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Abstract

The indexing of complex data and similarity search plays

an important role in many application areas. Traditional

centralized index structure can not scale with the rapid

proliferation of data volume. In this paper, we propose a

scalable index architecture built on top of distributed hash

tables (DHT), to support similarity search in the general

metric space. Based on efficient space mapping and query

routing mechanisms, our architecture can provide a general

platform to support arbitrary number of indexes on differ-

ent data types. Significantly, it does not need to generate

or maintain any search trees. Instead, the embedded trees

in the underlying distributed hash tables are exploited to

deliver queries. To deal with skewed data distribution, we

also provide load-balancing mechanisms to ensure that no

node in the system is unduly loaded. The performance of

the proposed design is evaluated through simulations with

a variety of metrics. The experimental results demonstrate

that out approach can efficiently solve similarity query at a

low cost.

1. Introduction

In recent years, there has been an increasing demand to

share digital contents (e.g. music, video, images and text

etc.) and support complex queries such as similarity search

on these data. Similarity data retrieval has been applied to

many fields such as data mining, information retrieval and

computation biology. Similarity search has received exten-

sive research attention in centralized database systems and

many indexing schemes have been proposed in this context.

However, these centralized solutions can not scale to mas-

sively distributed systems with a large amount of data. Dis-
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tributing the index structures and query processing across

multiple nodes becomes necessary.

The distributed hash table paradigms (Chord [20], Pas-

try [17], Tapestry [25] and CAN [16]) are appropriate for

building large-scale distributed applications due to their

scalability, fault-tolerance and self-organization. However,

these DHTs are designed for exact key lookup. Complex

Queries such as similarity search and range queries can

not be efficiently supported since consistent hashing mecha-

nisms destroy data locality (similar data objects in original

data space are mapped to the same node or to nodes that

are close together in the overlay network). The challenges

of extending current DHTs to efficiently support similarity

search on complex data include: (1) the design of an ef-

fective mapping mechanism to map data objects to nodes

in the overlay network, while preserving the data locality;

(2) the design of a light-weighted routing algorithm to ef-

ficiently deliver queries to the corresponding index nodes;

(3) the design of load-balancing mechanisms to ensure uni-

form distribution of load among nodes.

In this paper, we propose a novel architecture, built on

top of Chord, for supporting similarity search in peer-to-

peer networks. Working as a scalable indexing platform, the

proposed architecture can simultaneously support multiple

indexes with various data types. Firstly, our design is based

on generic metric space, any type of dataset with a corre-

sponding “black box” distance function to compute the dis-

tance (dissimilarity) between members of the dataset can be

indexed on the proposed indexing platform; Secondly, this

architecture does not need to maintain multiple individual

routing structures for each index scheme. Instead, it utilizes

the trees embedded in the underlying DHT to resolve and

deliver queries. So it can simultaneously support many in-

dex schemes without additional in-network data structures

maintenance overhead. In addition, exploring DHT links

can also eliminate the maintenance cost of routing table by

piggybacking the maintenance messages onto the query de-



livery messages. To deal with the load balancing problem,

we provide both static and dynamic mechanisms to adjust

the load among nodes, to ensure that no node in the system

is unduly loaded.

The rest of this paper is structured as follows. In sec-

tion 2, we present the necessary background of this work.

Section 3 describes the key features of our design. In sec-

tion 4, experiments and results are presented and discussed.

Section 5 gives a short survey of related work. Finally, sec-

tion 6 is the conclusion and future work.

2. Background

Our index architecture is based on the general metric

space in [5]. To formalize the problem, we give standard

definitions of the metric space and the near-neighbor search

as below.

Definition 1 (Metric Space) A metric space is composed
of a data domain D and a distance function d : D ×D → R
which calculates the distance between any pair of objects in
D. ∀x, y, z ∈ D, the distance function d satisfies the follow-
ing properties:

d(x, y) ≥ 0 (positivity)
d(x, y) = 0 iff x = y (reflexivity)
d(x, y) = d(y, x). (symmetry)
d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

Definition 2 (Near Neighbor Search) Given a metric

space (D, d), a data set X ⊆ D, a query point x ∈ D, and a

range r ∈ R, the near neighbor search is to find the set of

objects Y ⊆ X, such that ∀y ∈ Y , d(x, y) ≤ r.

For instance, the following six examples satisfy the

model of searching near neighbors in the metric space:

(1) searching similar DNA or protein sequences in a large

genetics database; (2) searching similar vocal patterns in a

pattern databse; (3) searching similar images in a large im-

age library; (4) searching approximate time series in data

mining; (5) searching related documents in information re-

trieval; (6) searching similar sentences in a large documents

database. One can easily find many other applications

where the model can be applied.

Among above examples, (2) and (4) find neighbors in a

high-dimensional vector space under the L1 or L2 metric1.

(1) and (6) find near neighbors in the metric space of strings

under the edit distance2. (5) uses the cosine metric (the an-

gle between the term vectors of the documents) to measure

the dissimilarity between documents. (3) satisfies the model

under some specific distance functions, e.g. Hausdorff met-

ric [14].

1Lk(x, y) = k
√

∑

|xi − yi|k , where L1 and L2 are called Hamil-

ton distance and Euclidean distance respectively.
2The edit distance function of two strings, s1 and s2, is defined as

the minimum number of point mutations (change, insert or delete a letter)

required to change s1 into s2.

Our distributed index architecture intends to deal with ar-

bitrary metric space. Given any type of data domain D and a

“black box” distance function, which satisfies the properties

in the definition of metric space, to compute the distance be-

tween data points in D, the data objects in D can be indexed

on our indexing platform. Given a query point q ∈ D, the

indexing platform can quickly answer the query by finding

the set of data objects close to point q.

3. System Design

In this section, we describe the design of our indexing

platform on top of Chord. Techniques discussed in this pa-

per are also applicable to other DHTs such as Pastry and

Tapestry. In the rest of this part, we first introduce the con-

struction of the landmark-based index space from the gen-

eral metric space; then we give a description of the locality-

preserving hashing mechanism to distribute the index en-

tries onto nodes in the overlay network; afterwards, we ex-

plain the design of query routing mechanism; Finally, we

present our load balancing mechanisms.

3.1. Landmark-based Index Space

Given a generic metric space (D, d), where D is the data

domain and d is the corresponding distance function, the

landmark-based index space is constructed as following:

(1) Select a set of data points in D as landmarks, let L =

{l1, l2, . . . , lk}.
(2) Map each data object x ∈ D to point

(d(x, l1), d(x, l2), . . . , d(x, lk)) in the index space.

The index space construction can be viewed as a mapping

from the original metric space to a k-dimensional vector

space based on a group of pre-selected data points. Each

data object in the original metric space is mapped to a point

in the k-dimensional index space. Due to the triangle in-

equality, the above space mapping is contractive. And the

data locality can be achieved since similar data objects are

mapped to the close points in the index space.

Near neighbor search in the index space: Given a near

neighbors query (q, r), where q ∈ D is the query point and

r ∈ R is the query range. Based on the triangle inequality,

for any x ∈ D and li ∈ L, we have
{

d(q, x) + d(q, li) ≥ d(x, li)
d(q, x) + d(x, li) ≥ d(q, li)

⇒

{

d(q, x) ≥ d(x, li) − d(q, li)
d(q, x) ≥ d(q, li) − d(x, li)

⇒ d(q, x) ≥ |d(x, li) − d(q, li)|

For any data object s ∈ D that satisfies the query (q, r),

we have d(q, s) ≤ r. Hence |d(s, li) − d(q, li)| ≤ r

holds. We only need to search the k-hypercube cen-

tered at (d(q, l1), d(q, l2), . . . , d(q, lk)) with edge size2r in the

k-dimensional index space to solve the query. Therefore the

near neighbor querying in the original metric space is con-

verted to the multi-dimensional range querying in the index



space. Note that range queries in the index space will gen-

erate a superset result, which should be further refined to

exclude the unsatisfied data objects.

Number of landmarks: The number of landmarks af-

fects the tradeoff between querying quality and querying

efficiency. If the amount of landmarks is too small, the in-

dex structure can not efficiently filter out the unrelated data

objects to a query. The coarse results will increase the over-

head of further refinement and waste network bandwidth

when distributed processing is applied. Reversely, an ex-

cessively large number of landmarks will result in high di-

mensionality of the index space. Previous studies [5, 3, 23]

have shown that complex queries in the high dimensional

space have low efficiency.

Landmark selection: The landmark selection impacts

the quality of querying results. A good landmark selection

method should choose landmark points randomly in order

to make them be close to the center of data clusters in the

original data space; Another important issue is to keep these

landmark points dispersive in the original data space. If the

points bunch up, the distance calculation from them could

be less informative, so they could not efficiently model the

index space to filter out the data objects. In our simula-

tions, we use two different schemes to select landmarks: the

greedy method and the k-mean clustering method. We as-

sume that a well-known node in the system is assigned the

task of selecting landmark set at the system initiation time,

and the landmark set is then used by every node in the sys-

tem. The well-known node starts the landmark selection by

randomly sampling a set of data objects S in the network,

then uses the greedy method to pick up data objects from

S to form the landmark set, or clusters the sampled dataset

S and uses the cluster centroids as landmarks. The new

joined nodes can simply obtain the landmark set from any

nodes currently in the system. Algorithm 1 briefly describes

Algorithm 1 GreedySelection ( )

1: S ← randomly sample data objects in the network
2: L← {}
3: Randomly pick up an object from S and move it to L
4: while size(L) < desired number of landmarks do

5: Choose an object from S which has the maximum distance to L and move it
to L. (The distance between an object s to a set L is defined as the minimum
distance between s and all elements in L)

6: end while
7: return L

the greedy method. Due to space limitation, we omit the

description of k-mean clustering method here. Interested

readers can refer to relevant documents for more details.

Boundary of index space: The boundary of the index

space is required when partitioning and mapping the in-

dex space onto nodes in the overlay network (discussed in

section 3.2). We provide two approaches to determine the

boundary: (1) by the original metric space. Bounded met-

rics can be used directly, while unbounded metrics can be

adjusted using the formula: d′ = d

1+d
. (2) by the landmark

selection procedure. The minimum and maximum distance

between the landmark set and the initially sampled set can

be used as the boundary of the index space. The data objects

whose distance to the landmarks goes beyond the boundary

will be mapped to the boundary points in the index space.

3.2. Locality-preserving Hashing

For distributed index storage and query processing, the

whole index space needs to be partitioned and mapped

onto nodes in the network. To facilitate range queries,

the data locality should be preserved. We propose a

locality-preserving hashing mechanism to partition the

multi-dimensional index space and to map the nearby data

points in the index space to one node or nodes close to-

gether in the overlay network. The mechanism is based on

the technique of k-d tree [2]. The whole index space is par-

titioned into 2
m equally sized hypercuboids (m is the num-

ber of bits in the key identifiers of Chord), each of which is

identified by a key (a m bits integer).

Consider a k-dimensional index space I [0..k − 1], where

each dimension is bounded by a pair 〈L, H〉. The

k-dimensional cuboids are obtained by dividing each di-

mension alternately, for totally m times. The procedure sat-

isfies the following two properties:

• After the i-th division, 1 ≤ i ≤ m, I [0..k − 1] is parti-

tioned into 2
i equal sized k-dimensional cuboids;

• The i-th division is performed on the j-th dimension,

where j = (i − 1) mod k.

The key is defined as follows: on the i-th division, if a hy-

percuboid picks up the higher half of the splitting range, the

i-th3 bit of its key is 1, else 0. Algorithm 2 gives a detail de-

scription of the locality-preserving hash function. Given a

point in the index space, the locality-preserving hash func-

tion identifies the hypercuboid that holds the point and re-

turns the key.

Algorithm 2 LocalityPreservingHash (ipoint[0..k − 1])

Require: k : dimensionality of the index space
Require: 〈L, H〉 : boundary of each dimension
Require: m : number of bits in the identifier
1: key ← 0
2: for i← 0 to k − 1 do
3: R[i]← 〈L, H〉
4: end for
5: for i← 1 to m do
6: j ← (i− 1) mod d
7: mid← (R[j].l + S[j].h)/2
8: if ipoint[j] > mid then

9: R[j].l← mid
10: key ← (key ≪ 1) + 1
11: else
12: R[j].h← mid
13: key ← (key ≪ 1)
14: end if
15: end for
16: return key

The Chord’s key-mapping mechanism is utilized to map

the hypercuboids onto the nodes in the network, i.e. each

hypercuboid is mapped onto the node which is the successor

3The i-th bit is the one in the i-th position (from the left) of the m bits

identifier (padded with zeros on the left if the length is less than m)



(node whose identifier is equal to or immediately after the

key along the ring) of its key.

The above hashing and mapping mechanism can achieve

data locality since nearby points in the multi-dimensional

index space are hashed and mapped to the same node or the

neighboring nodes in the overlay network. Since nodes are

evenly distributed in the identifier space (Chord uses con-

sistent hashing, e.g. SHA-1, to map nodes to the identifier

space), the hypercuboids are evenly mapped to nodes in the

overlay network. However, load may not evenly distributed

among nodes due to the skew distribution of index entries

in the index space. In section 3.4, we propose load balanc-

ing mechanisms to efficiently balance the load among nodes

and make sure that no node is unduly loaded.

3.3. Range Query Resolving and Routing

As discussed in section 3.1, the near-neighbor queries

in the metric space can be converted to range queries in

the index space. Since index space is partitioned and dis-

tributed among nodes in the system, an efficient query rout-

ing algorithm is necessary to refine and deliver the range

queries to the corresponding index nodes. A naive approach

is to subdivide a range query into many subqueries, each of

which is covered by only one of the 2
m hypercuboids, and

to route each subquery to the corresponding index node.

This method is obviously inefficient and will cause high

overhead especially when the query selectivity (ratio of the

query size to the domain size) is large. Accordingly, we pro-

pose a different approach to solve range queries by progres-

sively splitting and refining a range query along the propa-

gation path.
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Figure 1. Range query refinement and the
corresponding prefix

We define prefix key and prefix length to assist the query

resolving and routing. The prefix is the code (bit string)

of the smallest hypercuboid that can completely hold the

query region when the data space is recursively partitioned.

The prefix key is a m-bit identifier by padding zeros to

the right of prefix. The prefix length is used to indicate

the valid length of prefix in the prefix key. As illustrated

in figure 1(a), the rectangle 011 is the smallest one that

can completely hold the query region (the shaded area) of

Q when the data space is recursively partitioned for three

times. Thus the prefix for Q is “011”. The prefix key of

Q is “0110 . . .0”, with m bits totally. When a range query

is issued, the initial prefix key is generated on the querying

node. Then the query, as well as the prefix key, is sent to

the query routing module for refinement and delivery.

Upon receiving a range query Q, a node A (where A

is any node on the propagation path, including the query-

ing node) exploits the embedded tree (formed by the DHT

links) to divide the query into multiple smaller sized sub-

queries and deliver these subqueries along the DHT links.

The basic idea behind the query refinement and routing al-

gorithms is that subqueries sent to the corresponding index-

ing nodes who share common ancestor nodes on the embed-

ded tree are delivered as one larger sized query from the root

node to their lowest common ancestor node. In other words,

a query splits into multiple subqueries only when these sub-

queries need to take different ways to the destination on the

distributed embedded tree.
Algorithm 3 QueryRouting (Query q)

Require: m : number of bits in the identifier
1: p← q.prelen
2: if q.prelen = m then
3: subquerylist.push back(q)
4: else
5: subqueries ← QuerySplit(q, q.prelen + 1)
6: N1 ← nexthop(subqueries[0].prekey);
7: N2 ← nexthop(subqueries[1].prekey);
8: if N1 = N2 then
9: subquerylist.push back(q)

10: else
11: subquerylist.insert(subqueries)
12: end if
13: end if
14: for each sq in subquerylist do
15: N ← nexthop(sq.prekey)
16: if N = me then
17: Successor.SurrogateRefine(sq)
18: else
19: N .QueryRouting(sq)
20: end if
21: end for

Algorithms 3, 4 and 5 outline the procedure of range

query refining and routing. The notation N.foo() in the

pseudocode stands for the function foo() being invoked at

and executed on node N . The procedure for query refine-

ment and delivery is a distributed recursive process that

starts from the querying node which initializes the query

and then locally invokes ETBRouting() for query routing.

Once receiving a query Q, QueryRouting() first invokes

QuerySplit() to divide Q into small sized subqueries based

on the routing table. The query splitting procedure ensures

that no subqueries share common next hop 4 nodes when

delivered along DHT links. Figure 1(b) gives an example

of query splitting on a 2-dimensional data space. Query

Q is divided into two subqueries by horizontally partition-

ing rectangle 011 in half, and the prefix for the subqueries

are “0110” and “0111” respectively. After the query is

divided into subqueries, the next step is to deliver these

subqueries along the DHT links by remotely invoking the

4The next hop node is the one from the routing table whose identifier

is immediately before the prefix key of the query on the ring. In the im-

plementation of Chord, the routing table is composed of a finger table, a

successor list and the current node itself.



QueryRouting() function on the next hop nodes in parallel.

If the next hop is the current node (current node is the pre-

decessor of the prefix key), the subquery is sent to the sur-

rogate node (the successor of the current node) for refine-

ment by remotely invoking procedure SurrogateRefine()

on the successor node.

Algorithm 4 QuerySplit (Query q, Pos p)

Require: k : dimensionality
Require: 〈L, H〉 : boundary of each dimension
Require: m : number of bits in the identifier
1: j ← (p− 1) mod k
2: R ← 〈L, H〉
3: i← (p mod d = 0) ? k : (p mod k)
4: while i < p do
5: if getbit(q.prekey, i) = 1 then

6: R.l← (R.h + R.l)/2
7: else
8: R.h← (R.h + R.l)/2
9: end if

10: i← i + d
11: end while
12: mid← (R.h + R.l)/2
13: if q.range[j].l > mid then

14: setbit(q.prekey, p)
15: q.prelen ← p
16: subquerylist.push back(q)
17: else if q.range[j].h < mid then

18: q.prelen ← p
19: subquerylist.push back(q)
20: else
21: nq1 ← nq2 ← q
22: nq1.range[j].l ← nq2.range[j].h← mid
23: setbit(nq1.prekey, p)
24: nq1.prelen ← nq2.prelen ← p
25: subquerylist.push back(nq1, nq2)
26: end if
27: return subquerylist

The surrogate node C refines a query q based on the over-

lapping relation between the data space that C covers and

the range of q. If the range of q completely falls into the

range of C, C will fully accept query q; If there is no over-

lapping between them, C will forward q after generating a

refined prefix key; If there is overlapping between them, C

will divide q into multiple subqueries and forward the sub-

queries which are not covered by the current node. The

surrogate refinement is a recursive process which progres-

sively prunes the query range to fit the data space region

covered by the surrogate node. Figure 1(c) gives an exam-

ple of query refinement. Subquery Q3 is cutted out from

Q2, and the remainder of Q2 is completely covered by the

surrogate node C. Node C then replies to the remainder of

Q2 with index entries stored locally and sends out subquery

Q3 using the procedure outlined above.

The range query resolving and routing algorithm is es-

sentially a recursive process where queries are progressively

refined and delivered on the embedded trees formed by the

DHT links. Thus the overall number of messages needed

to resolve and route a query can be significantly reduced.

Through exploring DHT links, the overhead of maintaining

additional in-network structures specific to different index

schemes can be eliminated, therefore the proposed index

architecture can inherently support many index schemes. In

addition, the maintenance messages for the DHT links can

Algorithm 5 SurrogateRefine (Query q)

Require: m : number of bits in the identifier
Require: me.id : the identifier of current node
1: if prefix(q.prekey, q.prelen) 6= prefix(me.id, q.prelen) then

2: surrogate node fully covers q
3: solve q locally and return results to querier
4: else
5: j ← first 0 bit position in me.id from q.prelen+1 to m
6: if j not exists then
7: surrogate node fully covers q
8: solve q locally and return results to querier
9: else

10: q.prekey ← prefix(me.id, j − 1)
11: q.prelen ← j − 1
12: subquerylist ← QuerySplit(q, j)
13: for each sq in subquerielist do
14: if prefix(sq.prekey,sq.prelen)=prefix(me.id,sq.prelen) then

15: SurgateRefine(sq)
16: else
17: QueryRouting(sq)
18: end if
19: end for
20: end if
21: end if

be piggybacked onto the query delivery messages, so as to

reduce the maintenance cost.

3.4. Load Balancing

An important issue in the distributed system is load bal-

ancing. In this section, we propose static and dynamic load

balancing mechanisms to adjust load among nodes and en-

sure that no node in the system is unduly loaded. In this

paper, we measure the load on a node by the amount of in-

dex entries stored on it (the overhead of index storage and

computation cost of query evaluation); however, other in-

formation, such as the number of messages, can be easily

incorporated into the load value.

Space mapping rotation: Recall that our index archi-

tecture can simultaneously support multiple index schemes.

For each index scheme, the locality-preserving hashing

mechanism partitions and maps the multi-dimensional in-

dex space to a 1-d key space ranged [0..2m−1]. If several in-

dex schemes have similar distribution of the hotspots in the

index space, the hot region for each index will be mapped

to the common ranges in the 1-d key space, therefore nodes

with identifiers located in these ranges will be overloaded.

For example, in the high dimensional vector metric space,

the volume of hyperball centered at the landmark point in-

creases quickly when the radius becomes large, given for-

mulas Vn = πn/2Rn

Γ(1+ n
2

)
and dVn

dR
= nπn/2Rn−1

Γ(1+ n
2

)
. Thus the index

entries will be densely distributed to the area close to the up-

per boundary of the index space. Therefore, a few of such

index schemes will overload the nodes located in the higher

range of the identifier space.

If each index scheme is given a random rotation offset φ

when mapped to the 1-d key space, index i will be mapped

to [φi .. φi + 2m − 1] (arithmetic is modulo 2m), and the hot

regions of these index schemes will be mapped to different

ranges on the Chord ring. The randomness of φ for each

index scheme can be achieved by hashing (random hash-

ing function) the name of the corresponding index. The



locality-preserving hashing and query delivery algorithms

presented in the previous sections can be easily modified to

reflect the space rotation.

Dynamic load migration: At runtime, heavily loaded

nodes can dynamically migrate some of their load to lightly

loaded ones in two ways: first, when a new node joins

the system, the join request is forwarded toward a heav-

ily loaded node, which will divide its key range and assign

one half to the new node. The indices with keys located

in the corresponding range are transferred to the new node.

The split point should be chosen carefully to ensure load on

each node is almost even. Second, a node, called N , peri-

odically samples the load on its neighbors (and neighbors’

neighbors if the probing level Pl is greater than 1). Node

N is said to be heavily loaded if its load oversteps the av-

erage load on the neighbors by a threshold factor δN , that

is LN > L × (1 + δN ). The value of the threshold factor δ

for each node is based on the node’s capacity. The average

value of δ and Pl control the tradeoff between the overhead

and quality of the load balancing. A heavily load node can

find a lightly loaded node and ask it to leave and then rejoin

the system with a given node identifier (the split point of the

key range to divide the load in halves).

To facilitate load probing, each node in the system keeps

its neighbors’ load information in the routing table. And

the load information refresh message can be piggybacked

onto the routing table maintenance message, which can be

further piggybacked onto the query delivery messages as

discussed in section 3.3 to reduce the maintenance cost.

It should be noted that this load balancing approach

may cause nodes not uniformly distributed in the identifiers

space, which will more or less impair the performance of

the query routing algorithm. This is because uniformly dis-

tributed nodeIDs will increase the depth of the search tree,

thus the query propagation path will also increase and the

concurrent degree of subqueries will be low. However, the

tradeoff between the quality of load balancing and query

routing performance can be controlled by the threshold fac-

tor δ and the probing level parameter Pl.

4. Experimental Evaluation

In this section, we evaluate performance of the proposed

design through simulations. We start our discussion by de-

scribing the experimental setup and metrics used for eval-

uation. Afterwards, the experimental results are presented

and discussed.

4.1. Experimental Setup

We implement our index architecture on top of

p2psim[8], a discrete event-driven, packet level simula-

tor for many DHT protocols. We use Chord-PNS (Chord

with proximity neighbor selection [9] allows each node to

choose physical closest nodes from the valid candidates as

routing entries, thus to reduce the lookup latency.) protocol

with its default parameters (base=2, successors=16 etc.).

The number of bits in the key/node identifiers in the sim-

ulator is 64. The network model used in our simulation is

derived from the King dateset, which includes the pairwise

latencies of 1740 DNS servers in the Internet measured by

King method [12]. The average round-trip time of the sim-

ulated network is 180 milliseconds. We use both synthetic

datasets and real world datasets for experiments.

The simulations are initialized with one node in the sys-

tem, which randomly samples data objects and performs the

landmark selection procedure. Then other nodes join the

system at a randomly chosen time. After system stabiliza-

tion, we schedule 2000 queries issued on the randomly cho-

sen nodes. The interarrival time of queries is exponentially

distributed with average value of 150s.

A set of cost metrics are used to evaluate the perfor-

mance of our index architecture: (1) hops: the maximum

path length required to deliver a query to all of the corre-

sponding index nodes; (2) response time: the elapsed time

between injecting a query into the system and receiving

the first query result; (3) maximum latency: the elapsed

time between injecting a query into the system and receiv-

ing responses from all of the corresponding index nodes;

(4) bandwidth cost: the total bandwidth consumption for

delivering a query to the corresponding index nodes (query

delivery bandwidth) and delivering the query results from

the index nodes to the querying node (results delivery band-

width); (5) recall: a metric used to quantify the quality of

query result. For each query, the k-nearest data objects ob-

tained by searching the whole dataset, set X, are considered

as the theoretical results. Then we use our system to retrieve

k-nearest data objects, set set Y , the recall rate for a query

is calculated as Recall = |X∩Y |
|X|

. We set k = 10, which

is a reasonable value since most users only have interest in

the top 10 results [21]. Each queried index node returns the

10-nearest local results and the querying node merges these

results to calculate the recall rate.

The size of each query message is modeled in bytes as:

20 + 4 + n × (2 × 2 × k + 8 + 1), where 20 bytes are for

packet header, 4 bytes are for IP address of source node, n

is number of subqueries, k is the number of landmarks, 8

bytes are for prefix key, and 1 byte is for prefix length. The

size of the result message is modeled as 20 bytes for packet

header and 6 bytes for each index entry in the result.

4.2. Experimental Results with Synthetic
Datasets

We generate multi-dimensional datasets. Each dataset

contains 105 data objects which are clustered in the data

space. Data in each data cluster are modeled as normal dis-

tribution. Thus less number of clusters and less deviation
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Figure 2. Performance with respect to different landmark selection schemes (without load balancing)

in each cluster will generate more skewed dataset. The cor-

responding query sets are generated with the same method.

The values of the parameters for generating the datasets are

list in table 1. Distance between two data points is measured

using the euclidean metric. Given two data points x and y

in a d-dimensional data space, the distance between x and y

is computed as follows: d(x, y) = 2

√
∑n

i=1
(xi − yi)2.

Table 1. Parameters for Datasets Generation
Dimension 100

Range of each dimension [0 .. 100]

Number of clusters 10

Deviation of each cluster 20

The landmarks are chosen with greedy method or k-

mean clustering method by randomly sampling 2000 data

objects from the dataset. We define query range factor as

the size of query range divided by the maximum theoretical

distance between two data points in the original data space.

The theoretical maximum distance is 2

√

∑100

i=1
(100 − 0)2 =

1000. The boundary of index space is determined by the

original metric space, each dimension bounded by [0..1000].

We evaluate the performance by ranging the query range

factor from 0.1% to 20%.

Figure 2 illustrates the performance without applying

load balancing mechanism. Almost all landmark selection

schemes can achieve high recall rate with low cost. K-mean-

10 and Greedy-10 can achieve 100% recall rate when the

query range factor is about 5%. The 10-landmark schemes

outperform the 5-landmark schemes because the data in the

dataset are distributed in 10 clusters, thus the indices will

be correspondingly clustered in the index space and index

entries will be distributed onto a small amount of nodes dur-

ing partitioning and mapping. Therefore the recall rate is

high, with a low query routing cost. The k-mean cluster-

ing schemes outperform greedy schemes in that the k-mean

method uses the centroids of the data clusters as landmarks,

so it can efficiently model the index space and filter the data

objects.

Next we evaluate the performance when the load bal-

ancing mechanism (dynamic load migration) applies. As-

sume that all nodes in the system have same capacity and

each node uses a threshold factor δ = 0 and a large probing

level parameter Pl = 4. These values are set to evaluate the

maximum effect of load balancing on the performance of

query routing. As illustrated in figure 2 and 3, for all land-

mark selection schemes, the recall rate decreases and the

cost of query routing increases when load balancing is ap-

plied. However, a high recall rate, although affected by load

balancing, can still be achieved with a reasonable routing

cost. The 5-landmark schemes outperform the 10-landmark

schemes. This is because the 5-landmark schemes can dis-

tribute the index entries more evenly onto nodes, which are

less impacted by the load balancing mechanism. Figure 4

shows the load distribution on nodes (The nodes are sorted

in the decreasing order of the load). We can see that the load

balancing mechanism can achieve an even load distribution

among nodes. And the maximumly loaded node only has

97 index entries for all of the landmark selection schemes.
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Figure 4. Load distribution on nodes
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Figure 3. Performance with respect to different landmark selection schemes (with load balancing)

4.3. Experimental Results with Real World
Datasets

We evaluate our design with TREC-1,2-AP datasets,

which contains AP Newswire documents in TREC CDs

1 and 2. We extracted the documents with the head and

text fields and excluded 7, 576 documents that do not have

a valid head field. This results in 157, 021 documents in

the final dataset. The queries are obtained from TREC-3

ad hoc topics (151-200). We use 2000 queries in the sim-

ulation by repeating these 50 topics on randomly selected

nodes. Landmarks are chosen with greedy or k-mean clus-

tering method by randomly sampling 3000 documents from

the dataset.

We use VSM [4] to represent documents and queries as

term vectors. Each component of the vector represents the

importance of the corresponding term in the document or

query. We use TF/IDF scheme to calculate the weight of

components, where TF is the frequency of terms in a doc-

ument and IDF is the inverse of the number documents in

which the term appears. We also use a list of 571 stop words

from SMART [6] to remove the stop words from the doc-

ument vectors. Thus each document vector has 155 terms

on average and the whole document set has 233640 distinct

terms. Therefore the whole document set can be represented

as a 233640 × 157021 sparse matrix. The distribution of the

document vector size is list in table 2.

Table 2. The Distribution of Doc Vector Sizes
minimum 5th 50th 95th maximum mean

1 50 146 293 676 155.4

The distance between two vectors is measured as the an-

gle between them (based on the well known cosine similar-

ity measure). Given vectors X and Y , the distance between

them can be calculated as:

d(X, Y ) = arccos
( X · Y

|X||Y |

)

We study two landmark selection schemes in this exper-

iment: k-mean-10 and Greedy-10. The boundary of the

index space is determined by the landmark selection pro-

cedure. As illustrated in figure 5, when the query range

factor is less than 1%, the greedy method achieves higher

recall rate with lower query routing cost. When the query

range factor increases from 1% to 20%, the k-mean cluster-

ing method achieves high recall rate with lower query rout-

ing cost. As we have discussed before, the whole document

set has been represented as a high dimensional sparse ma-

trix, and each document vector has a very small number of

terms (the maximum size of document vector is 676, the to-

tal number of distinct terms in the whole dataset is 233640),

thus given a document vector v, there are a large amount of

vectors which have maximum distance (π/2) to v. Since the

greedy method choose landmarks directly from the docu-

ment set, the landmark vectors will also have less number

of terms. Therefore a large number of unrelated documents

will be mapped to the same point close to the upper bound-

ary of the index space. In other words, landmarks chosen

by greedy method can not effectively model the index space

to filter the documents. On the contrary, k-mean clustering

method efficiently groups the sampled documents and uses

the centroids of the clusters as landmark vectors, so each

landmark vector has more terms and can be used to mea-

sure the documents effectively.

The greedy method can not efficiently filter the docu-

ments. It maps a large amount of unrelated documents to

the same point in the index space. As a result, the locality-

preserving hash function will hash these documents to a sin-

gle key. The load balancing mechanism can not divide the
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Figure 5. Performance with TREC dataset (with load balancing)

index entries associated with a single key. Therefore, the in-

dices are still stored on a small amount of nodes even with

load balancing, as shown in figure 6.
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Figure 6. Load distribution (TREC dataset)

Since the queries have 3.5 unique terms averagely, the

greedy method will map them to the points close to the

upper boundary of the index space with high probability.

Therefore, the actual query range is less than the one de-

picted in figure 5. For example, given range r, the query

range for a query q is [Iq − r, upper boundary], instead of

[Iq − r, Iq + r], where Iq is correspond index point of q.

This is the reason why the query routing cost of the greedy

method is less than that of k-mean clustering method when

the query range is relatively small. Since the greedy method

only distributes indices onto a small amount of nodes, the

load balancing mechanism may cause a skew distribution of

nodes in the identifier space, which will increase the query

routing cost, as discussed in section 3.4.

Similarly, since the greedy method maps documents and

queries to a less number of nodes, it can achieve a high

recall rate when the query range factor is relatively small.

However, the overhead of query processing on the corre-

sponding index nodes is significantly high. When the query

range factor is large, the greedy method can not effectively

retrieve other related documents due to its poor performance

in filtering documents.

5. Related Work

Recently there has evolved considerable work for sup-

porting complex queries in structured P2P networks. Gupta,

Agrawal et.al [13] attempt to hash ranges instead of key-

words to nodes. They use locality sensitive hashing to en-

sure that similar ranges are mapped to the same node with

high probability. MAAN [7] uses locality preserving hash-

ing to support multi-dimensional range queries on Chord.

SCRAP [11] uses Hilbert Space Filling Curve [18] to map

multi-dimensional data space to a one-dimension key space.

Their query routing is based on Skip Graph [1]. MURK [11]

and SkipIndex [24] use k-d trees to partition and map the

multi-dimensional space to nodes, for supporting multi-

dimensional range queries. Our index architecture differs

from above solutions in that it can efficiently support multi-

ple multi-dimensional indices with different dimensionality,

without maintaining multiple individual routing structures.

There has been other work aiming to extend the DHTs

to support similarity search. pSearch [22] is built on top

of CAN and leverages LSI for indexing the documents. As

mentioned in [22], pSearch is less efficient as the size of the

corpus increases. Sahin et.al [19] use reference set to map

documents onto the nodes in the Chord overlay. Since data

locality is not preserved, their system suffers from low re-

call rate and high query overhead. In order to achieve high

recall rate, they use multiple reference sets, which will in-

crease the cost of storing indices and maintaining the refer-

ence sets. MCAN [10] is built on top of CAN for supporting

similarity queries in the metric space. The main drawback

of MCAN is that the same querying message may be send

to one node for several times.



6. Conclusion and Future Work

In this paper, we have proposed and evaluated the de-

sign of a distributed index architecture, which is built on

top of DHT for efficiently resolving similarity queries in

peer-to-peer networks. By choosing a set of data points

as landmarks, we map a general metric space to a multi-

dimensional index space and convert the near-neighbor

queries in the original metric space to range queries in the

index space. We have proposed a locality-preserving hash-

ing mechanism to partition and map the index space onto

the nodes in the overlay network; and an efficient query

routing algorithm to progressively refine and deliver the

range queries to the corresponding index nodes. There are

two distinct features in our design: (1) any type of datasets

with a corresponding distance function can be indexed

on our indexing platform; (2) multiple index schemes can

be simultaneously supported without maintaining multiple

routing structures. We have also developed light-weighted

load-balancing mechanisms to adjust the load among nodes

to make sure that no node in the system is unduly loaded.

This paper constitutes an initial step to build an efficient

and distributed platform for supporting similarity queries

in general metric space. There is plenty of future work to

do. One is to enable the execution of other metric spaces.

Detailed evaluations will be performed on the space map-

ping, query routing and load balancing mechanisms, based

on which more optimizations may be proposed. Another

future work is to support automatic query expansion [15],

which is already an effective technique to improve recall

and precision in centralized information retrieval systems.

The third direction is to support dynamic datasets. New

landmark sets can be periodically generated and evaluated.

If the new landmark set outperforms the current one accord-

ing to some threshold, the new landmarks will be dissem-

inated to the nodes in the system. Indices will be recalcu-

lated and migrated to new nodes accordingly.
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[3] S. Berchtold, C. Böhm, D. A. Keim, and H. P. Kriegel. A
cost model for nearest neighbor search in high-dimensional
data space. In Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database sys-
tems, pages 78–86. ACM Press, 1997.

[4] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector
spaces, and information retrieval. SIAM Review, 41(2):335–
362, 1999.

[5] S. Brin. Near neighbor search in large metric spaces. In Pro-
ceedings of 21th International Conference on Very Large Data
Bases, pages 574–584, Zurich, Switzerland, Sep 1995.

[6] C. Buckley. Implementation of the smart information retrieval
system. Technical Report TR85-686, Department of Computer
Science, Cornell University, May 1985.

[7] M. Cai, M. R. Frank, J. Chen, and P. A. Szekely. Maan: A
multi-attribute addressable network for grid information ser-
vices. In Fourth International Workshop on Grid Computing,
pages 184–191, Phoenix, AZ, Nov. 2003.

[8] Computer Science and Artificial Intelligence Lab,
MIT. p2psim: a simulator for peer-to-peer protocols.
http://pdos.csail.mit.edu/p2psim.

[9] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a DHT for low latency and high through-
put. In Proceeding of the First Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 85–98, San
Francisco, CA, Mar. 2004.

[10] F. Falchi, C. Gennaro, and P. Zezula. A content-addressable
network for similarity search in metric spaces. In 3rd Inter-
national Workshop on Databases, Information Systems, and
Peer-to-Peer Computing, pages 126–137, Trondheim, Norway,
2005.

[11] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to
rule them all: Multidimensional queries in p2p systems. In
Proceedings of the Seventh International Workshop on the Web
and Databases, pages 19–24, Maison De la Chimie, Paris,
France, Jun. 2004.

[12] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimat-
ing latency between arbitrary internet end hosts. In Proceed-
ings of the 2002 SIGCOMM Internet Measurement Workshop,
Marseille, France, Nov. 2002.

[13] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range
selection queries in peer-to-peer systems. In Proceedings of
the First Biennial Conference on Innovative Data Systems Re-
search (CIDR), Asilomar, CA, January 2003.

[14] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Com-
paring images using the hausdorff distance. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(9):850–863,
1993.

[15] M. Mitra, A. Singhal, and C. Buckley. Improving automatic
query expansion. In Proceedings of ACM SIGIR, pages 206–
214, Melbourne, Australia, 1998.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Shenker.
A scalable content-addressable network. In Proceedings of
ACM SIGCOMM, pages 161–172, San Diego, CA, Aug. 2001.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the 18th IFIP/ACM International Con-
ference on Distributed System Platforms (Middleware), pages
329–350, Heidelberg, Germany, Nov. 2001.

[18] H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.
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