper presents our

experience with reengineering a high performance

numerical solver to become a component-based Grid

application. The adopted component model is an

extension of the generic Fractal model that specifically

targets grid environments. The paper provides

qualitative and quantitative evidence that

componentisation has improved the modifiability and

reusability of the application while not significantly

affecting performance.

1. Introduction

As Grid technologies are becoming widely
available, managing the complexity of building and
evolving Grid applications is becoming increasingly
important. Component-based development has
emerged as an effective approach to building complex
software systems; its benefits include reduced
development costs through reusing off-the-self
components and increased adaptability through adding,
removing, or replacing components. Naturally,
applying component-based development to Grid
programming is currently attracting much interest.
Examples of component models applicable to this field
include CCA (Common Component Architecture) [9],
CCM (Corba Component model) [17], and the
emerging GCM (Grid Gomponent Model) [10],
currently under development within the CoreGRID
European project. Despite this growing interest, there
is still little experience in applying components to Grid

computing, and developers are not provided with
adequate guidance and support.

The main aim of this work is to present our
experience with applying component-based
development to the domain of high performance
scientific applications running on the Grid.
Specifically, the work describes how a numerical
solver, originally implemented as distributed object
application, was reengineered into a component-based
application. The adopted component model extends the
generic Fractal model [7], similarly to the GCM. The
model is implemented on top of the ProActive
middleware [19]. We show that componentisation has
increased the modifiability of the application without
any significant negative effects on performance.

The rest of this paper is structured as follows.
Section 2 provides background on the numerical
application, called Jem3D, and the distributed object
platform on which it is built. Section 3 presents our
approach to reengineering this application, which
comprises a general componentisation process and a
Grid-enabled component model. Section 4 then
describes our componentisation experience and the
resulting system. Section 5 provides some performance
results, and section 6 discusses related work. Finally,
section 7 concludes the paper.

2. Background

This section provides background on Jem3D, the
application at the focus of this paper, and the
ProActive library, the distributed object platform used
by Jem3D.

2.1. Jem3D overview

Jem3D is a numerical solver for the 3D Maxwell’s
equations modelling the time domain propagation of

1-4244-0910-1/07/$20.00 ©2007 IEEE

electromagnetic waves [4]. It relies on a finite volume
approximation method operating on unstructured
tetrahedral meshes. At each time step, the method
evaluates flux balances as the combination of
elementary fluxes computed through the four facets of
a tetrahedron. The complexity of the calculation can be
changed by modifying the number of tetrahedra in the
domain. This is done through setting the mesh size;
i.e., the triplet (m1×m2×m3) that specifies the number
of points on the x, y, and z axes used for building the
mesh. Parallelisation relies on dividing the
computational domain into a number of subdomains;
the domain division is controlled by another triplet
(d1×d2×d3) that determines the number of subdomains
on each axis. Since some facets are located on the
boundary between subdomains, neighbouring
subdomains must communicate to compute the values
of those border facets. The original Jem3D builds on
the ProActive library, outlined next.

2.2. The ProActive library

The ProActive library is a Java middleware for
parallel, distributed, and concurrent programming [19].
The ProActive core supports a uniform programming
model based on remotely accessible active objects.
Each active object has its own thread of control and
decides in which order to serve incoming method calls.
Remote method calls on active objects are
asynchronous with automatic synchronization.

Two key features of ProActive are its support for
typed group communication and descriptor-based
deployment. Group communication enables triggering
method calls on a group of active objects with
compatible type, dynamically generating a group of
results. Invoking a group of active objects takes
exactly the same form as invoking one active object,
which simplifies the programming of applications with
similar activities running in parallel. Moreover, group
invocations incorporate optimisations that make them
more efficient than sequentially invoking a set of
objects. Descriptor-based deployment enables
deploying distributed applications anywhere without
having to modify the source code. References to hosts,
protocols and other infrastructure details are removed
from the application code, and specified in XML
descriptor files.

2.3. Jem3D architecture

Figure 1 shows the runtime structure of the original
Jem3D (a 2×2×1 domain division is assumed); the
main elements of the architecture are outlined next.

Distributed

Object

Creates

Invokes

Figure 1. Jem3D Architecture

Subdomains correspond to partitions of the 3D
computational domain; they perform electromagnetic
computations and communicate with their closest
neighbours in the 3D grid. Moreover, they send partial
solutions with a predefined frequency to the main
collector. The main collector is responsible for
monitoring and steering the computation by interacting
with the subdomains. The monitoring and steering
functionality is used by one or more steering agents,
which are dynamically registered with the main
collector. The application includes a command-line
agent and a graphical agent with visualisation
capabilities. Steering agents communicate with each
other to ensure that only a single agent at a time has
the right to control the computation. Finally, the
launcher is responsible for obtaining the input data,
creating the main collector and the subdomains, setting
up the necessary connections between them,
initialising them with the necessary information, and
starting the computation. Communication between the
entities relies on the asynchronous remote invocation
and group communication mechanisms provided by
ProActive.

The original Jem3D application suffers from limited
modifiability and limited reusability of its parts. This
can be largely attributed to two factors. First, the
application lacks reliable architectural documentation,
which is essential for understanding and evolving
complex software systems. Jem3D has been subjected
to successive changes by multiple people without
corresponding updates to the architectural information.
Second, the application parts are tightly coupled
together. Indeed, as in most object-oriented

applications, the code includes hard-wired
dependencies to classes, which limits the reusability of
classes, increases the impact of changes, and inhibits
run-time variability. For example, changing the
subdomain implementation requires updating the
source code of both the main collector and the
launcher and rebuilding the whole application. As
another example, although the Jem3D parallelisation
follows a typical geometric decomposition pattern

[15], no part of the application can be reused in other
contexts where this pattern is applicable. To address
such modifiability and reusability limitations, Jem3D
was re-engineered into a component-based system.

3. Approach

This section presents our approach for addressing
the modifiability and reusability limitations of Jem3D.
The approach consists of a general componentisation
process and the use of the Fractal/ProActive
component technology, discussed in the following two
sections.

3.1. Componentisation process

The purpose of the componentisation process is to
transform an object-based system to a component-
based system. The process assumes that the target
component platform allows connecting components via
provided and required interfaces, and that it minimally
supports the same communication styles as the object
platform (e.g., remote method invocation, streams, and
events). Figure 2 shows the main activities and
artefacts defined by the componentisation process. The
activities are summarised next (more details can be
found in [18] .

Recover Original Architecture

This activity uses as input the source code,
documentation, build files, and any other software
artefacts and produces an architectural description of
the original system. At a minimum, the description
must include a run-time view of the architecture
containing executing entities, communication paths,
and interactions over those paths.

Figure 2. Componentisation process

Design Component Architecture

This activity produces the target component
architecture. It uses the executing entities of the
original architecture as candidate components to form
an initial component architecture. This initial
architecture is then refined to address modifiability and
performance concerns and to exploit the available
features provided by the target component model (e.g.,
hierarchical composition in Fractal).

Restructure Original System

This activity restructures the original code to make
it match closely the target component architecture,
while avoiding any dependencies on the target
component platform. Specifically, the activity involves
implementing and testing an interface-based version of
the system in which entities communicate as much as
possible via explicitly identified provided/required
interfaces. The motivation for the activity is to validate
a large part of the target architecture at an earlier time.
Moreover, the activity makes the migration to the
component platform easier than it would otherwise be.

Implement Component-based system

This activity implements and tests the new
component-based system. It uses as inputs the
component architecture and the restructured, interface-
based version. It typically involves minor changes for
repackaging classes as component implementations.

3.2. Fractal/ProActive

Fractal/ProActive is a parallel and distributed
component model that specifically targets Grid

applications [5]. Fractal/ProActive conforms to the
generic Fractal model [7] and extends it with a number
of features that support Grid programming.
Fractal/ProActive is implemented on top of the
ProActive library [19]. Fractal and the
Fractal/ProActive-defined extensions are examined in
turn next.

Fractal components are runtime entities that
communicate exclusively through interfaces of two
types: client interfaces that emit operation invocations
and server interfaces that accept them. Interfaces are
connected through communication paths, called
bindings. Fractal distinguishes primitive components
from composite components formed by hierarchically
assembling other components (called sub-
components). This hierarchical composition is a key
Fractal feature that helps managing the complexity of
understanding and developing component systems.
Another important Fractal feature is its support for
extensible reflective facilities. Specifically, each
component exposes an extensible set of controller

interfaces for inspecting and reconfiguring internal
features of the component. (e.g., for modifying the set
of sub-components). Finally, Fractal includes an
architecture description language (ADL) for specifying
configurations comprising components, their
composition relationships, and their bindings.

The Fractal/ProActive model extends Fractal in the
following ways. Primitive components are specialised
to obtain the properties of remotely accessible active
objects. Composite components can contain multiple
active objects and can be distributed over different
machines. Component communication relies on
asynchronous method invocations. A multicast
communication style is also supported, analogous to
the group communication mechanism in ProActive.
Specifically, the model defines a specialisation of
Fractal interfaces, called multicast interfaces that

enable treating a set of invocations as a single
invocation. As with standard interfaces, multicast
interfaces can have a client or server type. Finally, the
component model supports configurable component
deployment based on the deployment descriptors
provided by ProActive.

4. Componentising Jem3D

 Jem3D was componentised using the approach
presented earlier. Most of the effort was spent on the
architecture recovery activity because of the
undocumented and degraded structure of the system.
The run-time view of the original architecture was
described using UML object diagrams—such as the

one in Figure 1—and UML interaction diagrams.
During the component architecture design, the
launcher entity (an executing Java program) was
decomposed into a subdomain factory component and
an activator component; the former is assigned the
responsibilities for creating, initialising, and
connecting the subdomains, while the latter the
responsibilities for obtaining the input data, passing
them to the factory, and starting the computation. The
reason for the decomposition was to make the factory
reusable beyond Jem3D. A later iteration of the
activity grouped the factory and the subdomains into a
composite domain component, exploiting the
hierarchical composition feature of Fractal/ProActive.
Implementing the interface-based version served to
increase confidence in the new component architecture
and drastically simplified the final component-based
implementation. The component-based implementation
involved wrapping classes to form Fractal components
and replacing a large part of the injector logic with
Fractal ADL descriptions, as seen next.

Figure 3 shows the static structure of the resulting
component-based Jem3D using a UML component
diagram (multicast interfaces are represented as
stereotyped UML interfaces with special notation). The
runtime configuration consists of multiple subdomains,
logically arranged in a 3D mesh, with each subdomain
connected to its neighbours via multicast interfaces.
The runtime configuration also includes a dynamically
varying number of steering agents. The main collector
is connected to the current set of agents via a multicast
interface. A multicast interface is also used to connect
each agent to all other agents.

Figure 3. Component-based Jem3D structure

The initial configuration of Jem3D is described
using the Fractal ADL, as seen in Figure 4 (pseudo
code is used for brevity). Note that the ADL is not
used to express the configuration of subdomains,
which depends on the dynamically-determined domain
division. Since allowable configurations follow a
fixed, canonical structure in the form of a 3D mesh, a
parameterised description would be useful for
automatically generating subdomain configurations.
However, the Fractal ADL includes currently no
variability mechanisms for expressing such
descriptions. The ADL does include a simple
parameterisation mechanism, which is used to
configure the factory with the required subdomain
implementation.

Figure 4. Initial configuration in the ADL

Evaluation

We now examine whether the new, component-
based Jem3D addresses the modifiability and
reusability limitations of the original system. Owning
to the componentisation process, the new system has
gained reliable architectural documentation, which
facilitates understanding and evolving the system.
Moreover, an important part of the architecture—i.e.,
the initial component configuration—is captured in the
ADL. As a result, the component platform can
automatically enforce architectural structure on
implementation, which helps reduce future
architectural erosion. The use of provided and required

interfaces as specified by the component model
minimizes inflexible, hard-wired dependencies and
allows flexible configuration after development time.
Considering the scenario of changing the subdomain
implementation, this can now be achieved simply by
replacing a name in the ADL description (i.e., the
SubDomainImpl name in Figure 4). Moreover, the
domain component now serves as a reusable unit of
functionality that supports the geometric
decomposition pattern. Specifically, the component
accepts as input the subdomain implementation and the
domain division and embodies the logic to create and
manage the runtime subdomain configuration.

5. Performance results

Comparison between object-based and component-

based versions
Component ConsoleSteeringAgent

definition = SteeringAgentImpl

Component MainCollector We first deployed the application on a single cluster
so that measurements could be realized in a stable and
homogeneous environment, and so that comparison
would be possible. We used a fixed mesh size of
121*121*121. The mesh was sufficiently small so that
the application could be deployed on a reduced number
of nodes and sufficiently large so that communication
time did not exceed computation time. The deployment
of the Jem3D application proceeds as follows: first, the
collector is instantiated on a single node. Second, a set
of virtual machines is created according to the
deployment descriptor, and using the standard cluster
scheduling protocols. Third, active objects are
instantiated on the virtual machines. For the
component version, once the components are
instantiated (as active objects), there are also an
assembly and a binding phase to create the system
dependencies. We measured the initialization time as
the time between the creation of all remote virtual
machines, and the beginning of the computation. We
also measured the computation time for a fixed number
of iterations with the Jem3d application. The
benchmarks took place on one of the clusters in INRIA
Sophia-Antipolis, with machines equipped with
Opteron processors at 2GHz and 2GB of RAM, and
connected through Gigabit Ethernet connections. The
JVMs were deployed with an allocated heap size of
1500MB. The results are presented in Figure 5.

definition = MainCollectorImpl

Component Activator

definition = ActivatorImpl

Component Domain

Interface … // interfaces omitted

Component SubDomainFactory

 Definition=FactoryImpl (SubDomainImpl)

// bindings within composite
// interfaces names omitted

Binding This to SubDomainFactory

Binding SubDomainFactory to This

// bindings among top-level components
// interface names omitted

Binding ConsoleSteeringAgent to MainCollector

Binding MainCollector to ConsoleSteeringAgent

Binding Activator to MainCollector

Binding Activator to Domain

Binding MainCollector to Domain

Binding Domain to MainCollector

We observe that:
The computation times are similar for the
component and the object-based version, which
means that there is no significant overhead
induced by the component framework during the
computation.

The deployment time (referred to as initialization
time in the figure) is a little longer for the
component-based version. This is due to a more
elaborate deployment process that not only
creates component instances, but also assembles
them and binds them. The overhead for
deployment seems very much acceptable.
With a mesh size of 121*121*121, and with an
available heap size of 1500MB for each
computing entity, the computation needs to be
distributed on a minimum of 15 machines so that
the mesh data can be loaded in memory (the mesh
is divided among participants: the higher the
number of participants, the smaller the size of the
mesh for each participant).

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90

Number of machines

T
im

e
 (

s
)

(

object-based computation time

component-based initialization time

component-based computation time

object-based initialization time

insufficient

 memory

Figure 5. Comparison of execution times

Grid scalability

We used the experimental French grid infrastructure
Grid’5000 [8] for performance measurements using
several Grid’5000 clusters. The objective was to
evaluate the scalability of the component-based
version.

We ran several experiments, increasing the mesh
size and the number of machines used. One sub-
domain component or object is deployed on each node.
We report the results in Table 1, also describing the
set-up of the different experiments. The parameters
that varied were the mesh size and the distribution over
the different clusters (a possible distribution is shown
in Figure 6). It is important to state that Jem3D does
not offer control over the distribution of the
computation entities (the sub-domains). All sub-
domain entities are deployed on a unique virtual node,
which is later mapped onto the physical infrastructure.
Using several virtual nodes would allow control over
the virtual distribution, hence possibly control over the
physical one, however this was not possible without
completely changing the design of Jem3D. As a
consequence, some highly communicating neighbours
may be located on separate clusters, in which case

there is an induced latency overhead in their
communications. In the Grid’5000 infrastructure,
which uses dedicated and optimized networks, the
latency between machines of a cluster is about 0.05ms,
while the latency between clusters can be up to 10ms
(this is the case between clusters in Sophia-Antipolis
and clusters in Rennes): the latency is up to 200 times
higher for inter-cluster than intra-cluster
communications. Measuring computation time in this
context is very difficult for a tightly-coupled
application because of both lack of control over
deployment and the inherent instability of Grids. This
is why we preferred to present the results from a few
experiments, without drawing any conclusion on the
performance in this context.
The results of the experiments as reported in Table 1
demonstrate the scalability of the component
framework: we managed to deploy and run a
component-based version of the Jem3D application on
more than 300 processors and up to 4 remote clusters.
We were also able to compute with bigger meshes
when increasing the number of machines.

Discussion

From our experience with the deployment and
benchmarking of the Jem3D application, we can draw
the following conclusions:

Componentisation has no adverse impact on the
performance of the Jem3D application.
Specifically, the component framework does not
induce any overhead during computation, and the
initialization is only slightly longer than for the
object-based version. We also demonstrated that
the framework is scalable.
Computational benchmarks for tightly coupled
and highly communicating applications need to
be performed on homogeneous environments,
such as a single cluster. Otherwise performance
measurements are unreadable, because inter-
cluster communications are several orders of
magnitude longer than intra-cluster ones, and
because of the inherent instability of Grids: the
more different administrative domains involved,
the higher the chances of some local dysfunction.
An application, to take advantage of a
computational Grid, must provide a partitioning

method at design time, which at runtime creates
partitions depending on the application
parameters and the runtime infrastructure. A
partition identifies tightly-coupled entities which
must be co-located, while the coupling between
partitions is looser. Partitions can be attached to
virtual nodes, which are mapped on separate
deployment infrastructures at deployment time, if

needed, resulting in an efficient distribution of
the application. The component-based approach
provides a convenient way to design suitable
partitions for both loosely-coupled and tightly-
coupled applications.
Grids, by providing large computational
infrastructures, allow new categories of problems
to be solved [11]. For instance, the Jem3D
application can solve problems with mesh sizes
over 200*200*200, which is impossible on a
single cluster with machine equipped of 2GB
RAM, because of memory problems.

Figure 6. Possible distribution of Jem3D over
Grid’5000 clusters

Table 1. Jem3D experiments

M
es

h
 s

iz
e

T
o

ta
l

n
u

m
b

er
 o

f

p
ro

ce
ss

o
rs

C
o

m
p

u
ta

ti
o

n

ti
m

e
(m

in
)

P
ro

ce
ss

o
rs

 a
t

S
o

p
h

ia
 A

n
ti

p
o

li
s

P
ro

ce
ss

o
rs

 a
t

O
rs

a
y

P
ro

ce
ss

o
rs

 a
t

R
en

n
es

-1

P
ro

ce
ss

o
rs

 a
t

R
en

n
es

-2
P

ro
ce

ss
o

rs
 a

t

R
en

n
es

-3
P

ro
ce

ss
o

rs
 a

t

T
o

u
lo

u
se

41*41*41 20 0.46 0 0 0 0 20 0

81*81*81 70 0.94 20 10 20 20 0 0

201*201*20
1

130 5.15 70 0 60 0 0 0

201*201*20
1

138 3.85 138 0 0 0 0 0

241*241*24
1

258 4.29 138 0 120 0 0 0

241*241*241 308 3.72 138 0 120 0 0 50

6. Related work

As mentioned earlier, there is little experience in
applying component-based development to Grid
computing. Most related work to ours is that associated
with CCA [9]. CCA is a component model for high-
performance scientific computing that has been applied
to a large range of application domains [6]. CCA
components are dynamically connected through
provides and uses ports. The main difference with
Fractal is that CCA lacks hierarchical composition as a
first-class part of the model. Ccaffeine [2] is an
implementation of CCA that supports parallel
computing. Ccaffeine-based components interact
within a given process using CCA ports; parallel
instances of Ccaffeine-based components interact
across different processes using a separate
programming model, typically MPI. XCAT3 [12] is
another CCA implementation that supports
components distributed over different address spaces
and accessible as collections of Grid services
compliant to OGSI (Open Grid Services
Infrastructure). In [16], CCA/Ccaffeine is used to
componentise simulation software for partial
differential equations. Components are produced by
creating thin wrappers over existing numerical
libraries. A simple process for converting such
libraries to components is presented in [3]; the process
involves first grouping provided and used library
functions to provide and uses CCA ports, and then
deciding how ports are associated to components.

Beyond grid computing, several researchers have
reported experiences with componentising large
software systems. [13] describes the componentisation
of operating system software for MPSoC (multi-
processor system on chip) platforms.
Componentisation relies on a lightweight Fractal
implementation that targets embedded systems
software. Other case studies have concentrated on
componentising programmable controller software
[14] and real-time telecommunication software [1].
Such work provides evidence of the positive effect of
componentisation on modifiability but does not focus
on the componentisation process.

7. Conclusion

This paper has presented a case study in
reengineering a scientific application into a
component-based, grid-enabled application built on
Proactive/Fractal. The transformation from an object-
based to a component-based system has followed a
general componentisation process, reusable in other
contexts. The paper has provided qualitative evidence

that componentisation using Fractal/ProActive is
beneficial to the modifiability and reusability of the
application. The paper has also provided quantitative
evidence that componentisation has no adverse effect
on performance.

There are two main directions for future work. First,
we plan to apply the componentisation process and the
Fractal/ProActive component technology to other
applications in diverse domains. Such work will enable
a more complete assessment of their usefulness and
usability, and generate further suggestions for
improvement. Second, we plan to add support for
dynamic reconfiguration in the component-based
Jem3D application in order to accommodate variations
in the availability of underlying resources. Supporting
reconfiguration will involve the introduction of
manager components that build on the reconfiguration
primitives already provided by the component model
(e.g., connect or disconnect components), without
requiring any change to existing code.

Acknowledgement

This research work was carried out under the FP6
Network of Excellence CoreGRID funded by the
European Commission (Contract IST-2002-004265).

References

[1] H. Algestam, M. Offesson, L. Lundberg, “Using
Components to Increase Maintainability in a Large
Telecommunication System”, Ninth Asia-Pacific Software
Engineering Conference (APSEC'02), p. 65, 2002.

[2] B.A. Allan, R.C. Armstrong, A.P. Wolfe, J. Ray, D.E.
Bernholdt, and J.A. Kohl, “The CCA core specifications in a
distributed memory SPMD framework”, Concurrency

Comput. Pract. Exp., vol. 14(5), 323-345, 2002.

[3] B.A. Allan, S. Lefantzi, J.Ray, “ODEPACK++:
Refactoring the LSODE Fortran Library for Use in the CCA
High Performance Component Software Architecture”, Ninth
International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS'04), 109-119, 2004.

[4] L. Baduel, F. Baude, D. Caromel, C. Delbe, S. Kasmi, N.
Gama, and S. Lanteri, “A Parallel Object-Oriented
Application for 3D Electromagnetism”, 18th International
Parallel and Distributed Processing Symposium, IEEE
Computer Society, Santa Fe, New Mexico, USA, April 2004.

[5] F. Baude, D. Caromel, and M. Morel, “From distributed
objects to hierarchical grid components”, In International
Symposium on Distributed Objects and Applications (DOA),
LNCS 2888, 1226-1242, Springer-Verlag, 2003.

[6] D.E. Bernholdt, B.A. Allan, R. Armstrong, F. Bertrand,
K. Chiu, et al., “A Component Architecture for High

Performance Scientific Computing”, ACTS Collection
special issue, Intl. J. High-Perf. Computing Applications, 20,
2006.

[7] E. Bruneton, T. Coupaye, and J. B. Stefani, “Recursive
and dynamic software composition with sharing”, In
Proceedings of the Seventh International Workshop on
Component-Oriented Programming (WCOP2002), 2002.

[8] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, et al,
“Grid'5000: A Large Scale, Reconfigurable, Controlable and
Monitorable Grid Platform”, 6th IEEE/ACM International
Workshop on Grid Computing, Grid'2005, Seattle,
Washington, USA, Nov. 2005.

[9] CCA Forum Home Page, The Common Component
Architecture Forum, 2004. http://www.cca-forum.org.

[10] Grid Component Model (GCM) Proposal, CoreGRID
Deliverable, D.PM.002, Nov. 2005.

[11] A. Hoekstra and P. Sloot, “Introducing Grid Speedup :
A Scalability Metric for Parallel Applications on the Grid”,
Proc. of EGC 2005, LNCS 3470, 245–254, Springer-Verlag,
2005.

[12] S. Krishnan and D. Gannon. “XCAT3: A Framework for
CCA Components as OGSA Services”, 9th Intl Workshop on
High-Level Parallel Programming Models and Supportive
Environments, IEEE CS Press, 2004.

[13] O. Layaida, A.E. Özcan, and J.B. Stefani. “A
Component-based Approach for MPSoC SW Design:
Experience with OS Customization for H.264 Decoding”,
3rd Workshop on Embedded Systems for Real-Time
Multimedia under CODES+ISSS, New York, USA, 2005.

[14] F. Lüders, I. Crnkovic, P. Runeson, “Adopting a
Component-Based Software Architecture for an Industrial
Control System – A Case Study, Component-Based Software
Development for Embedded Systems”, LNCS 3778, 232-
248, Springer-Verlag, 2005.

[15] B.L. Massingill, T.G. Mattson, and B.A. Sanders,
“Patterns for parallel application programs”, In Proceedings
of the Sixth Pattern Languages of Programs Workshop
(PLoP99), 1999.

[16] B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland,
L. McInnes and B. Smith, “Parallel components for PDEs
and optimization: some issues and experiences”, Parallel

Computing, vol. 28(12), 1811-1831, Dec. 2002.

[17] Object Management Group, CORBA Component Model
v3.0, OMG Document formal/2002-06-65.

[18] N. Parlavantzas, V. Getov, M. Morel, F. Baude, F. Huet,
D. Caromel, “Componentising a Scientific Application for
the Grid”, Proc. 2nd Annual CoreGrid Integration Workshop,
225-236, October 2006, Krakow, Poland.

[19] ProActive web site, ttp://www.inria.fr/oasis/ProActive/

