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Abstract

Client-side file caching has long been recognized as a file
system enhancement to reduce the amount of data transfer
between application processes and I/O servers. However,
caching also introduces cache coherence problems when a
file is simultaneously accessed by multiple processes. Ex-
isting coherence controls tend to treat the client processes
independently and ignore the aggregate I/O access pattern.
This causes a serious performance degradation for paral-
lel I/O applications. In our earlier work, we proposed a
caching system that enables cooperation among applica-
tion processes in performing client-side file caching. The
caching system has since been integrated into the MPI-IO
library. In this paper we discuss our new implementation
and present an extended performance evaluation on GPFS
and Lustre parallel file systems. In addition to compar-
ing our methods to traditional approaches, we examine the
performance of MPI-IO caching under direct I/O mode to
bypass the underlying file system cache. We also investi-
gate the performance impact of two file domain partition-
ing methods to MPI collective I/O operations: one which
creates a balanced workload and the other which aligns
accesses to the file system stripe size. In our experiments,
alignment results in better performance by reducing file lock
contention. When the cache page size is set to a multiple of
the stripe size, MPI-IO caching inherits the same advantage
and produces significantly improved I/O bandwidth.

1. Introduction

Since the 1990s, parallel file systems have been built
based on the experience learned from distributed file sys-
tems and focused on providing high data throughput and
scalability. Many performance enhancement strategies
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developed for distributed environments have also been
adopted. One example is client-side file caching, which
aims to reduce the number of data transfers between file
servers and application clients. However, a cache coher-
ence problem is introduced when changes to a local copy
of cached data do not propagate to other copies in a timely
manner, leaving the cache in an incoherent state. Coherence
control used in distributed file systems is often implemented
by the bookkeeping of cache status at the servers and invok-
ing client callbacks when flushing dirty cache is needed.
This traditional approach handles I/O requests without re-
gard to the correlation among requesting clients. While this
assumption may work well in the distributed environment,
it can be inefficient for parallel applications in which multi-
ple clients often work on globally partitioned data structures
and concurrently read/write these data structures from/to
shared files.

In our earlier work, we prototyped a user-level caching
system by incorporating the MPI communicator concept to
enable cooperative caching among MPI processes that open
a shared file collectively [13]. By moving the caching layer
closer to user applications, we believe that high-level ap-
plication I/O patterns can be utilized for better coherence
control. In particular, knowing the group of clients that will
later access a shared file can help track incoherent cache
status effectively. We use an I/O thread in each application
process to handle local file caching and remote cache page
access. All I/O threads cooperate with each other for cache
coherence control. One immediate benefit of this design is
that the file system can pass consistency control responsi-
bilities to the caching system.

We have since expanded the functionality of the caching
system and integrated it into ROMIO, an MPI-IO imple-
mentation developed at Argonne National Laboratory [23].
In the rest of the paper, we refer to our new implementa-
tion as MPI-IO caching. New functionality includes the
following: automatically increase the memory space for
cache metadata as the file size grows; separate sharable



read locks from exclusive write locks; pipelined two-phase
locking that enables overlapping of cache page access and
lock requests; a cache page migration mechanism; dynamic
cache page allocation based on available memory space; a
two-phase flushing mechanism at file close to shuffle the
cache pages such that neighboring pages are moved to the
same processes; handling multiple files opened with differ-
ent MPI communicators; MPI hints to enable and setting
caching parameters, such as a customized cache page size,
enabling/disabling page migration, pipelined locking, and
two-phase flushing.

In general, client-side file caching enhances I/O perfor-
mance under two scenarios: the I/O pattern with repeated
accesses to the same file regions, and the pattern with a
large number of small requests. For the former, caching
reduces client-server communication costs. In this paper,
we will not discuss this pattern in detail, since it is not
commonly seen in today’s parallel applications. As for
the latter, caching accumulates multiple small requests into
large requests for better network utilization, also known as
write behind and read ahead. However, caching introduces
overheads of coherence control, operations for extra mem-
ory copying, and memory space management. When such
overheads overwhelm caching benefits, enabling caching
only results in reducing performance. In this work we use
BTIO and FLASH I/O benchmarks to present a comprehen-
sive performance evaluation for MPI-IO caching. Our dis-
cussion focuses on the analysis of the performance impact
from several system features, such as distributed file lock-
ing, direct I/O, and file domain alignment to the file sys-
tem stripe size. The performance results demonstrate that
MPI-IO caching succeeds in using a write behind strategy
to align I/O requests with the file system block size, which
effectively reduces lock contention that otherwise appears
in non-aligned accesses. The rest of the paper is organized
as follows. Section 2 discusses related works. Section 3
describes the design of MPI-IO caching and its recent im-
provement. Experimental results and performance analysis
are given in Section 4. The paper is concluded in Section 5.

2. Related Work

Client-side file caching is supported in many parallel file
systems, for instance, IBM GPFS [18, 21] and Lustre [14].
GPFS, by default, employs a distributed locking mechanism
to maintain a coherent cache between nodes, in which lock
tokens must be granted before any I/O operation can be per-
formed [19]. Distributed locking avoids centralized lock
management by making a token holder a local lock man-
ager for granting any further lock requests to its granted byte
range. A token allows a node to cache data that cannot be
modified elsewhere without revoking the token first. IBM’s
MPI-IO implementation over GPFS uses a different mecha-

nism named data shipping, where a file is divided into equal
sized blocks, each bound to a single I/O agent, a thread in
an MPI process. A file block can only be cached by its I/O
agent which is responsible for all accesses to this block. I/O
operations must go through the I/O agents which “ship” the
requested data to the appropriate processes. Data shipping
avoids the cache coherence problem by allowing at most
one copy of file data to be cached among agents. The Lustre
file system uses a slightly different distributed locking pro-
tocol in which each I/O server manages locks for the stripes
of file data it owns. If a client requests a conflict lock held
by another client, a message is sent to the lock holder asking
for the lock to be released. Before a lock can be released,
dirty cache must be flushed to the servers.

Cooperative caching has been proposed as a system-wise
solution for caching and coherence control [3]. It coor-
dinates multiple clients by relaying the requests not satis-
fied by one client’s local cache to another client. Systems
that use cooperative caching include PGMS [24], PPFS [8],
and PACA [2]. The Clusterfile parallel file system inte-
grates cooperative caching and disk direct I/O for improving
MPI collective I/O performance [11]. However, coopera-
tive caching in general requires changes in the file system
at both client and server. In contrast, the MPI-IO caching
proposed in this work is implemented in user space and re-
quires no change to the underlying file system.

2.1. MPI-IO

The Message Passing Interface standard (MPI) defines
a set of programming interfaces for parallel program de-
velopment that explicitly uses message passing to carry out
inter-process communication [16]. The MPI standard ver-
sion 2 extends the interfaces to include file I/O operations
[17]. MPI-IO inherits two important MPI features: the abil-
ity to define a set of processes for group operations using
an MPI communicator and the ability to describe complex
memory layouts using MPI derived data types. A commu-
nicator specifies the processes that participate in an MPI op-
eration, whether for inter-process communication or I/O re-
quests to a shared file. For file operations, an MPI commu-
nicator is required when opening a file in parallel to indicate
the processes that will later access the file. Two types of
functions are defined in MPI-IO, namely collectives and in-
dependents. Collective operations require all the processes
that opened the file to participate. Many collective I/O opti-
mizations take advantage of the synchronization by having
processes exchange individual access patterns in order to
produce a better I/O strategy. A well-known example of a
collective I/O optimization is two-phase I/O [4]. In contrast,
independent I/O does not require synchronization, making
any cooperative optimizations very difficult.

Active buffering is considered an enhancement for MPI
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collective write operations [15]. It buffers write data locally
and uses an I/O thread to flush the accumulated data to the
file system in the background. Using I/O threads allows
dynamic adjustment to the local buffer size based on the
available memory space. When processing a write request,
the main thread duplicates the writing data to a newly allo-
cated buffer and appends this buffer into a queue. The I/O
thread later retrieves the buffers from the head of the queue,
makes write calls to the file system, and releases the buffer
memory. Active buffering aims to improve performance for
applications that make only collective write calls. Lacking
consistency control, it is hard for active buffering to handle
the I/O with mixed reads and writes, as well as independent
and collective calls.

3. Client-Side File Caching for MPI-IO

In our earlier work [13], we adopted a concept simi-
lar to cooperative caching and implemented a client-side
file caching system as a library running entirely at the user
space. Designed for MPI applications, this caching system
uses the MPI communicator supplied to the file open call
to identify the scope of processes that will later cooperate
with each other to perform file caching. Previously, the
caching system was implemented as a stand-alone library.
Since then, we have incorporated it into the ADIO layer of
ROMIO. The ADIO layer is where ROMIO interfaces with
underlying file systems [22]. Here, we briefly describe the
design and recent implementation updates.

3.1. I/O Thread

In order to have MPI processes cooperate with each
other, the caching system needs a transparent mechanism in
each process that can run independently and concurrently
with the program main program. We choose an I/O thread
approach. A POSIX thread is created in each MPI process
when opening the first file and destroyed when closing the
last file. Multi-threading enables cooperative caching with-
out interrupting the main thread. This feature is particularly
important for MPI applications that make independent I/O
calls, since independent I/O requires no process synchro-
nization. The I/O thread handles both local and remote re-
quests to data cached in the local memory, and collaborates
with remote threads for coherence control. Figure 1 illus-
trates the I/O thread’s task flow inside an MPI process. The
I/O thread communicates with the main thread through a
mutex protected shared variable and uses MPI Iprobe()
to detect remote requests.

To deal with the fact that an MPI process may open more
than one file, MPI-IO caching is added support to handle
multiple files opened with different MPI communicators.
The communicator of a newly opened file is added into a
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Figure 1. Design of MPI-IO caching from a
single MPI process’ view.

linked list in each process. In order to handle requests for
all opened files, the I/O thread runs an infinite loop of call-
ing MPI Iprobe(), each with MPI ANY SOURCE as the
source process and a communicator alternatively from the
linked list. Blocking MPI communication functions, such
as MPI Wait() or MPI Probe(), cannot be used here,
because every MPI communication function must be bound
with a communicator and the I/O thread must be active all
the time to respond requests for any of the opened files. The
blocking function called with a communicator prevents the
I/O thread from detecting remote requests with a different
communicator. In fact, our implementation uses only asyn-
chronous MPI communication calls, so that waiting for one
request to complete will not block the operations for pro-
cessing another request.

3.2. Cache Metadata Management

In our implementation, a file is logically divided into
equal-sized pages. The cache granularity is set to a page
size whose default is the file system block size and change-
able by an MPI hint. A page size aligned with the file
block size is recommended, since it reduces the possibil-
ity of false sharing in the file system. Cache metadata, de-
scribing the cache status of these pages, are statically dis-
tributed in a round-robin fashion among the MPI processes
that open the shared file collectively. Finding the process
rank owning the metadata of a page requires only a modu-
lus operation. This approach also avoids centralized meta-
data management. Previously, memory space for metadata
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Figure 2. Example of the I/O flow in MPI-IO
caching where MPI process P1 reads data
from logical file page 7.

is pre-allocated with a constant size. We have since changed
it to allow increase of metadata space as the file size grows.

Cache metadata includes the page owner, MPI rank of
the current location, locking mode, and the page’s recent
access history. A page’s access history is used for cache
eviction and page migration. We have added a new page
migration mechanism to relocate a page if it is referred by
the same remote process consecutively twice. The I/O flow
of a read operation is illustrated in Figure 2 with four MPI
processes. In this example, process P1 reads data in file
page 7. The first step is to lock and retrieve the metadata
of page 7 from P3 (7 mod 4 = 3). If the page is not cached
yet, P1 will cache it locally (into local page 3) by reading
from the file system, as depicted by steps (2.a) and (3.a). If
the metadata indicates that the page is currently cached on
P2, then an MPI message is sent from P1 to P2 asking for
data transfer. In step (3.b), assuming file page 7 is cached
in local page 2, P2 sends the requested data to P1.

3.3. Locking Protocol

To ensure cache metadata integrity, i.e. atomic access to
metadata, a distributed locking mechanism is implemented.
We let each MPI process be a lock manager for the assigned
metadata and choose the file page size as the lock granu-
larity to simplify the implementation. Locks only apply to

metadata, in which locks must be granted to the request-
ing process before it can read/write the metadata. Once the
metadata are locked, the MPI process is free to access the
cache pages and the file range corresponding to the pages.
This locking mechanism also provides a foundation for im-
plementing MPI-IO atomicity. Most modern parallel file
systems, such as GPFS and Lustre, adhere to the POSIX
standard. Atomicity, as required by POSIX, defines the I/O
consistency on a shared file as all bytes written by a sin-
gle write call that are either completely visible or invisible
to a following read call [10, 9]. Similar to POSIX, MPI-
IO atomicity is required for each individual MPI read/write
call. However, unlike the POSIX read/write functions that
each can only access to a contiguous file region, a single
MPI read/write can simultaneously access to multiple non-
contiguous regions. To abide the MPI-IO semantics, scal-
able MPI-IO implementations must add an atomicity con-
trol layer to coordinate the non-contiguous reads/writes to
guarantee the atomic result [20, 12]. As one can imagine,
these implementations rely on the atomicity provided by the
individual POSIX read/write.

In our MPI-IO caching where cache pages consecu-
tive in file space can be stored at different MPI processes,
I/O atomicity is guaranteed for a single POSIX read/write
whose request spans more than two pages. To achieve this
goal, we enforce the page locks for all read/write calls. In
other words, a read/write call contain the operations in the
order of getting locks, accessing cache pages, and releas-
ing locks. Since all locks must be granted prior to access-
ing to the cache pages, dead locks may occur when more
than two processes are concurrently requesting locks for
two pages. To avoid dead locks, we employ the two-phase
locking strategy proposed in [1]. Under this strategy, lock
requests are issued in a strictly increasing order of page IDs
and a page lock must be obtained before the next lock re-
quest is issued.

We have added two new implementations to improve
locking. The first is use a pipelined locking strategy. In the
earlier work, all page locks from a read/write call must be
obtained prior to accessing the cache pages. The pipelined
locking allows the access to the already-locked cache pages
to proceed while waiting for other lock requests to be
granted. However, to guarantee I/O atomicity, locks must be
released altogether at the end of a read/write call. The sec-
ond new implementation is to separate locks into sharable
read locks and exclusive write locks. A counter is used to
record the number of MPI processes sharing a read lock.
The counter increases when the read lock is shared by a
new process and decreases when released by a process. A
write lock request will stop the counter from increasing and
put itself and the subsequent read/write lock requests into a
queue. Once the counter reaches zero, the write lock request
is retrieved from the queue and granted exclusively.
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3.4. Cache Page Management

To simplify coherence control, we allow at most a sin-
gle copy of file data to be cached among all MPI processes.
In our earlier implementation, a chunk of memory space is
pre-allocated for file caching at the time the I/O thread is
created. We have modified it to adopt a dynamic manage-
ment method to adjust memory usage for caching based on
available memory space. The caching policy is described as
follows. When accessing a file page that is not being cached
anywhere, the requesting process will try to cache the page
locally, by reading the entire page from the file system if
it is a read operation. An upper bound, by default 64 MB,
indicates the maximum memory size that can be used for
caching. If the memory allocation utility, malloc() finds
enough memory to accommodate the page and the total al-
located cache size is below the upper bound, the page will
be cached. Otherwise, i.e. under memory pressure, page
eviction is activated. Eviction is solely based on the local
references and a least-recent-used policy. If the requested
file pages have not yet cached and the request amount is
larger than the upper bound, the read/write calls will go di-
rectly to the file system. If the requested page has been
cached locally, a memory copy can simply satisfy the re-
quest. If the page is cached at a remote process, the request
is forwarded to the page owner.

When closing a file, all dirty cache pages are flushed to
the file system. A high water mark is added for each cache
page to indicating the range of dirty data, so that flushing
needs not always be an entire page. Because contiguous
logical file pages can potentially spread across all MPI pro-
cesses, a new two-phase flushing function is devised during
file close to mimic the two-phase I/O by shuffling cache
pages such that neighboring cache pages are moved to the
same processes before the flush. Although shuffling re-
quires extra communication cost, this approach enables se-
quential file access and further improves the performance.

4. Performance Evaluation

Our implementation for MPI-IO caching was evaluated
on two machines, Tungsten and Mercury, at the National
Center for Supercomputing Applications. Tungsten is a
1280-node Dell Linux cluster where each node contains two
Intel 3.2 GHz Xeon processors with a shared 3 GB memory.
The compute nodes run a Red Hat Linux operating system
and are inter-connected by both Myrinet and Gigabit Ether-
net communication networks. A Lustre parallel file system
version 1.4.4.5 is installed on Tungsten. To store the out-
put files, we created a directory with the configuration of
64 KB stripe size and 8 I/O servers. All files saved in this
directory shared the same striping configuration. Mercury
is a 887-node IBM Linux cluster where each node contains

two Intel 1.3/1.5 GHz Itanium II processors with a shared
4 GB memory. Running a SuSE Linux operating system,
the compute nodes are inter-connected by both Myrinet and
Gigabit Ethernet. Mercury runs an IBM GPFS parallel file
system version 3.1.0 configured in the Network Shared Disk
(NSD) server model with 54 I/O servers and 512 KB file
block size. Note that the IBM’s MPI is not available on
Mercury and hence we did not evaluate the performance of
GPFS’s data shipping. Regarding thread-safety, our MPI-
IO caching was implemented in the ROMIO layer of the
MPICH version 2-1.0.3, the thread-safe and latest version
of MPICH2, at the time our experiments were performed.
However, thread-safety is only supported for the default
sock channel of MPICH2. The inter-process communica-
tion in our experiments used Gigabit Ethernet, which is rel-
atively slower than the Myrinet on the same machines. To
evaluate MPI-IO caching, we used BTIO and FLASH I/O
benchmarks.

Developed by NASA Advanced Supercomputing Divi-
sion, the parallel benchmark suite NPB-MPI version 2.4
I/O is formerly known as the BTIO benchmark [25]. BTIO
presents a block-tridiagonal partitioning pattern on a three-
dimensional array across a square number of compute
nodes. Each processor is responsible for multiple Cartesian
subsets of the entire data set, whose number increases with
the square root of the number of processors participating in
the computation. Figure 3 illustrates the BTIO partitioning
pattern with an example of nine processes. BTIO provides
options for four I/O methods: MPI collective I/O, MPI in-
dependent I/O, Fortran I/O, and separate-file I/O. There are
40 consecutive collective MPI writes and each appends an
entire array to the previous write in a shared file. The writes
are followed by 40 collective reads to verify the newly writ-
ten data. We evaluated two I/O sizes: classes B and C with
array dimensions of 102× 102× 102 and 162× 162× 162,
respectively.

The FLASH I/O benchmark suite [27] is the I/O kernel of
FLASH application, a block-structured adaptive mesh hy-
drodynamics code that solves fully compressible, reactive
hydrodynamic equations, developed mainly for the study
of nuclear flashes on neutron stars and white dwarfs [5].
The computational domain is divided into blocks which are
distributed across the MPI processes. A block is a three-
dimensional array with an additional 4 elements as guard
cells in each dimension on both sides to hold information
from its neighbors. In this work, we used two block sizes of
16 × 16 × 16 and 32 × 32 × 32. There are 24 variables per
array element, and about 80 blocks on each MPI process. A
variation of block numbers per MPI process is used to gen-
erate a slightly unbalanced I/O load. Since the number of
blocks is fixed in each process, as we increase the number
of MPI processes, the aggregated I/O amount linearly in-
creases as well. FLASH I/O produces a checkpoint file and
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two visualization files containing centered and corner data.
The I/O uses HDF5, which allows data to be stored along
with its metadata in the same files. HDF5 is built on top
of MPI-IO [6]. To eliminate the overhead of memory copy-
ing in the HDF5 hyper-slab selection, FLASH I/O extracts
the interiors of the blocks via a direct memory copy into a
buffer before passing it into HDF5 routines. There are 24
I/O loops, one for each of the 24 variables. In each loop,
every MPI process writes into a contiguous file space, ap-
pending its data to the previous ranked MPI process. Inside
ROMIO, this non-interleaved access pattern actually trig-
gers the subroutines used by independent I/O, even if MPI
collective writes are called.

Table 1 shows the I/O amounts for both BTIO and
FLASH I/O used in our experiments. We believe that the
performance evaluation for a caching system is different
from measuring the maximum data rate for a file system.
Typical file system benchmarks avoid caching effect by us-
ing an I/O amount larger than the aggregated memory size
of either clients or servers. File caching can only be bene-
ficial when there is sufficient unused memory space for the
caching system to operate in. Therefore, we use the medium
array sizes for the benchmarks in our experiments such that
the I/O amount does not overwhelm the memory size of
compute nodes. In this paper, we report the aggregate I/O
bandwidth, since all inter-process communications in our
implementations use MPI asynchronous functions and it is
very hard to separate the costs for computation, communi-

Table 1. The I/O amount (in GB) of BTIO and
FLASH I/O benchmarks.

BTIO FLASH I/O

array dim. array dim.
no. nodes 1023 1623 163 323

16 3.24 12.97 1.15 9.13
25 3.24 12.97 - -
32 - - 2.30 18.26
36 3.24 12.97 - -
49 3.24 12.97 - -
64 3.24 12.97 4.60 36.53

cation, and file I/O. The I/O bandwidth numbers were ob-
tained by dividing the aggregate read/write amount by the
time measured from the beginning of MPI File open()
until after MPI File close(). Note that although no
explicit MPI File sync() call is made in both bench-
marks, closing files will flush all dirty cache data.

4.1. Compare with File System Caching

We first compare the benchmarks with and without MPI-
IO caching. We refer native cases as the results of run-
ning the benchmarks without MPI-IO caching. Figure 4
shows the aggregate I/O bandwidths using up to 64 com-
pute nodes. The cases of “caching + o direct” will be de-
scribed in the next section. For BTIO, MPI-IO caching
improves I/O bandwidth about 10 to 20 times on Lustre
and 2 to 5 times on GPFS. The improvement on GPFS is
moderate and reasonable for the caching effect expected in
BTIO’s read-after-write pattern. We believe the improve-
ment is hardly the effect of reading locally cached data at
the read phase, but the reduction of file system’s lock con-
tention. Both Lustre and GPFS are POSIX compliant file
systems and therefore respect POSIX I/O atomicity seman-
tics. To guarantee atomicity, parallel file systems often en-
force file locking in each read/write call to gain exclusive
access to the requesting file region. On parallel file systems
like Lustre and GPFS where files are striped across mul-
tiple I/O servers, locks can span multiple stripes for large
read/write requests. However, it is known that lock con-
tention due to enforcing atomicity can significantly degrade
parallel I/O performance [20, 12].

Lustre employs a server-based distributed file locking
protocol where each I/O server is responsible for manag-
ing locks for the file stripes it controls. The lock granularity
on Lustre is the system page size, 4 KB on Tungsten. GPFS
uses a token-based distributed file locking protocol, as de-
scribed in Section 2. The lock granularity on GPFS is the
disk sector size, 512 bytes on Mercury. If two writes are not
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Figure 4. I/O bandwidth results of BTIO and FLASH I/O benchmarks on Lustre and GPFS.

overlapping in byte range but unaligned on the lock granu-
larity boundaries, then they can still cause contention. Both
BTIO and FLASH I/O used in our experiments only gen-
erate read/write calls with offsets and lengths that both are
neither aligned to the boundaries of file stripe size nor the
system page size. Hence, lock contention occurs in every
two processes with consecutive MPI ranks, which results in
a serious I/O serialization. Comparing the performance be-
tween Lustre and GPFS, the token-based protocol seems to
have a better I/O parallelism. This effect can also be ob-
served from the FLASH I/O results. On the other hand,
MPI-IO caching can avoid such lock contentions if the log-
ical file page size (cache page size) is chosen a multiple
of file stripe size. In this case, all system I/O operations in
MPI-IO caching are within the boundaries of file stripe size.
In our experiments, we used 1024 KB cache page size, a
multiple of the file stripe size on both Lustre and GPFS.

For FLASH I/O, MPI-IO caching’s improvement is not
as significant as BTIO. In the 32 × 32 × 32 array size case
on GPFS, the native MPI-IO is even better than the MPI-IO
caching. As mentioned earlier in Section 1, the advantage of
file caching exists in two scenarios: when repeated access is
presented, and when write behind results in better network
utilization. Note that MPI-IO caching bears several over-
heads, including memory copying between I/O buffers and
cache pages, distributed lock management, and communi-
cation for remote accessing cache pages. Since FLASH I/O
performs write-only operations and shows no repeating ac-
cess pattern, write behind becomes the sole factor that can
contribute a better performance for MPI-IO caching. When

the write amount becomes larger, as the array size increased
from 16 × 16 × 16 to 32 × 32 × 32, file caching loses the
ground for the write-behind advantage.

4.2. Bypass File System Caching

On both Lustre and GPFS, system-level client-side
caching is enabled by default. Therefore, the performance
numbers of MPI-IO caching shown in Figure 4 actually
were the results of two levels of caching. It would be inter-
esting to see how MPI-IO caching performs when system-
level caching is disabled. We found that direct I/O is a
portable approach to bypass system caching. Enabled by
adding the O DIRECT flag at the time a file is opened, di-
rect I/O allows read/write calls to be carried out directly
to/from user I/O buffers. However, it requires a read/write
call’s file offset, request length, and user buffer address be
multiples of the system’s logical block size. On Lustre, it
is the system page size, 4 KB, and on GPFS, it is the disk
sector size, 512 bytes. If the above requirements are not
met, then Lustre will return an EINVAL error and GPFS
will automatically turn into regular, non-direct I/O. It is ad-
vised that designed to minimize cache effects, direct I/O is
only useful if applications do their own caching. While in
direct I/O mode, all I/O calls are synchronous, i.e., at the
completion of a read/write call, data is guaranteed to have
been transferred.

Since MPI-IO caching only generates reads/write re-
quests aligned with the cache page size, direct I/O seems fit
to MPI-IO caching naturally if the cache page size is a mul-
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Figure 5. BTIO bandwidth with file domain alignment.

tiple of system block size. The experimental results of MPI-
IO caching with direct I/O are added in Figure 4. Note that
direct I/O for the native cases, i.e. MPI-IO through POSIX
reads/writes, are not available because the block alignment
requirements on the buffer address, file offset, and length
cannot be fulfilled by BTIO and FLASH I/O natively. The
only way to use direct I/O in the native cases is to reallo-
cate the user buffers whenever they are not aligned with the
block size. In addition, if the file offset is not aligned, a
read-modify-write operation at the page boundaries cannot
be avoided. One can expect such cost of memory realloca-
tion and read-modify-write operations to easily overwhelm
the advantages of direct I/O.

As seen in Figure 4, the results of MPI-IO caching with
direct I/O do not further improve the performance. How-
ever, they are still better than the native cases, except for
the case of the FLASH I/O with 32 × 32 × 32 array size.
In fact, direct I/O enables a few welcome features for MPI-
IO caching. First of all, the memory copy operations be-
tween user buffers and system cache are eliminated. On
GPFS, even internal byte-range locking for cache coher-
ence control is automatically disabled when doing direct
I/O. Furthermore, no prefetching is done by GPFS, either.
On Lustre, we explicitly disabled file locking via a call to
ioctl(), which removes lock contention protocols. Note
that it is only safe to disable file locking on Lustre when do-
ing direct I/O. Nevertheless, these advantages cannot over-
come the fact that all reads/writes are synchronous. On both
GPFS and Lustre, such synchronization goes further to the
disks on the I/O servers, not just servers’ memory, before
a write call returns. On the other hand, without direct I/O,
data can be cached at the I/O servers so that a write call
can return immediately after the servers receive the data.
If servers’ aggregated memory space is large enough, write
data can entirely reside in servers’ memory without touch-
ing the disks, even after closing the file. In our experiments,
the disk synchronization cost clearly overwhelms the bene-
fits of the eliminating lock contention, buffer copying, and
prefetching.

4.3. File Domain Alignment

As discovered previously in section 4.1, lock contention
occurs when I/O requests are not aligned at the boundaries
of the file system’s lock granularity. Hence, we studied the
effect of alignment to both I/O benchmarks. ROMIO adopts
the two-phase I/O strategy proposed in [4] in its implemen-
tation for MPI collective I/O functions. Two-phase I/O con-
sists of an I/O phase and a communication phase. At first,
an aggregate access region is formed as a contiguous range
that covers all I/O requests from all MPI processes. File do-
mains are then defined and calculated by evenly dividing the
aggregate access region by the number of MPI aggregators.
The division is done at the byte range granularity. Desig-
nated aggregators can be a subset of or all the MPI processes
that opened the shared file collectively. Note that the term
file domain is only valid in MPI collective I/O operations
(two-phase I/O, to be precise), which is a contiguous region
to which the owning process has exclusive access. In the
I/O phase, each MPI aggregator makes read/write calls to
the file system for the requests within its file domain. In the
communication phase, data is distributed either to processes
from aggregators (read case) or vice versa (write case). The
calculation of file domains currently used in ROMIO tends
to achieve a balanced I/O workload among the aggrega-
tors. However, balanced workload may not always result
in aligned I/O requests to reduce lock contention.

We modified ROMIO’s two-phase I/O implementation
to allow the division of file domains to align with the file
stripe boundaries. This implementation is located at the
beginning of two-phase I/O and is completely independent
from MPI-IO caching. Prior to calculating the alignment,
the file’s stripe size must be known. Usually, the func-
tion call to query stripe size is file system dependent. On
Lustre, a file’s stripe size can be obtained via a call to
llapi file get stripe() from the Lustre’s API li-
brary. On GPFS, function gpfs fstat() tells the sys-
tem file block size, which is also the stripe size in most of
the GPFS configurations. Similar file domain alignment has
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Figure 6. BTIO read/write bandwidths with file domain alignment for the native case.

also been tested on the IBM BlueGene/L GPFS experiments
[26] and demonstrated an improved performance. The per-
formance results are given in Figure 5. We aligned the file
domains with 64-KB boundaries on Lustre and 512-KB on
GPFS (both are the system stripe sizes). No FLASH I/O
results are presented because its non-interleaved write pat-
tern will only trigger ROMIO independent I/O subroutines
internally, even if MPI collective writes are called in the ap-
plications. Since file domains are only defined in ROMIO’s
collective I/O subroutines, file domain alignment is not ap-
plicable to FLASH I/O.

When comparing aligned and unaligned MPI-IO
caching, we observe fluctuant but similar bandwidths on
Lustre and a noticeable improvement for aligned MPI-IO
caching on GPFS. File domain alignment benefits MPI-IO
caching further due to the removal of conflict locks inter-
nal to the MPI-IO caching’s locking protocol. These con-
flict locks can only occur at the boundaries of cache pages.
Nevertheless, the alignment effects on the native cases are
especially interesting. When comparing aligned and un-
aligned native cases, the alignment shows a slight improve-
ment on Lustre and a noticeable bandwidth escalation on
GPFS. The bandwidths of aligned native cases even become
comparable to the MPI-IO caching on GPFS. This phe-
nomenon attributes to the complete removal of write lock
contention that enables GPFS to cache BTIO’s data at the
clients’ memory with minimal coherence control overhead.

At first glance, the alignment’s improvement for the na-
tive cases on Lustre seems not as significant as on GPFS.
However, when looking at the I/O bandwidth numbers for
BTIO class C, we observed 2 to 3 times improvement ratios
both on Lustre and GPFS. This implies that the alignment
has a similar performance impact to the native cases on both
file systems. These ratios may not be obvious in Figure 5
because of Lustre’s relatively lower bandwidth. One of the
reasons causing the poor performance in general on Lus-
tre is its system-level read-ahead operation. Read ahead
is activated on Lustre by default. From a single MPI pro-
cess’s view, each read operation in BTIO results in an ac-

cess to a file space that is not contiguous from the previous
read, which renders the pre-fetched data completely use-
less. As shown in Figure 6, the native case’s read and write
bandwidths were measured separately and much lower read
bandwidths were observed than the write in all BTIO cases
on Lustre. Performance degradation due to read ahead on
Lustre has also been reported in [7]. Nevertheless, more in-
vestigation is still needed for explaining Lustre’s poor per-
formance for the parallel I/O patterns used in BTIO and
FLASH I/O.

5. Conclusions

There is no easy way to justify the parallel I/O perfor-
mance of a caching system, given non-obvious influences
such as file locking for I/O atomicity and file domain align-
ment to the system stripe size, as discussed in this pa-
per. We choose BTIO and FLASH I/O to evaluate MPI-IO
caching because their parallel I/O patterns are more realis-
tic than many artificial benchmarks and applications in the
real world may not always generate aligned I/O requests.
In fact, the nature of their unaligned patterns helped us to
discover hidden factors in parallel file system design that
hamper I/O performance. Enforcing POSIX semantics such
as I/O atomicity has become an obstacle for parallel file sys-
tems providing an I/O rate close to the maximum network
bandwidth. Many large-scale parallel applications primar-
ily use write-only and non-overlapping patterns, which do
not require strict semantics like POSIX atomicity. In our
MPI-IO caching design, file locking is also used to enforce
atomicity. We plan to design and add a mechanism as a user
option to relax atomicity. We conservatively chose to keep
at most a single copy of file data within the MPI processes’
memory. Although it simplifies coherence control, this re-
striction can increase the communication cost for remote
cache page access. We will investigate a new implementa-
tion that allows multiple cached copies of the same file date.
We also plan to explore other issues such as cache load re-
balancing and data prefetching.
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