
Integrated Risk Analysis for a Commercial Computing Service

Chee Shin Yeo and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne
VIC 3010, Australia

{csyeo, raj}@csse.unimelb.edu.au

Abstract

Utility computing has been anticipated to be the next
generation of computing usage. Users have the freedom to
easily switch to any commercial computing service to com-
plete jobs whenever the need arises and simply pay only on
usage, without any investment costs. A commercial comput-
ing service however has certain objectives or goals that it
aims to achieve. In this paper, we identify three essential ob-
jectives for a commercial computing service: (i) meet SLA,
(ii) maintain reliability, and (iii) earn profit. This leads to
the problem of whether a resource management policy im-
plemented in the commercial computing service is able to
meet the required objectives or not. So, we also develop
two evaluation methods that are simple and intuitive: (i)
separate and (ii) integrated risk analysis to analyze the ef-
fectiveness of resource management policies in achieving
the required objectives. Evaluation results based on five
policies successfully demonstrate the applicability of sepa-
rate and integrated risk analysis to assess policies in terms
of the required objectives.

1. Introduction

The next era of computing is envisioned to employ the
utility model [28], where users no longer need to invest
heavily to maintain their own computing resources. In-
stead, users outsource jobs to dedicated commercial com-
puting services to be completed and thus only pay for what
they use whenever they want. With the advance of parallel
and distributed technologies, such as cluster computing [18]
and grid computing [10] that enable resource sharing across
various organizations, commercial vendors such as Ama-
zon [2], HP [3], IBM [4], and Sun Microsystems [5] are

1-4244-0910-1/07/$20.00 c©2007 IEEE.

now progressing aggressively towards providing a service
market that provides dynamic service delivery.

A commercial computing service is initiated to achieve
certain objectives which are very different from that of
a non-commercial computing service. The most distinct
objective between them is that a commercial computing
service aims to earn profit as Return On Investment (ROI)
for running the service, since commercial computing ser-
vices are businesses driven by monetary performance. Even
though monetary performance is the ultimate objective,
there are also other user-centric objectives. One user-centric
objective is to meet the Service Level Agreement (SLA)
that have been negotiated and agreed upon with the user
as the user pays for the expected service to be delivered.
Another user-centric objective is to maintain reliability so
that users are not disappointed with the poor service qual-
ity, otherwise they will switch to other commercial com-
petitors. These user-centric objectives are important since a
commercial computing service focuses on providing value-
added services for users who then in turn pay for using the
services.

Our work focuses on evaluating suitable resource man-
agement policies for a commercial computing service,
in particular with respect to its required objectives.
As there are numerous resource management policies
[16][17][13][12][20][25][27][26] available, it is non-trivial
to identify the best policy that truly meets the required ob-
jectives of the commercial computing service. Therefore,
the contributions for this paper are:

• Identifying three essential objectives for a commercial
computing service: (i) meet SLA, (ii) maintain relia-
bility, and (iii) earn profit.

• Developing two evaluation methods that are simple
and intuitive: (i) separate and (ii) integrated risk anal-
ysis to analyze the effectiveness of resource manage-
ment policies in achieving the required objectives.

• Providing comprehensive performance analysis of five
policies (FCFS-BF, EDF-BF, Libra, LibraRisk, and
FirstReward) thru trace-based simulation to reveal the
best policy for various objectives.

Evaluation results demonstrate the applicability of separate
and integrated risk analysis based on various scenarios (in-
cluding varying workload, job mix, deadline, budget, and
penalty) to assess policies in terms of the required objec-
tives. These methods can thus help commercial computing
service providers to identify and implement resource man-
agement policies that suit their objectives.

Section 2 discusses related work. Section 3 describes
three possible objectives that a commercial computing
service aims to achieve and how they can be measured.
Section 4 develops two evaluation methods to facilitate the
comparison of selected resource management policies in
achieving the required objectives. Section 5 describes the
evaluation methodology to assess these policies. Section 6
analyzes the effectiveness of these policies with regards to
the required objectives. Section 7 concludes.

2. Related Work

There are many Resource Management Systems (RMS)
[24][11][19][6][23] available, providing different policies
to allocate jobs. However, a commercial computing service
need to consider other service parameters, such as the dead-
line to complete the job, the budget the user will pay
for its completion, and the penalty for any deadline vio-
lation. So, several new policies [21][12][13][20][25][27]
have been proposed to support quality-driven computing
services, such as using an admission control to selectively
accept new jobs based on certain service parameters.

However, there is no work done to identify essential ob-
jectives that a commercial computing service is aiming to
achieve, which is what we are addressing in this paper. We
also propose separate and integrated risk analysis methods
to evaluate whether policies are able to achieve the required
objectives.

Various works [14][15][12][20] have addressed some
form of risk in computing jobs. In [12] and [20], the risk
of paying penalties to compensate users is minimized so as
not to reduce the profit of service providers. Computation-
at-Risk (CaR) [14][15] determines the risk of completing
jobs later than expected based on either the makespan (re-
sponse time) or the expansion factor (slowdown). GridIS
[25] shows that a conservative provider earns much less
profit due to accepting too few jobs to run, as compared
to an aggressive provider who earn more profit even though
more jobs result in deadline violations. In contrast, we pro-
vide a way to evaluate these policies with respect to the re-
quired objectives.

3. Objectives of a Commercial Computing
Service

A commercial computing service operates based on ob-
jectives that it aims to achieve. This section explains the
importance of achieving three possible objectives: (i) meet
SLA, (ii) maintain reliability, and (iii) earn profit, and how
they can be measured.

Since various users have different requirements and
needs for running their jobs, they specify specific SLA for
completing their jobs. An example of SLA requirement is
the deadline within which a job needs to be completed in.
Users expect their specified SLA requirements to be ful-
filled as they are paying for the required service. Users
who always have jobs being rejected can easily opt for other
service providers, thus increasing competition and demand
for SLA satisfaction. So, the relevant objective of the com-
mercial computing service will be to meet SLA. The SLA
metric can be computed as the percentage of nSLA jobs
with SLA fulfilled (in this case, completed within dead-
lines), out of the total number of m jobs submitted to the
computing service:

SLA =
nSLA

m
∗ 100 (1)

With users specifing the level of service they required
thru SLA, the commercial computing service needs to en-
sure that it can really deliver the negotiated service. Other-
wise, users can simply switch to other competitors offering
better service. So, another objective is to maintain reliabil-
ity. The reliability metric can be calculated as the percent-
age of nSLA jobs with SLA fulfilled, out of the number of
n jobs that are accepted by the computing service:

reliability =
nSLA

n
∗ 100 (2)

The most important objective for a commercial comput-
ing service is to earn profit as commercial businesses are
always driven by monetary performance. The profit met-
ric can be set as the percentage of total utility earned from
n jobs accepted by the computing service, out of the total
maximum budget of m jobs that are submitted to the com-
puting service:

profit =

Pn

i=1
utilityi

Pm

i=1
budgeti

∗ 100 (3)

4. Risk Analysis

An effective evaluation method is essential to determine
whether a commercial computing service is able to meet its
objectives. This section develops two methods based on risk
management techniques: (i) separate and (ii) integrated risk
analysis.

4.1. Separate Risk Analysis

To evaluate an objective, we analyze the risk involved
for that objective thru its corresponding metric as defined in
Section 3. Risk analysis requires two parameters: (i) per-
formance and (ii) volatility that can be computed based on
the results obtained in a particular scenario. For example,
in the scenario of varying workload, a total of n results can
be obtained for a specific metric (eg. SLA) using each dif-
ferent workload, whereas the rest of the experiment settings
remains the same.

Thus, we can compute performance µsep of a policy for
an objective as the mean of all n results obtained in the sce-
nario:

performance, µsep =

Pn

i=1
resulti

n
(4)

Volatility σsep of the policy for the objective can then be
derived by the standard deviation of these n results:

volatility, σsep =

s

Pn

i=1
(resulti)

2

n
− (µsep)2 (5)

A higher volatility means that the results of the policy
fluctuates more, thus increasing the risk that the policy does
not always return the same performance under various con-
ditions. So, given two policies with the same performance,
a policy with lower volatility is preferred over the one with
higher volatility.

4.2. Integrated Risk Analysis

As separate risk analysis only examines a single objec-
tive, we need to be able to examine a combination of objec-
tives. Moreover, there is often more than one objective for
a commercial computing service, so it is critical to be able
to assess all these objectives in an integrated fashion.

Given that there is a total of n objectives to examine, the
performance µint and volatility σint of the integrated risk
analysis can be computed using the performance µsep,i and
volatility σsep,i measures from the separate risk analysis for
each objective i:

performance, µint =
n

X

i=1

wi ∗ µsep,i (6)

volatility, σint =
n

X

i=1

wi ∗ σsep,i (7)

where wi is a weight to denote the importance of a particu-
lar objective with respect to other objectives. For instance,
for our experiments, we treat all objectives as equal, mean-
ing that all wi are the same. So, for the results in Section
6.2, wi is 0.5 for two objectives and wi is 0.33 for all three
objectives.

Table 1. Policy parameter consideration.
Policy Arrival Deadline Budget

time with penalty
FCFS-BF X

EDF-BF X

Libra X

LibraRisk X

FirstReward X

5. Performance Evaluation

5.1. Resource Management Policies

We examine five resource management policies, namely:
(i) FCFS-BF, (ii) EDF-BF, (iii) Libra, (iv) LibraRisk, and
(v) FirstReward. Table 1 lists the differences between these
policies thru the parameters they consider in allocating re-
sources to jobs.

FCFS-BF and EDF-BF are backfilling policies which
prioritize jobs based on arrival time (First Come First Serve)
and deadline (Earliest Deadline First) respectively. Both
policies adopt EASY backfilling [16][17] to increase re-
source utilization. A queue is used to store incoming jobs
as only a single job can run on a processor at any time (i.e.
space-shared). When insufficient number of processors is
available for the first job (highest priority) in the queue,
EASY backfilling assigns these unused processors to the
next waiting jobs in the queue based on their runtime es-
timates, provided that they do not delay the first job. In
other words, jobs that skip ahead must finish before the time
when the required number of processors by the first job is
expected to be available.

These two variations of EASY backfilling policy are
chosen for performance evaluation because EASY backfill-
ing is currently the most widely used policy for schedul-
ing parallel jobs in commercial cluster batch schedulers [9].
We find that these policies without job admission control
perform much worse, especially when deadlines of jobs are
short. So, we implement an admission control that checks
whether a job should be rejected based on two conditions
before running it: (i) the job is predicted to exceed its dead-
line based on its runtime estimate, and (ii) the job has al-
ready exceeded its deadline while waiting in the queue. This
generous admission control enables FCFS-BF and EDF-BF
to select their highest priority job at the latest time, while
ensuring that earlier jobs whose deadlines have lapsed do
not incur propagated delay for later jobs.

Libra [21] uses deadline-based proportional processor
share with job admission control to enforce the deadlines
of jobs. A minimum processor time share is computed for
each job i as runtimei/deadlinei using runtime estimate
so that job i is accepted only if there are sufficient required
number of processors with the free minimum processor time

share. This means that multiple jobs can run on a proces-
sor at any time, using its allocated minimum processor time
share (i.e. time-shared). Unlike the above backfilling poli-
cies, no queue is maintained so a new job is checked during
submission and rejected immediately if its deadline is not
expected to be fulfilled. Libra chooses suitable processors
based on the best fit strategy, i.e. processors that have the
least available processor time left with the new job will be
selected first so that every processor is saturated to its maxi-
mum. Any remaining free processor time is then distributed
among all jobs on the processor according to the processor
time share of each job.

LibraRisk [27] is an improvement of Libra and uses the
same deadline-based proportional processor share. The dif-
ference is that LibraRisk considers the risk of deadline de-
lay when selecting suitable nodes for a new job. Nodes are
selected for a new job only if they have zero risk of deadline
delay. This enables LibraRisk to manage the risk of inaccu-
rate runtime estimates more effectively than Libra. Given
that actual runtime estimates from traces are quite inaccu-
rate, LibraRisk is able to complete more jobs with deadline
fulfilled and achieve lower average slowdown than Libra.

FirstReward [12] determines possible future earnings
PVi with possible opportunity cost penalties costi based on
estimated remaining runtime RPTi of a job i. The reward
rewardi is then calculated thru a α-weighting function as:
rewardi = ((α∗PVi)−((1−α)∗costi))/RPTi. The earn-
ings PVi of a job i is computed as: PVi = budgeti/(1 +
(discount rate ∗ RPTi)). For unbounded penalties (as in
the case of our simulation), the penalty cost costi of a job
i is the sum of penalty for all other n accepted jobs based
on RPTi: costi =

∑n
j=0;j 6=i(penalty ratej ∗RPTi). The

admission control of FirstReward computes the slack slacki

of a new job i during submission and rejects the job im-
mediately if slacki is less than a specified slack threshold:
slacki = (PVi − costi)/penalty ratei. The slack thresh-
old determines the balance of earnings and penalties where
a high threshold avoids future commitments that can result
in possible penalties. Setting the correct slack threshold
is not trivial as the ideal slack threshold changes depend-
ing on the workload. After testing various slack thresh-
old values for our simulated workload, we derive the fol-
lowing ideal simulation settings for FirstReward: α is 1,
the discount rate is 1%, and the slack threshold is 25. We
have also extended the FirstReward to consider multiple-
processor parallel jobs for our simulation since the original
one only considers single-processor jobs. However, we do
not make FirstReward to support backfilling, so delays may
occur due to waiting for the required number of processors.

5.2. Evaluation Methodology

Our evaluation uses a discrete event simulator called
GridSim [7][22] to run the experiments. The experiments
are generated from a subset of the last 5000 jobs in the
SDSC SP2 trace (April 1998 to April 2000) version 2.2
from Feitelson’s Parallel Workload Archive [1].

The SDSC SP2 trace is chosen because it has the highest
resource utilization of 83.2% among other traces to ideally
model the heavy workload scenario for a computing service.
This 5000 job subset based on the last 3.75 months of the
SDSC SP2 trace requires an average of 17 processors and
has an average inter arrival time of 1969 seconds (32.8 min-
utes) and average runtime of 8671 seconds (2.4 hours). The
computing service that is simulated resembles the IBM SP2
at San Diego Supercomputer Center (SDSC) with 128 com-
putation nodes, each having a SPEC rating of 168.

However, jobs submitted to a commercial computing
service need to have three other significant parameters
(deadline, budget, and penalty) which is unfortunately un-
available in this trace and from an actual commercial com-
puting service. Therefore, we adopt a similar methodology
in [12] to model these parameters through two job classes:
(i) high urgency and (ii) low urgency.

Each job in the high urgency class has a dead-
line of low deadlinei/runtimei value, budget of
high budgeti/f(runtimei) value, and penalty of
high penaltyi/g(runtimei) value. f(runtimei) and
g(runtimei) are functions to represent the minimum
budget and penalty that the user will quote with respect to
runtimei. Conversely, each job in the low urgency class
has a deadline of high deadlinei/runtimei value, budget
of low budgeti/f(runtimei) value, and penalty of low
penaltyi/g(runtimei). This model is realistic since a user
who submits a more urgent job to be completed within a
shorter deadline is likely to offer a higher budget for the job
to be finished on time and also specify a higher penalty if
the job is delayed beyond its deadline. The arrival sequence
of jobs from the high urgency and low urgency classes is
randomly distributed.

Values are normally distributed within each of the three
parameters. The ratio of the means for each parameter’s
high-value and low-value is thus known as the high:low
ratio. So, a higher deadline high:low ratio indicates that
low urgency jobs have longer deadlines than that of a lower
ratio. For instance, a deadline high:low ratio of 8 means
the deadlinei/runtimei mean of low urgency jobs is two
times more than that of a deadline high:low ratio of 4. On
the other hand, a higher budget or penalty high:low ratio de-
notes that high urgency jobs have larger budget or penalty
than that of a lower ratio.

Since the deadline, budget and penalty rate of a job will
now always be set as a larger factor of runtime, we in-

Utility

Time

Deadline

Budget

Delay

Penalty

Utility reduces
linearly at constant
penalty rate

Submit time

Figure 1. Impact of penalty function on utility.

troduce a bias parameter value. A deadline bias means
that a job i with longer runtimei (more than the aver-
age runtime) has deadlinei = deadlinei/deadline biasi

(i.e. shorter deadline). But if job i has shorter runtimei

(less than the average runtime), then it has deadlinei =
deadlinei ∗ deadline biasi (i.e. longer deadline). This
works likewise for budget and penalty bias.

Different levels of workload are modeled thru the arrival
delay factor which sets the arrival delay of jobs based on
the inter arrival time from the trace. For example, an arrival
delay factor of 0.1 means a job with 600 seconds of inter
arrival time from the trace now has a simulated inter arrival
time of 60 seconds. Hence, a lower delay factor represents
higher workload by shortening the inter arrival time of jobs.

For our experiments, the runtime estimates of jobs are
taken from the actual runtime estimates available from the
trace. A point to note is that actual runtime estimates are
highly inaccurate and often over estimated.

5.3. Settings, Scenarios, and Metrics

For the experiments, we consider unbounded penalty as
shown in Figure 1. The penalty function penalizes the com-
puting service by reducing the budget of a job over time
after the lapse of its deadline. For simplicity, we model
the penalty function as linear, as in other previous works
[8][12][20]. For every job i, the computing service earns a
utility utilityi depending on its penalty rate penalty ratei

and delay delayi:

utilityi = budgeti − (delayi ∗ penalty ratei) (8)

Job i has a delay delayi if it needs a longer time to com-
plete than its given deadline deadlinei:

delayi = (finish timei − submit timei) − deadlinei (9)

Table 2. Default simulation settings.
Parameter Default value

Set A Set B
% of high urgency jobs 20 same
% of low urgency jobs 80 same

Deadline bias 1 14
Deadline high:low ratio 4 same

Deadline low mean 4 same

Budget bias 1 same
Budget high:low ratio 4 same

Budget low mean 4 same

Penalty bias 1 same
Penalty high:low ratio 4 same

Penalty low mean 4 same

Arrival delay factor 1 same

Table 3. Scenario settings.
Scenario Varying value

Set A Set B
Workload 0.02 same

(arrival delay factor) 0.10
0.25
0.50
0.75
1.00

Job mix 0 same
(% of high urgency jobs) 20

40
60
80

100

Deadline bias 1 10
2 12
4 14
6 16
8 18

10 20

Budget bias 1 same
2
4
6
8

10

Penalty bias 1 same
2
4
6
8

10

where submit timei is the time when job i is submit-
ted into the computing service and finish timei is the
time when job i is completed. Thus, job i has no delay
(i.e. delayi = 0) if it finishes before the deadline and the
computing service earns the full budget budgeti as utility
utilityi. But, if there is a delay (i.e. delayi > 0), utilityi

drops linearly until it turns negative (i.e. exceeds budgeti)
and becomes a penalty (i.e. utilityi < 0). The penalty is
unbounded till the time when the job is finally completed.
This model implies that a commercial computing service
must be careful about accepting new jobs to ensure that too
many jobs are not accepted such that heavily penalized jobs
dramatically erode previously earned utility.

We use two sets of experiments: (i) Set A and (ii) Set
B to better examine how each different policy performs for
different experiment settings. Table 2 lists the default sim-
ulation settings for both Set A and B. The only difference
is that Set B has a deadline bias of 14, whereas Set A has
a deadline bias of 1. So, the aim of Set B is to minimize
the advantage that FCFS-BF and EDF-BF have over other
policies for Set A since jobs with the shortest runtime also
has the shortest deadline and is thus always assigned first in
EASY backfilling.

We first execute the policies for each of these five dif-
ferent scenarios: (i) varying workload, (ii) varying job mix,
(iii) varying deadline bias, (iv) varying budget bias, and (v)
varying penalty bias. Table 3 shows the six varying values
in each scenario, thus deriving six results for a particular
metric in each scenario. The three metrics (as described
in Section 3) are: (i) SLA, (ii) reliability, and (iii) profit.
We then apply the two proposed evaluation methods (intro-
duced in Section 4) to assess the policies with respect to the
objectives: (i) separate risk analysis (Section 6.1) and (ii)
integrated risk analysis (Section 6.2).

6. Performance Results

6.1. Separate Risk Analysis

Figure 2 shows the separate risk analysis results for each
objective (SLA, Reliability, and Profit) using Set A and B.

For SLA objective (Figure 2(a) and 2(b)), LibraRisk is
the best policy as it returns the most number of jobs with
deadline fulfilled. However, it is also more volatile com-
pared to the other policies. EDF-BF is the least volatile pol-
icy to achieve the highest number of jobs as most deadlines
are set as a larger factor based on runtime, so shortest jobs
also has short deadlines. We can also notice that both Li-
bra and LibraRisk are less volatile in Set B than Set A. This
shows that Libra and LibraRisk are able to exploit changes
in deadlines for better outcome.

Figure 2(c) and 2(d) shows the risk analysis for Relia-
bility objective. Both FCFS-BF and EDF-BF has all jobs

(100%) that are accepted complete within their deadlines,
due to the generous admission control that we implemented.
So, they are immune against the inaccuracy of runtime esti-
mates. FirstReward is also more volatile for Set B than Set
A as more shorter deadline jobs are being delayed, due to
their lower penalty rates.

For Profit objective (Figure 2(e) and 2(f)), all policies
experience high volatility for both Set A and B. However,
performance varies greatly between Set A and B. FCFS-BF
and EDF-BF achieves the highest profit in Set A, whereas
LibraRisk achieves the highest profit in Set B. LibraRisk
has similar profit as Libra in Set A, but is able to perform
much more effectively when deadline bias is high in Set B.
This proves that FCFS-BF and EDF-BF are able to achieve
highest profit in Set A, largely due to the adverse unfairness
in their generous admission controls.

FirstReward has the lowest performance for all three
SLA, Reliability, and Profit objectives. This is possibly due
to FirstReward not saturating the processors to their max-
imum, unlike the backfilling policies and Libra that maxi-
mizes the utilization of the processors.

6.2. Integrated Risk Analysis

Figure 3 presents the integrated risk analysis results for
each combination of two objectives using Set A and B,
while Figure 4 shows the integrated risk analysis results for
all three objectives.

For SLA and Reliability objectives in Figures 3(a) and
3(b), LibraRisk has the best performance and volatility for
both Set A and B, while FCFS-BF, EDF-BF and Libra per-
forms about the same.

Figure 3(d) shows LibraRisk performs a lot better for
SLA and Profit objectives in Set B due to its high perfor-
mance in SLA objective, as seen thru a convex shape of its
plot. Other policies perform not as well as seen thru the
concave shapes of their plots.

For Reliability and Profit objectives in Figure 3(e) and
3(f), all the policies appear to perform somewhat similar
in Set B, except LibraRisk and FirstReward having higher
volatility. In Set A, FCFS-BF and EDF-BF performs best,
followed by Libra and LibraRisk.

For all three objectives (SLA, Reliability, and Profit)
(Figure 4(a) and 4(b)), both FCFS-BF and EDF-BF per-
form well in Set A, but not in Set B, highlighting the ad-
verse advantage both policies have when deadlines are al-
ways set as larger factors of runtimes. LibraRisk is able to
meet SLA and earn profit more effectively by considering
the risk of deadline delay when runtime estimates are inac-
curate. We can see that LibraRisk emerge as the overall best
policy for Set B. LibraRisk also performs quite well for Set
A with only slightly lower performance and higher volatil-
ity than FCFS-BF and EDF-BF, even though LibraRisk ob-

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(a) Set A: SLA

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(b) Set B: SLA

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(c) Set A: Reliability

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(d) Set B: Reliability

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(e) Set A: Profit

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(f) Set B: Profit

Figure 2. Separate Risk Analysis for one objective.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(a) Set A: SLA + Reliability

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(b) Set B: SLA + Reliability

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(c) Set A: SLA + Profit

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(d) Set B: SLA + Profit

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(e) Set A: Reliability + Profit

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(f) Set B: Reliability + Profit

Figure 3. Integrated risk analysis for two objectives.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(a) Set A: SLA + Reliability + Profit

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

P
er

fo
rm

an
ce

 (%
)

Volatility (Standard Deviation)

FCFS-BF
EDF-BF

LibraRisk
Libra

FirstReward

(b) Set B: SLA + Reliability + Profit

Figure 4. Integrated risk analysis for all three objectives.

tains about 20% lower profit than FCFS-BF and EDF-BF
in Set A. This highlights the importance of considering all
objectives, rather than a single objective to truly identify a
resource management policy that can meet all the required
objectives.

7. Conclusion

This paper discusses several important objectives that
need to be considered by a commercial computing service.
Two evaluation methods called separate and integrated risk
analysis are then proposed. Evaluation results have shown
that both separate and integrated risk analysis are able to
determine how different resource management policies per-
form with respect to a single objective and a combination
of objectives respectively. In particular, an objective that is
not achieved can severely impact on the overall achievement
of other objectives. This work has thus addressed the im-
portant need of identifying and analyzing the achievement
of key objectives by resource management policies imple-
mented in a commercial computing service.

Acknowledgments

We thank Anthony Sulistio for his support with the use
of GridSim. This work is partially supported by a Dis-
covery Project grant from the Australian Research Council
(ARC) and an International Science Linkage grant from the
Australian Department of Education, Science and Training
(DEST).

References

[1] Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload.

[2] Amazon. Elastic Compute Cloud (EC2),
http://www.amazon.com/ec2.

[3] HP. Adaptive Enterprise,
http://www.hp.com/go/adaptive.

[4] IBM. On Demand Business,
http://www.ibm.com/ondemand.

[5] Sun Microsystems. Sun Grid,
http://www.sun.com/service/sungrid.

[6] Altair Grid Technologies. OpenPBS Release 2.3 Adminis-
trator Guide, Aug. 2000.

[7] R. Buyya and M. Murshed. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource Manage-
ment and Scheduling for Grid Computing. Concurrency and
Computation: Practice and Experience, 14(13–15):1175–
1220, Nov.–Dec. 2002.

[8] B. N. Chun and D. E. Culler. User-centric Performance
Analysis of Market-based Cluster Batch Schedulers. In
Proceedings of the 2nd International Symposium on Clus-
ter Computing and the Grid (CCGrid 2002), pages 22–30,
Berlin, Germany, May 2002.

[9] Y. Etsion and D. Tsafrir. A Short Survey of Commercial
Cluster Batch Schedulers. Technical Report 2005-13, He-
brew University, May 2005.

[10] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
San Francisco, CA, 2003.

[11] IBM. LoadLeveler for AIX 5L Version 3.2 Using and Ad-
ministering, Oct. 2003.

[12] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing Risk and
Reward in a Market-based Task Service. In 13th Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC13), Honolulu, HI, June 2004.

[13] M. Islam, P. Balaji, P. Sadayappan, and D. K. Panda. To-
wards Provision of Quality of Service Guarantees in Job
Scheduling. In 6th International Conference on Cluster
Computing (Cluster 2004), San Diego, CA, Sept. 2004.

[14] S. D. Kleban and S. H. Clearwater. Computation-at-Risk:
Assessing Job Portfolio Management Risk on Clusters. In
18th International Parallel and Distributed Processing Sym-
posium (IPDPS 2004), Santa Fe, NM, April 2004.

[15] S. D. Kleban and S. H. Clearwater. Computation-at-
Risk: Employing the Grid for Computational Risk Manage-
ment. In 6th International Conference on Cluster Comput-
ing (Cluster 2004), San Diego, CA, Sept. 2004.

[16] D. Lifka. The ANL/IBM SP Scheduling System. In 1st
Workshop on Job Scheduling Strategies for Parallel Process-
ing (JSSPP 1995), Santa Barbara, CA, April 1995.

[17] A. W. Mu’alem and D. G. Feitelson. Utilization, Predictabil-
ity, Workloads, and User Runtime Estimates in Scheduling
the IBM SP2 with Backfilling. IEEE Transactions on Paral-
lel and Distributed Systems, 12(6):529–543, June 2001.

[18] G. F. Pfister. In Search of Clusters. Prentice Hall PTR, Upper
Saddle River, NJ, second edition, 1998.

[19] Platform Computing. LSF Version 4.1 Administrator’s
Guide, 2001.

[20] F. I. Popovici and J. Wilkes. Profitable services in an un-
certain world. In 18th Conference on Supercomputing (SC
2005), Seattle, WA, Nov. 2005.

[21] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Li-
bra: a computational economy-based job scheduling system
for clusters. Software: Practice and Experience, 34(6):573–
590, May 2004.

[22] A. Sulistio, G. Poduvaly, R. Buyya, and C.-K. Tham. Con-
structing A Grid Simulation with Differentiated Network
Service Using GridSim. In 6th International Conference on
Internet Computing (ICOMP 2005), Las Vegas, NV, June
2005.

[23] Sun Microsystems. Sun ONE Grid Engine, Administration
and User’s Guide, Oct. 2002.

[24] University of Wisconsin-Madison. Condor Version 6.7.1
Manual, 2004.

[25] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu. GridIS: an Incentive-
based Grid Scheduling. In 19th International Parallel and
Distributed Processing Symposium (IPDPS 2005), Denver,
CO, April 2005.

[26] C. S. Yeo and R. Buyya. A Taxonomy of Market-
based Resource Management Systems for Utility-driven
Cluster Computing. Software: Practice and Experience,
36(13):1381–1419, 10 Nov. 2006.

[27] C. S. Yeo and R. Buyya. Managing Risk of Inaccurate
Runtime Estimates for Deadline Constrained Job Admis-
sion Control in Clusters. In 35th International Conference
on Parallel Processing (ICPP 2006), Columbus, OH, Aug.
2006.

[28] C. S. Yeo, R. Buyya, M. D. de Assuncao, J. Yu, A. Sulistio,
S. Venugopal, and M. Placek. Utility Computing on Global
Grids. Technical Report GRIDS-TR-2006-7, Grid Comput-
ing and Distributed Systems Laboratory, The University of
Melbourne, April 2006.

